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A B S T R A C T   

Establishing sensitive and targeted analytical methodologies for drug identification in biological fluids as well as 
screening of treatments that can counteract the most severe COVID-19 infection-related side effects are of utmost 
importance. Here, first attempts have been made for determination of the anti-COVID drug Remdesivir (RDS) in 
human plasma using four potentiometric sensors. Calixarene-8 (CX8) was used as an ionophore applied to the 
first electrode (Sensor I). The second had a layer of dispersed graphene nanocomposite coating (Sensor II). 
(Sensor III) was fabricated using nanoparticles of polyaniline (PANI) as ion-to–electron transducer. A reverse- 
phase polymerization using polyvinylpyrrolidone (PVP) was employed to create a graphene-polyaniline (G/ 
PANI) nanocomposite electrode (Sensor IV). Surface morphology was confirmed by Scanning Electron Micro
scope (SEM). UV absorption spectra and Fourier Transform Ion Spectrophotometry (FTIR) also supported their 
structural characterization. The impact of graphene and polyaniline integration on the functionality and dura
bility of the manufactured sensors was examined using the water layer test and signal drift. In the ranges of 
concentration of 10− 7 to 10− 2 mol/L and 10− 7 to 10− 3, sensors II & IV exhibited linear responses; respectively 
while sensors I & III displayed linearity within 10− 6 to 10− 2 mol/L. The target drug was easily detectable using 
LOD down to 100 nmol/L. The developed sensors satisfactorily offered sensitive, stable, selective and accurate 
estimate of Remdesivir (RDS) in its pharmaceutical formulation as well as spiked human plasma with recoveries 
ranging from 91.02 to 95.76 % with average standard deviations less than 1.85. The suggested procedure was 
approved in accordance with ICH recommendations.   

1. Introduction 

As reported to the World Health Organization (WHO) in December 
2019, COVID-19 arose in Wuhan, China, and subsequently spreaded 
throughout the world until being formally confirmed as a global 
epidemic on the 11th of March 2020. Many lives were lost, resulting in a 
negative effect on the world economy. Since then, there was a great 
desire for candidate therapeutics that target SARS-CoV-2 and associated 
symptoms in order to curb this pandemic [1]. Several drugs have been 
identified including Molnupiravir, Favipiravir, Ritonavir and Remdesi
vir (RDS). 

(RDS) is a pro-drug nucleotide analogue that disrupts viral replica
tion. It was tested in clinical studies to combat the 2014 Ebola outbreak. 
Fortunately, many virology laboratories examined (RDS) and 

demonstrated that it could prevent coronavirus replication, including 
that of COVID-19. On October 22, 2020, the FDA approved the use of 
(RDS) for treating COVID-19, a hospital-required condition, in in
dividuals over the age of 12 and in adults and children weighing at least 
40 kg. On April 25, 2022, the FDA approved (RDS) as the first COVID-19 
treatment for children under the age of 12 [2]. 

Several chromatographic [3–6], spectrophotometric [4,7] and vol
tammetric methods [8] have been reported for (RDS) analysis. However, 
to the best of our knowledge, no potentiometric methods have been 
developed yet for (RDS). 

Potentiometric ion selective electrodes (ISE) are simple, low-cost 
sensors that can conduct measurements in turbid samples without the 
need for pre-treatment [9]. Solid contact (SC) electrodes are now widely 
employed and more preferable than the traditional liquid-contact 
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electrodes because they are simpler to construct and miniaturize [10]. 
However, SC sensors’ main disadvantage is the electrode potential’s 
tendency to fluctuate over time, necessitating the calibration of such 
sensors before each use. Their main benefit is the simplicity of use, 
transportation and storage [11]. 

