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Abstract
Background: XPO1 mediates the nuclear export of several proteins, mainly 
tumor suppressors. KPT-330 (Selinexor) is a selective inhibitor of XPO1 that has 
demonstrated good therapeutic effects in hematologic cancers.
Methods: We used TCGA and GTEx pan-cancer database to evaluate XPO1 
mRNA expression in various tumors. Cell proliferation assay and colony forma-
tion assay were used to analyze the in vitro antitumor effects of XPO1 inhibitor 
KPT-330. Western blot was performed to explore the specific mechanisms.
Results: We found that XPO1 was highly expressed across a range of cancers 
and associated with poor prognosis in hepatobiliary and pancreatic tumors. We 
revealed that the XPO1 inhibitor KPT-330 triggered the nuclear accumulation 
of the p53 protein and significantly disrupted the proliferation of cholangiocar-
cinoma cells. Mechanistically, the XPO1 inhibitor, KPT-330, reduced BIRC6 ex-
pression by inhibiting the PI3K/AKT pathway to decrease p53 degradation and 
improve its stability.
Conclusion: Therefore, XPO1 may be a potential therapeutic target in cholan-
giocarcinoma, mediated by its effects on KPT-330.
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1   |   BACKGROUND

Cholangiocarcinoma is a highly aggressive malignancy, 
characterized by cholangiocyte differentiation.1 The 5-
year survival rate for cholangiocarcinoma is 20%–40%, 
however, the only effective treatment is complete surgi-
cal resection.2 Unfortunately, owing to the lack of typical 
clinical manifestations, many patients are diagnosed at an 
advanced stage and are not eligible for surgery.3 Therefore, 
there is an urgent need to identify new diagnostic and ther-
apeutic targets for the treatment of cholangiocarcinoma.

Exportin-1 (XPO1) is a major nuclear export receptor 
protein that transports cargo proteins via a leucine-rich 
nuclear export signal (NES) from the nucleus to the cy-
toplasm.4 Cargo proteins of XPO1 are mainly tumor 
suppressors, including p21 and p53.5 High expression of 
XPO1 has been reported in various tumors, including pan-
creatic adenocarcinoma, gastric cancer, neuroblastoma, 
and hematologic tumors, and is strongly associated with 
poor prognosis.6–9 Therefore, the inhibition of XPO1 may 
be a therapeutic tool for tumors. Scientists have developed 
selective inhibitors for XPO1 over the years, and Selinexor 
(KPT-330) has been clinically validated and approved 
by the United States Food and Drug Administration.10 
However, the role of XPO1 and its therapeutic effect on 
KPT-330 on cholangiocarcinoma has yet to be elucidated.

In this study, we analyzed the information in the 
Cancer Genome Atlas (TCGA) database and found that 
XPO1 was highly expressed in 21 types of tumors and was 
clearly associated with poor patient prognosis. We used 
bioinformatics analysis to clarify that the genes positively 
associated with high expression of XPO1 were mainly as-
sociated with ubiquitin-mediated proteolysis, RNA trans-
port, and the spliceosome. We found that XPO1 inhibition 
by KPT-330 significantly disrupted cholangiocarcinoma 
cell proliferations. Further experiments revealed that the 
XPO1 inhibitor KPT-330 increased intranuclear accumu-
lation of p53 and increased its protein stability. We discov-
ered that BIRC6 could cause p53 degradation; however, 
KPT-330 reduced BIRC6 expression by inhibiting PI3K/
AKT pathway to alleviate p53 degradation. Therefore, 
XPO1 may be a potential therapeutic target and KPT-330 
may play a therapeutic role in cholangiocarcinoma.

2   |   MATERIALS AND METHODS

2.1  |  Cell culture and treatment

Cholangiocarcinoma cells (RBE and 9810) were pur-
chased from the Cell Bank of the Shanghai Institute 
for Biological Sciences, Chinese Academy of Sciences. 
Cells were cultured in DMEM medium (Gibco) 

supplemented with 10% fetal bovine serum (Gibco) in 
a humid chamber at 37°C with 5% CO2. KPT-330, cy-
cloheximide (CHX), and 740 Y-P were purchased from 
Selleck Chemicals.