Conducting polymers, carbon and other nanomaterials have 
enhanced SC electrodes’ potential characteristics to attain stability and 
reproducibility, without the need for calibration and maintenance. 
These polymers are incorporated in between the solid contact and the 
ion selective membrane. The mobility of delocalized electrons in the 
polymer’s conjugated structure, which transforms them into ion to 
electron transducers by doping, is what gives conducting polymers their 
electronic conductivity. Poly(o-aminophenol), polyaniline, poly(o- 
phenylenediamine), poly(N-phenylglycine), and other electrically 
conductive polymers have been used to stabilize the potential of solid- 
contact electrodes that are sensitive to specific drugs [12]. 

Among the most fundamental conducting polymers is polyaniline 
(PANI). This is due to simplicity in its synthesis, low cost, tunable con
ductivity, and excellent environmental stability. It benefits from metals’ 
electrical conductivity and plastics’ interesting characteristics, such as 
easy manufacturing and adjustable chemical and physical properties 
[13]. PANI has been utilized in a variety of applications where elec
trodes were electrochemically modified with PANI as an ion-to-electron 
transducer interlayer to improve the potential signal stability as in 
beverages and alcoholic drinks analysis [14], tramadol determination 
[15] where PANI had good pH stability and did not show any degra
dation of electrical response for 1 month. PANI was also used in deter
mination of ascorbic acid [16] leading to improvement of the sensor 
performance and low detection limit and. PANI produced shorter 
response time for analysis of cephalosporin antibiotics [17] and pro
vided high selectivity and sensitivity results for salicylates [18]. In 
glycopyrronium bromide analysis, PANI showed better results in terms 
of response time, potential drift and lifetime [19]. Also PANI maintained 
reproducible potentiometric signals over time in analysis of sulfaceta
mide and risedronate [20,21]. 

As ion to electron transducers in solid contact sensors, carbon-based 
nanomaterials such as single and multi-walled CNTs (MWCNTs), gra
phene, carbon black and fullerenes were also used. MWCNTs were 
employed as inner ion to electron transducing layer for anion detection 
in environmental samples [22] where MWCNTs generated more stable 
response. MWCNTs were also utilized in antipsychotic sulpiride sensor 
and succeeded in detecting low concentrations for long lifetime up to 22 
weeks [23]. Graphene nanocomposite layer added more stability to 
electrode potential drift and short response times for metoclopramide 
analysis [24]. Graphene also provided longer lifetime of the sensor for 
monitoring mercury ions in waste water samples [25]. Graphene also 
generated the lowest detection limit and the longest lifetime when 
compared with other sensors for copper determination in real water 
samples and biological fluids [26]. 

Combining graphene with conducting polymers might result in a 
composite material with improved electrical conductivity and mechan
ical robustness owing to the synergistic findings of graphene and poly
aniline as the graphene’s incorporation in the solid-contact prevents 
water layer formation and enhances hydrophobicity [27]. However, it is 
essential to increase the PANI-graphene composites’ processability and 
solvent dispersibility if they are to be used in more applications. So it is 
advisable that the dispersible PANI-graphene composites be made by 
first coating the aniline with graphene platelets, then aniline polymer
ization [28]. If the composite material is prepared in this fashion, it can 
be dissolved or dispersed in N-methylpyrrolidone (NMP) but not in 
water, which is better for applications where the aqueous liquids come 
into touch with composite material [29]. Graphene/PANI nano
composite was only used once for potentiometric calcium determination 
where graphene’s introduction into the transducer layer improved the 
initial potential stability and the response characteristics of the calcium 
solid contact ion selective electrode [27]. 

In this work we succeeded to prepare, for the first time, ISEs using 
graphene, PANI nanoparticles and Graphene-PANI nanocomposite as 
ion-to-electron transducers in SC sensors to selectively determine (RDS) 
in the presence of other anti-COVID drugs Favipiravir (FAV), Molnu
piravir (MOL) and other interferants in pharmaceutical dosage forms 
and in human plasma. By contrasting them to a bare sensor devoid of an 
ion to electron transducer, the impact of their introduction on the po
tential stability taking into account shelf life and response time of the 
manufactured SC sensors was examined. 