2.2  |  RNA extraction and qRT-PCR

Total RNAs were extracted from RBE and 9810 cells 
by using Trizol reagent (Invitrogen). cDNA was gen-
erated using the PrimeScript RT reagent kit with 
gDNA Eraser (TaKaRa) according to the manu-
facturer's instructions. The primers used for am-
plification were followed: GAPDH forward primer 
(5-CAACAGCCTCAAGATCATCAGC-3), GAPDH re-
verse primer (5-TTCTAGACGGCAGGTCAGGTC-3), p53 
forward primer (5- CAGCACATGACGGAG GTTGT-3), 
and p53 reverse primer (5-TCATCCAAA TACTCCACAC
GC-3).

2.3  |  Western blot

Total protein extraction and western blotting were con-
ducted as previously described.11 In brief, first, proteins 
were isolated with RIPA Lysis buffer (Beyotime). Next, 
proteins were separated by SDS-PAGE and transferred 
onto PVDF membranes (Millipore). Then, 5% skim milk 
was used to block the blots for 1 h at room temperature. 
A series of primary antibodies (Abcam) was added to 
the appropriate position of the PVDF membranes and 
incubated overnight at 4°C. Finally, all blots reacted 
with the suitable Horseradish Peroxidase-conjugated 
secondary antibody (Beyotime), and the immunoreac-
tive bands were detected by chemiluminescence and 
visualized using a Gel Doc 2000 (Bio-Rad). Antibodies 
against XPO1, p53, H3, BIRC6, PI3K, p-PI3K(Tyr458), 
AKT, p-AKT(Ser473), and GAPDH were purchased from 
Abcam.

2.4  |  Cell proliferation assays

Approximately 1500 cells of RBE and 9810 cells were 
seeded in 96-well plates. Cell proliferation was assessed 
using a Cell Counting Kit-8 assay (Yeasen). The cell pro-
liferation curves were plotted using absorbance at 450 nm.

2.5  |  Colony formation assay

RBE and 9810 cells were seeded in 6-well plates at a den-
sity of 1000 cells per well for 10 days. The cells were fixed 
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with 4% paraformaldehyde and stained with 0.1% crystal 
violet.

2.6  |  siRNA, plasmid construction, and 
transfection

The siRNA-transfected cholangiocarcinoma cells used 
were as follows: p53-siRNA: 5-CGGCGCACAGAGGAAGA
GAAUTT-3. R-fect (Baidai) was used to transfect siRNA. 
The plasmid pBIRC6, which encodes the full-length 
cDNA of the BIRC6 (NM_001378125.1) and the XPO1 
(NM_001410799.1) was constructed by Genomeditech. 
The empty vector (pCMV6) was used as a negative con-
trol. Viafect transfection reagent was used for plasmid 
transfection according to the protocol (Promega).

2.7  |  Immunofluorescence assay

RBE and 9810 cells were seeded on coverslips 1 day be-
fore and fixed using 4% paraformaldehyde for 15 min at 
room temperature. We implied Immunofluorescence 
Staining Kit (Beyotime) according to the protocol. A 
fluorescence microscope (Leica DM4B) was used to cap-
ture images.

2.8  |  Data collection and analysis

XPO1 expression profiles and TCGA and Genotype-Tissue 
Expression (GTEx) clinical pan-cancer data were down-
loaded from the University of California, Santa Cruz 
(UCSC) Xena database (https://xenab​rowser.net/datap​
ages/). For pan-cancer data of TCGA and GTEx databases, 
differential XPO1 mRNA expression between various tu-
mors and normal tissues was analyzed using t test, and their 
visualization was carried out by R software package “gg-
plot2.” For data transformation, RNAseq data in Fregments 
Per Kilobase per Million (FPKM) format were converted to 
transcripts per million reads (TPM) format and log2 trans-
formed. In order to assess the expression of XPO1, tumor 
tissues were obtained from TCGA, and normal tissues were 
obtained from TCGA and the GTEx databases.

2.9  |  Correlation and 
enrichment analysis

Pearson correlation analysis of XPO1 mRNA and other 
mRNAs was conducted in cholangiocarcinoma using 
TCGA CHOL data. The 500 genes most positively asso-
ciated with XPO1 were selected for enrichment analysis 

to determine the function of XPO1. Gene ontology (GO) 
analysis was performed using the EnrichGO function in 
the clusterProfiler R software package R with the following 
parameters: p value.adj <0.1 and Q value <0.2.

2.10  |  Statistical analysis

Statistical analyses were performed with Prism 8 
(GraphPad Software) and SPSS 24 (SPSS Inc.). Student's t 
test was performed between two groups, and analysis be-
tween multiple groups was conducted by one-way analysis 
of variance, data are recorded in the form of mean ± SD. p 
Values of <0.05 were considered statistically significant 
(*p < 0.05, **p < 0.01, ***p < 0.001).

3   |   RESULTS

3.1  |  Pan-cancer expression of XPO1

Using TCGA and GTEx pan-cancer database, we evaluated 
XPO1 mRNA expression in various tumors. The results of 
the analysis suggested that XPO1 showed high expression 
in 21 types of tumors, including bladder cancer (BLCA), 
breast cancer (BRCA), cervical cancer (CESC), cholangio-
carcinoma (CHOL), colon adenocarcinoma (COAD), dif-
fuse large B-cell lymphoma (DLBC), esophageal carcinoma 
(ESCA), glioblastoma (GBM), head and neck squamous 
cell carcinoma (HNSC), kidney chromophobe (KICH), 
kidney renal papillary cell carcinoma (KIRP), acute my-
eloid leukemia (LAML), brain lower grade glioma (LGG), 
liver hepatocellular carcinoma (LIHC), lung adenocar-
cinoma (LUAD), lung squamous cell carcinoma (LUSC), 
pancreatic adenocarcinoma (PAAD), rectum adenocar-
cinoma (READ), stomach adenocarcinoma (STAD), tes-
ticular germ cell tumors (TGCT), and thymoma (THYM) 
(Figure  1A). Notably, in TCGA unpaired samples, XPO1 
was highly expressed in hepatobiliary and pancreatic tu-
mors (CHOL, LIHC, and PAAD) (Figure 1B). In the paired 
samples, we found that XPO1 was highly expressed in 
CHOL and LIHC compared with the corresponding nor-
mal tissues (pancreatic cancer pairing data lacked sig-
nificance with only four pairs) (Figure 1C). These results 
suggest that XPO1 may play an important role in tumor 
development and warrant further investigation.

3.2  |  Association between high XPO1 
expression and tumor prognosis in patients

Next, we focused on hepatobiliary and pancreatic tu-
mors: CHOL, LIHC, and PAAD. To further investigate the 

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/


5754  |      ZHAO et al.

relationship between high XPO1 expression and patient 
prognosis, we analyzed its association with “overall sur-
vival” and “progress-free interval.” As shown in Figure 2A–
F, higher XPO1 expression was significantly related to poor 
patient prognosis in LIHC and PAAD; however, we did not 
observe a significant difference in CHOL. We analyzed the 
prognosis of 30 patients with cholangiocarcinoma using 
GSE107943 from the GEO database and the results showed 
that higher expression of XPO1 was significantly associated 
with poor patient prognosis in CHOL (Figure 2G). In the 
data on “N stage” and “vascular invasion,” we found sig-
nificant differences in CHOL (Figure 2H,I). These results 
suggest that high XPO1 expression in hepatobiliary and pan-
creatic tumors is strongly associated with poor prognosis.

3.3  |  Correlation and enrichment 
analyses in CHOL

To further elucidate the function of XPO1 in CHOL, we 
analyzed the genes that were positively correlated with 
XPO1 expression in the TCGA database. We selected 
the 500 genes that were most positively correlated with 
XPO1 for enrichment analysis and displayed the top 50 
genes in a heat map (ranked according to correlation) 
(Figure 3A). Furthermore, we used the R clusterProfiler 
package to analyze the possible enrichment pathways 
and correlation of these 500 genes. GO functional en-
richment analysis indicated that XPO1 was related to 
modified and binding functions, which corresponded 

F I G U R E  1   Pan-cancer expression of XPO1. (A) XPO1 expression in tumor and normal tissues in pan-cancer data of the Cancer Genome 
Atlas (TCGA) and GTEx. (B) XPO1 expression in tumor and normal tissues in CHOL, LIHC, and PAAD from TCGA. (C) XPO1 expression in 
paired tumor and normal tissues in CHOL, LIHC, and PAAD from TCGA. Data were shown as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, 
and ****p < 0.0001. CHOL, cholangiocarcinoma; GTEx, genotype-tissue expression; LIHC, liver hepatocellular carcinoma; PAAD, pancreatic 
adenocarcinoma; TCGA, the cancer genome atlas; XPO1, exportin-1.
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to the transport function of XPO1 (Figure  3B–E). The 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis revealed that spliceosome, RNA transport, 
ubiquitin-mediated proteolysis, and cell cycle terms 
were significantly enriched (Figure  3A,F). These re-
sults indicate that high XPO1 expression is associated 
with multiple pathways related to cholangiocarcinoma 
progression which is closely linked to XPO1 transport 
function.