2. Experimental 

2.1. Apparatus 

For potential measurements, a digital ion analyzer (Jenway model 
3330) obtained from (Essex, UK) and a Thermo Scientific Orion Ag/AgCl 
double junction reference electrode were both employed. A pH glass 
electrode (Jenway model number 924005-BO3-Q11C) from (Essex, UK) 
was utilized for pH adjustments. 

A dual-beam UV–VIS spectrophotometer (Shimadzu model UV-1601 
PC) from (Kyoto, Japan), was used to create UV–VIS spectra using 1-cm 
quartz cuvettes linked to a compatible computer (IBM) running UV-PC 
spectroscopy Shimadzu software version (3.7). Using a Centurion 
Centrifuge model K240R, PANI dispersion centrifugation was carried 
out (West Sussex, UK). Using a Malvern Zetasizer Nano-ZS, the Zeta 
potential of PANI particles was measured (Malvern Instruments Limited, 
Malvern, UK). Crest powersonic CP500D ultrasonic cleaner (Malaysia) 
was used to homogenize the dispersion of graphene nanoplatelets. 

A vortex mixer (model F20230176 ZX3) from Alfa medical Westbury 
(China), as well as a Bandelin Sonorex magnetic stirrer (model Rx 510 S) 
from (Budapest, Hungary) were additional equipments for solution 
stirring. 

2.2. Materials 

2.2.1. Reference samples 
Remdesivir (RDS), Oseltamivir phosphate, Favipiravir and Molnu

piravir were kindly donated by Apex pharma (Kolkata, India), EIPICO 
(Cairo, Egypt), Honour lab limited (Mumbai, India) and AMOUN phar
maceuticals (Cairo, Egypt); respectively and were marked each with 
labels indicating purity of at least 98.5%. RDS’s chemical structure as 
well as its related interferants are displayed in Fig. 1. 

2.2.2. Pharmaceutical formulation 
Remdesivir® IV injection (100 mg/20 mL per vial) was produced by 

EVA PHARMA Egypt (batch no. 2105598). 

2.3. Chemicals and reagents 

Analytical-grade chemicals and reagents were used throughout and 
water was bidistilled. Sigma Aldrich (Steinheim, Germany) provided 
sodium tetraphenylborate (NaTPB), graphene nanoplatelets, N-methyl
pyrrolidone (NMP) and polyvinyl pyrrolidone (PVP). Alfa Aesar (a 
Massachusetts company, Ward Hill, USA) provided Calix-8-arene, Tri
cresyl Phosphate, and Sodium Dodecyl Sulfate (SDS). Aniline came from 
Techno pharmchem (Delhi, India), while ammonium persulfate (APS) 
was purchased from Oxford Lab Fine Chem in Maharashtra, India. From 
Fluka (Steinheim, Germany), polyvinyl chloride (PVC) was produced. 
Merck (Darmstadt, Germany) provided tetrahydrofuran (THF) and di- 
methyl sulphoxide (DMSO). Xylene and Hydrochloric acid were pur
chased from Prolabo (Pennsylvania, USA). El-Nasr Company (Cairo, 
Egypt) provided potassium chloride and sodium hydroxide. 

VACSERA (The Holding Company for Vaccines and Biological 
Products) in (Giza, Egypt) supplied human plasma samples, which were 
kept at a temperature of 4 ◦C. 
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2.4. Standard solutions 

1 × 10− 2 M RDS (standard solution) was obtained by dissolving 0.3 g 
in 20-mL methanol, sonication for 5 min and then completing to the 
desired volume (50-mL) using dil HCl (pH 3). A series of dilutions was 
carried out to provide several working solutions ranging from 1 × 10− 8 

to 1 × 10− 2 M using the same dil HCl (pH 3) throughout the whole 
experiment. 