3.4  |  Effect of the XPO1 inhibitor 
KPT-330 on cholangiocarcinoma cell 
proliferation

Based on bioinformatics analysis, we performed basic ex-
periments to verify the effect of XPO1 on cholangiocar-
cinoma tumor cells. We found that the proliferation of 
RBE and 9810 cells was inhibited by the XPO1 inhibitor 
KPT-330 in time- and concentration-dependent manners 

F I G U R E  2   Association between high XPO1 expression and tumor prognosis in patients. (A–F) The correlation between XPO1 
expression and the prognosis of CHOL, LIHC, and PAAD was analyzed using TCGA. (G) The correlation between XPO1 expression and the 
prognosis of CHOL was analyzed using the GEO database. (H) The correlation between XPO1 expression and “N stage” in CHOL. (I) The 
correlation between XPO1 expression and “Vascular invasion” in CHOL. Data were shown as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001. CHOL, cholangiocarcinoma; LIHC, liver hepatocellular carcinoma; PAAD, pancreatic adenocarcinoma; TCGA, the cancer 
genome atlas; XPO1, exportin-1.
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(Figure  4A,B). We chose a KPT-330 concentration of 
2.5  μM and a treatment time of 48 hours for subsequent 
experiments. We conducted a western blot and found 
that XPO1 was effectively inhibited by KPT-330 in RBE 
and 9810 cells (Figure  4C). The colony formation assay 
indicated that KPT-330 significantly reduced the number 

and size of colonies formed by cholangiocarcinoma cells 
(Figure  4D), further confirming its antiproliferative ef-
fect. Further, EdU-488 DNA synthesis assay experiments 
showed the inhibitory effect of KPT-330 on the prolifera-
tion of RBE and 9810 (Figure 4E). These results indicate 
that XPO1 promotes cholangiocarcinoma cell proliferation.

F I G U R E  3   Correlation and enrichment analyses in CHOL. (A) The top 50 genes positively correlated with XPO1in a heat map (ranked 
according to correlation) from TCGA. (B–F) Significant Gene Ontology terms of the top 500 genes most positively associated with XPO1, 
including biological processes (C), cell component (D), molecular function (E), and KEGG (F). CHOL, cholangiocarcinoma; KEGG, Kyoto 
encyclopedia of genes and genomes; TCGA, the cancer genome atlas; XPO1, exportin-1.
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3.5  |  Overexpression of XPO1 promoted 
cholangiocarcinoma cell proliferation

We used XPO1 overexpression plasmid in RBE and 9810 
cells to investigate the effect of XPO1 on cholangiocarci-
noma cell proliferation (Figure 5A). CCK-8 assays showed 
that overexpression of XPO1 significantly promoted the 
proliferation of cholangiocarcinoma cells (Figure  5B,C). 
In addition, the colony formation assay indicated that 
XPO1 overexpression significantly increased the num-
ber and size of colonies formed by cholangiocarcinoma 
cells (Figure 5D). In addition, the EdU-488 DNA synthe-
sis assay showed a significant pro-proliferative effect of 
KPT-330 on RBE and 9810 cells (Figure 5E). These results 

suggest that XPO1 promotes the proliferation of cholan-
giocarcinoma cells.

3.6  |  Influence of XPO1 inhibitor KPT-
330 on p53

p53 is a carrier protein for XPO1.12,13 Therefore, we con-
ducted an immunofluorescence assay to clarify p53 sta-
tus under KPT-330 treatment. The results showed that 
XPO1 inhibition by KPT-330 triggered the accumulation 
of p53 inside the nucleus (Figure 6A). Next, we analyzed 
the changes in the nuclear and cytoplasmic levels of p53 
using a western blot, and the results suggested that p53 

F I G U R E  4   Effect of exportin-1 (XPO1) inhibitor KPT-330 on cholangiocarcinoma cell proliferation. (A, B) Cell proliferation of RBE 
and 9810 under KPT-330 treatment. (C) Western blot of XPO1 under KPT-330 treatment. (D) The colony formation of RBE and 9810 under 
KPT-330 treatment. (E) EdU-488 DNA synthesis assay of RBE and 9810 under KPT-330 treatment. Data were shown as mean ± SD. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001.
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accumulated in the nucleus after KPT-330 treatment 
(Figure 6B). Knockdown of p53 using siRNA rescued the 
inhibitory effect of KPT-330 (Figure  6C). This indicates 
that XPO1 inhibition by KPT-330 could activate the p53 
function to exert anticancer effects. Furthermore, we 
found that the mRNA expression of p53 did not change 
significantly under the KPT-330 treatment (Figure  6D). 
Next, we blocked the translation of p53 with CHX and de-
tected protein expression of p53 at four time points: 0, 1, 2, 
and 4 h. Western blot results showed that KPT-330 signifi-
cantly reduced the degradation rate of p53 protein in RBE 
and 9810 cells (Figure 6E). In summary, XPO1 inhibition 
triggered the accumulation of p53 in the nucleus and im-
proved its stability.

3.7  |  Effect of BIRC6 on p53

Based on previous bioinformatics analysis, we screened 
the protein BIRC6, which may affect the progression of 
cholangiocarcinoma cells with XPO1. We first analyzed 
the correlation between XPO1 and BIRC6. The result sug-
gested that the expression of BIRC6 was closely related to 
that of XPO1 (Figure 7A). Tang et al. reported that BIRC6 
facilitates p53 degradation in hepatocellular carcinoma.14 
We detected the expression of BIRC6 and p53 after KPT-
330 treatment. Western blot results showed that BIRC6 
expression was significantly decreased; however, p53 ex-
pression was significantly increased under KPT-330 treat-
ment (Figure  7B). Next, we overexpressed BIRC6 and 

F I G U R E  5   Overexpression of exportin-1 (XPO1) promoted cholangiocarcinoma cell proliferation. (A) Western blot of XPO1 after XPO1 
plasmid transfection in RBE and 9810 cells. (B) Cell proliferation of RBE after XPO1 plasmid transfection. (C) Cell proliferation of 9810 after 
XPO1 plasmid transfection. (D) The colony formation of RBE and 9810 after XPO1 plasmid transfection. (E) EdU-488 DNA synthesis assay 
of RBE and 9810 after XPO1 plasmid transfection. Data were shown as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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assessed its effect on p53 expression. The results indicate 
that the overexpression of BIRC6 reduced the increase in 
p53 caused by XPO1 inhibition by KPT-330 (Figure 7C). 
Furthermore, we used CCK-8 to assess the effect of BIRC6 
overexpression on the efficacy of KPT-330. The results in 
Figure  7D show that overexpression of BIRC6 rescued 
the inhibitory effect on the proliferation of KPT-330. 
XPO1 inhibition has been reported to inhibit the PI3K/
AKT pathway, as demonstrated in our study (Figure 7E). 
Furthermore, we found that the addition of the PI3K ag-
onist 740 Y-P rescued the reduction in BIRC6 caused by 

XPO1 inhibition. Overall, XPO1 inhibition reduced the 
expression of BIRC6 by inhibiting the PI3K/AKT pathway 
and thus reducing p53 degradation.

4   |   DISCUSSION

XPO1 carries NES-containing cargo and transports it 
from the nucleus to the cytoplasm, thus playing an im-
portant role in maintaining cell survival.15,16 XPO1 dys-
function leads to the mislocalization of cargo proteins, 

F I G U R E  6   Influence of exportin-1 (XPO1) inhibitor KPT-330 on p53. (A) Immunofluorescence assay of p53. (B) Western blot results 
of the nucleus and cytoplasmic components after KPT-330 treatment. (C) Cell proliferation of RBE and 9810 under KPT-330 treatment and 
p53-siRNA. (D) qRT-PCR analysis of p53 mRNA under KPT-330 treatment. (E) Western blot of the degradation rate of p53 protein after 
KPT-330 treatment. Data were shown as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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including many proteins associated with tumor pro-
gression, such as p53 and p27.17 In normal cells, tumor 
suppressors function in the nucleus, but in tumor 
cells, XPO1 is overexpressed and transports tumor sup-
pressors out of the nucleus, thereby promoting tumor 
progression.18,19

We found that XPO1 was highly expressed in 21 tumor 
types, including BLCA, BRCA, CESC, CHOL, COAD, 
DLBC, ESCA, GBM, HNSC, KICH, KIRP, LAML, LGG, 
LIHC, LUAD, LUSC, PAAD, READ, STAD, TGCT, and 
THYM. In terms of prognosis, high XPO1 expression 
was significantly associated with overall survival and 