2.5. Procedure 

2.5.1. Preparation of graphene nanocomposite 
10% (w/w) graphene nanocomposite was generated using the solu

tion dispersion technique [30], which involved dispersing 10.0 mg of 
graphene in 1.0 mL of xylene followed by sonication for 5 min. 

2.5.2. Preparation and characterization of a dispersion of polyaniline 
nanoparticles 

A modified version of the process described by Moulton et al. [31] 
was utilized to prepare chemically polymerized PANI nanoparticle 
dispersion, where the surfactant employed was SDS rather than dodecyl 
benzene sulfonic acid. Polymerization took place at 20 ◦C in a thermo
stated bath. In a round-bottomed flask, 100.0 mL of water, SDS and 
aniline (1.3 M each) were added, and the solution was mechanically 
mixed for an hour. Dropwise addition of 1.3 mol/L APS was then applied 
to the milky white aniline/SDS solution (100 mL). After allowing the 
polymerization to continue for 2.5 h, a dark green dispersion was 
created. 

By utilizing a dialysis membrane (12,000 molecular weight cut-off) 
from Sigma against deionized water over forty eight hours, the poly
merized dispersion was purified. Then, to eliminate extra SDS, it was 
agitated for 10 min at 15,000 rpm and rinsed four times in water. The 
PANI nanoparticles were then mixed with (10% w/w) xylene and kept in 
a brown glass bottle that was tightly closed. 

Using a UV–VIS spectrophotometer, characterization of PANI was 
conducted. The Malvern Zetasizer was used to measure Zeta potential in 

order to determine PANI particle size. 

2.5.3. Preparation of Graphene/PANI nanocomposite 
The Graphene/PANI nanocomposite was prepared according to [32] 

by dissolving aniline monomer (1.0 g) in conc. HCl (1.0 mL) and then 
diluting it with distilled water till (10.0 mL) (solution I). The next step 
was to add 10 mg of graphene to solution I, then sonication for 2 h to 
create aniline-graphene dispersion. Using a different beaker, distilled 
water (90.0 mL) was used to dissolve conc. HCl (0.8 mL), APS (1.0 g) and 
PVP (2.0 g) to form (solution II). After that, solution II was allowed to 
cool for 30 min in iced water bath. To create a powder precipitate, so
lutions I and II were continually stirred vigorously for 4 h. Using nylon 
membrane filters (0.22 µm), the precipitate was filtered and washed 
with ethanol and distilled water until the filtrate turned colorless, then 
dried (on the filter) for a whole night at 65 ◦C. The precipitate formed 
was re-dispersed in 0.1 M HCl while being ultrasonically agitated for 30 
min, filtered once more, and dried to demonstrate that G/PANI was fully 
loaded with HCl [33]. The creation of Graphene/PANI nanocomposite is 
displayed in Fig. A1. IRS Spirit Fourier transform infrared spectropho
tometer, (Serial no. A224156), Shimadzu Corp. (Kyoto, Japan) and High 
resolution scanning electron microscopy using a field emission gun 
(SEM Quanta FEG 250, FEI Company, Netherlands) were used to analyze 
the PANI and G/PANI nanocomposite modified electrode. 

2.5.4. Fabrication of membrane sensors 
In a glass Petri dish (5 cm diameter), NaTPB (0.01 g), calix-8-arene 

(0.05 g), TCP (0.4 g) and PVC (0.19 g) were combined to construct 
the ion selective membrane solution. 6 mL of THF was used to dissolve 
the mixture. 

5 mm diameter graphite rods (15 mm length) were pushed inside 
polyethylene tubes. The ends of the rods underwent mechanical pol
ishing, water washing, and air drying. 

Graphene dispersion was poured on the top surface of a graphite rod 
and allowed to evaporate for 24 h in the air in order to fabricate (Sensor 
II). Drop casting was used to apply the 30 µL ion selective membrane 
solution to the graphene layer. 

Fig. 1. Chemical structure of (A). Remdesivir and its interferants (B). Favipiravir, (C). Oseltamivir, (D). Molnupiravir.  
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For Sensor III, 10 µL of PANI dispersion was drop casted individually 
onto the top side of another graphite rod in order to fabricate the PANI 
sensor. Then 30 µL of the ion selective membrane solution was applied to 
cover the PANI layer where the solvent was left to evaporate for 24 h. 

A blank sensor (Sensor I) was created by applying the ion selective 
membrane directly to the graphite sensor without adding ion to electron 
transducer layer for comparison with the other sensors. 

N-methylpyrrolidone was used to disperse the G/PANI nano
composite in accordance with the previously reported method [29]. For 
electrode modification using drop-casting, the working electrode was 
covered with 1.0 mL of the G/PANI dispersion. This coating was left 
overnight to completely dry at room temperature then the ion selective 
membrane solution (30 µL) was drop casted onto the G/PANI layer 
(Sensor IV). 

The four sensors’ ion selective membranes were then left to evapo
rate overnight. The sensors were preconditioned by submerging them in 
a 10− 3 mol/L RDS solution for 24 h. When not in use, the sensors were 
kept in the same solution. 

2.5.5. Potentiometric measurements and sensors calibration 
By transferring aliquots of RDS solutions covering the range of (1 ×

10− 8 to 1 × 10− 2 mol/L) sequentially into a set of 100-mL beakers, the 
conditioned sensors were calibrated. The potentials were measured 
while the reference electrode and proposed sensors were dipped in each 
solution and constantly stirred. Plots of the electrode potential versus 
RDS concentration in the negative logarithmic range were constructed. 
The linear portion of the curve’s regression equation was calculated. 

2.5.6. Potentiometric determination of RDS in IV injections 
50-mL volumetric flasks were filled with a volume (1.00 mL) of RDS 

IV injection (100 mg/20-mL vial) equivalent to 5 mg RDS and completed 
with dil HCl to obtain final concentration of 0.10 mg/mL. From this 
solution, 30.00 mL were extracted and completed to the final volume 
(50.00 mL) using dil HCl (pH = 3) to obtain the calibration concentra
tion 1.00 × 10− 4 mol/L. Other samples were prepared in the same 
manner and had final concentrations of 1.00 × 10− 6, 1.00 × 10− 5 and 
1.00 × 10− 4 mol/L. With the suggested sensors, the potentiometric 
measurements were carried out. 

2.5.7. Potentiometric determination of RDS in spiked human Plasma 
A falcon tube containing 0.50 mL of RDS-free human plasma was 

filled, spiked with aliquots of RDS working standard solutions, and then 
vortexed for 5 min. The plasma proteins were then precipitated by 
adding two mL of acetonitrile, mixing for an additional five minutes, and 
centrifuging for 20 min at 6000 rpm. The supernatant was collected in 
10-mL volumetric flasks where the volumes were filled to the mark using 
HCl (pH = 3) to provide final RDS concentrations of 0.50 × 10− 6, 1.00 ×
10− 6, 0.50 × 10− 5 and 1.00 × 10− 5 mol/L. The resultant potentials were 
noted, and using the associated regression equations, the relevant con
centrations were determined. 

3. Results and discussion 

The aim of this work is to investigate and compare different ion se
lective SC electrodes for the measurement of the drug’s active ingredient 
(RDS) in human plasma. The ionophore CX8 was selected for the RDS- 
selective sensor because it has exceptional complexation capabilities 
for organic ammonium ions. The interaction of RDS and tetraphenyl 
borate inside CX8 ionophore was used as the sensing element in all of the 
studied electrodes. The very hydrophobic PANI nanoparticles were 
utilized as an ion-to-electron transducer in SC electrodes to serve as a 
suitable intermediary layer between an ion-selective membrane and the 
solid contact in an attempt to improve the electrode stability and limit 
water uptake. Graphene nanoplatelets were also employed with 
enhanced reproducibility. A third electrode used a composite material 
made of both graphene nanoplatelets and electrically conductive PANI 

as the ion-to-electron transducer. Graphene and electroactive con
ducting polymers act together synergistically in this concept, increasing 
the electrocatalytic activity at the electrode substrate/SC interface. 
These nanoparticles were chemically produced and analyzed. This ought 
to provide a strong foundation for sensor development for pharmaceu
tical analysis. 