F I G U R E  7   Effect of BIRC6 on p53. (A) Correlation between exportin-1 (XPO1) and BIRC6 from TCGA. (B) Western blot of p53 and 
BIRC6 under KPT-330 treatment. (C) Western blot of p53 and BIRC6 under KPT-330 treatment and overexpression of BIRC6. (D) Cell 
proliferation of RBE and 9810 under KPT-330 treatment and overexpression of BIRC6. (E) Western blot of PI3K/AKT pathway and BIRC6 
under KPT-330 treatment and 740 Y-P. Data were shown as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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progress-free interval in LIHC and PAAD. Although sim-
ilar results were not observed in CHOL, high expression 
of XPO1 was significantly associated with the “N stage” 
and “vascular invasion” in CHOL. However, we found 
that the high expression of XPO1 was significantly asso-
ciated with overall survival in patients with CHOL in the 
GEO database. These results suggest that high XPO1 ex-
pression is associated with the prognosis of patients with 
cholangiocarcinoma.

Using the R package clusterProfiler, GO enrichment 
analysis and KEGG pathway analysis were performed 
on the 500 genes positively associated with XPO1 ex-
pression in CHOL. GO functional enrichment analysis 
indicated that XPO1 was related to “modified and bind-
ing function,” and KEGG analysis revealed that genes 
involved in the spliceosome, RNA transport, ubiquitin-
mediated proteolysis, and cell cycle terms were sig-
nificantly enriched. These results are similar to the 
mRNA-seq results for neuroblastoma reported by Li-jia 
Pan et al.7 From the above analysis, we concluded that 
XPO1 is significantly associated with multiple tumor 
pathways in CHOL.

Furthermore, we found that inhibition of XPO1 signifi-
cantly inhibited tumor cell proliferation.20–22 Leptomycin 
B, the first specific XPO1 inhibitor, was discovered in the 
1990s and has a hyperspecificity for XPO1.23 However, its 
high toxicity limits its clinical application.24 With time, 
several selective inhibitors of nuclear export (SINEs) have 
been developed. KPT-330 (Selinexor), a novel oral SINE, 
has been approved by the United States Food and Drug 
Administration for the treatment of refractory multiple 
myeloma and relapsed/refractory diffuse large B-cell lym-
phoma. Therefore, we selected KPT-330 as an inhibitor of 
XPO1 for the subsequent experiments. The results showed 
that the XPO1 inhibitor KPT-330 significantly disrupted 
CHOL cell proliferation.

p53 acts as a carrier protein for XPO1, and it naturally 
accumulates in the nucleus upon XPO1 inhibition. We 
demonstrated that KPT-330 affects the proliferation of 
cholangiocarcinoma cells through the nuclear accumula-
tion of p53. Based on the results of bioinformatics analy-
sis, we noted that XPO1 might be associated with protein 
degradation; therefore, further experiments demonstrated 
that the XPO1 inhibitor KPT-330 increased the stability of 
p53. We unearthed the key gene BIRC6, which can cause 
the degradation of p53.14 BIRC6 carries an N-terminal sin-
gle baculovirus inhibition of apoptosis protein repeat (BIR) 
domain and a C-terminal ubiquitin-conjugating (UBC) 
enzyme domain, while through the UBC domain BIRC6 
facilitates proteasomal degradation.25 However, the XPO1 
inhibitor KPT-330 reduced the expression of BIRC6, which 
also explained how XPO1 inhibitor KPT-330 increased p53 

protein stability. The PI3K/AKT pathway plays an import-
ant role in the regulation of several cellular processes, in-
cluding the maintenance of proliferative signaling.26 We 
found that XPO1 inhibitor KPT-330 inhibited the PI3K/
AKT pathway and further inhibited BIRC6 expression.

5   |   CONCLUSION

In conclusion, we analyzed data from TCGA and 
found that XPO1 showed high expression across can-
cers and was associated with poor prognosis in hepato-
biliary and pancreatic tumors. In CHOL, we revealed 
that XPO1 inhibitor KPT-330 triggered the nuclear ac-
cumulation of the p53 protein and significantly dis-
rupted the proliferation of cholangiocarcinoma cells. 
Mechanistically, XPO1 inhibitor KPT-330 reduced 
BIRC6 expression by inhibiting the PI3K/AKT path-
way to decrease p53 degradation and improve its sta-
bility (Figure 8). Therefore, XPO1 may be a potential 
therapeutic target, and KPT-330 may play a therapeu-
tic role in cholangiocarcinoma.
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