3.1. Characterization of PANI nanoparticles and G-/PANI 
nanocomposite 

3.1.1. Scanning electron Microscope (SEM) 
SEM was used to examine the surface morphological characteristics 

of fabricated PANI nanoparticles and G/PANI nanocomposite (Figs. 2A, 
2B). The aniline monomer solution was enriched with 10 mg of gra
phene to increase the electroactivity and conductivity of PANI nano
particles. The G/PANI composite particles were somewhat more 
uniformly distributed than PANI nanoparticles, as shown in Fig. 2B. 

3.1.2. Fourier transform infrared spectroscopy (FTIR) 
FTIR was used to further characterize the particles (Fig. A2). In order 

to identify different functional groups in the samples, the FTIR spectra of 
PANI, graphene nanoplatelets and G/PANI composite were generated. 
Fig. A2(A) depicts the FTIR spectrum of pure graphene, which is devoid 
of any peaks. The FTIR spectrum of PANI exhibits distinctive peaks for 
different stretching and bending vibrational modes connected with its 
chemical structure Fig. A2(B). The N-H stretching was shown by a peak 
in PANI at 3440 cm− 1. The C = C and C-C stretching of the quininoid and 
benzenoid rings; respectively, were attributed to the bands at 1489.95 
cm− 1 and 1462.83 cm− 1. The N-H bend for primary amines was shown 
by a band at 1650 cm− 1. At 1288.72 cm− 1, the band corresponding to 
the benzenoid and quinoid rings’ C-N stretching was discovered. In 
addition to these bands, PANI salt exhibits bands at 2900 and 2800 cm− 1 

linked to symmetrical and asymmetrical stretching of the dodecyl 
hydrogen sulphate alkyl substituent utilized in the polymerization step. 
Although the spectra of G/PANI Fig. A2(C) showed absolutely similar 
vibrational bands to pure PANI, the slight variations from the recog
nizable bands at 3200 cm− 1, 1494.23 cm− 1, 1400.04 cm− 1, 1215.94 
cm− 1 and C = C stretching band at 1600 cm− 1 can be justified by mo
lecular interactions between PANI and graphene. At 820.61 cm− 1, 
743.55 cm− 1 and 619.39 cm− 1, C-H bending vibrations could be seen. 
These results proved that graphene and PANI combined to create a 
composite particle. These outcomes are in agreement with [34,35]. 

3.1.3. Dynamic light scattering (DLS) characterization 
By using dynamic light scattering (DLS), the average hydrodynamic 

sizes of the chemically produced PANI and G/PANI NPs were deter
mined to be 147.4 & 281.3 nm respectively (Fig. A3). 

3.1.4. UV/VIS characterization of PANI and G/PANI nanocomposite 
Fig. 3 displays the UV–visible spectra of the PANI, PANI in alkaline 

medium as well as G/PANI nanoparticles. The PANI spectrum shows an 
absorption band at 280 nm that corresponds to π-π* benzenoid ring 
electronic transitions of the PANI emeraldine salt form. The production 
of polarons and bipolarons in PANI’s macromolecular chain is also 
indicated by the presence of a shoulder band at 425 nm and a growing 
absorption band at 835 nm. The PANI nanoparticles, however, were 
transformed into the insulating emeraldine base form in an alkaline pH, 
as seen by their distinctive absorption spectrum. These findings show 
that PANI nanoparticles are sensitive to pH changes. The G/PANI 
nanocomposite exhibits the same pattern of peaks as emaraldine PANI 
but with minor positional changes. The π-π* excited state peak has been 
seen in the G/PANI at 330 nm with a 50 nm blue shift. The absorption 
peak associated with polaron production, on the other hand, emerges at 
435 nm with a blue shift of 10 nm. The interaction of the protonated 
form of polyaniline with the aromatic rings in graphene sheets may be 
responsible for the observed shifts in wavelengths. Beyond 490 nm, an 
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increasing absorption edge consistent with the production of bi-polarons 
was also noted for the G/PANI nanocomposite. Our findings were 
consistent with those found in the literature [36,37]. 

3.2. Performance characteristics of Graphene, PANI nanoparticles and 
G/PANI nanocomposite based SC/ISEs 

It seems that generating SC-ISEs with reliable standard potentials 
remains a serious issue despite the considerable work in this field. In this 
study, the performance of the sensors employed (Sensors II, III & IV) 
based on Graphene, PANI NPs and G/PANI was assessed in comparison 
to a blank sensor (Sensor I) which was devoid of an ion to electron 
transducer layer. According to the IUPAC requirements [38], the elec
trochemical performance parameters of the four suggested sensors were 
assessed and are listed in Table 1. 

The composition and constituent elements of the membrane have a 
major impact on the response properties of ion-selective electrodes. We 
investigated the impact of different modifiers; Graphene, PANI and G/ 
PANI in order to assess the influence of membrane on electrode re
sponses. RDS has a tertiary amine group attached to the phosphate 
group that acts as a cation in acidic conditions. Tetraphenylborate was 
added to the RDS-ISM as a cation exchanger for the formation of 1:1 
association complex. This ratio was supported by the proposed elec
trodes’ near-Nernstian response, which was roughly 60 mV/decade—a 
typical slope for monovalent drugs. 

For sensors (I, II, III & IV), the calibration plots showed slopes of 
49.61, 49.53, 51.18, and 55.39 mV/concentration decades; respectively 
(Fig. 4). Both sensors I and II exhibited near Nernstian responses. 
However, better Nernstian slopes were obtained for sensors III & IV. As 
shown in Table 1, Sensor II demonstrated greater sensitivity over a 

broad concentration range from 10− 7 to 10− 2 mol/L. Sensors IV was 
capable of measuring concentrations between 10− 7 to 10− 3 mol/L. 
While for Sensors I & III, concentration ranges were between 10− 6 and 
10− 2 mol/L. Limits of detection were calculated from the intersection of 
the two extrapolated segments of the calibration graph as shown in 
Table 1 where sensors II & IV containing graphene showed lower 
detection limits than other sensors. The incorporation of graphene 
nanoplatelets increased the electrical signal’s stability and reduced the 
possibility of potential drift because of the increased specific surface 
area that increased the electrode double layer capacitance. That’s why 
sensors I and III had shorter life spans (30 and 50 days; respectively) 
than sensors II & IV. 

Taking in consideration all of the above, sensor IV demonstrated 
superior performance in terms of slope, sensitivity, accuracy and dura
bility, while sensor II demonstrated the best performance in terms of 
sensitivity and precision. Table 1 lists every performance criterion for 
the suggested sensors, including linearity ranges, accuracy and 
precision. 

3.3. Dynamic response time 

To maximize the quantity of samples evaluated over a short period of 
time, dynamic response time is a crucial factor. For sensors I, II, III and 
IV, the reaction times in samples were 25, 10, 15, and 7 s; respectively. 
This indicates that the electrochemical system attains equilibrium much 
faster with sensor IV than with the other sensors. This may be explained 
by the high capacitance and enormous surface areas of the conducting 
polymer nanoparticles, which result in short response times and rapid 
charge transfer rates. As the activity of ions increases, the time needed 
for the electrochemical system to attain equilibrium becomes shorter, 

Fig. 2A. SEM images of PANI nanoparticles.  
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and the response time becomes smaller. The average response time with 
standard deviation (SD) for each sensor is shown in Table 1. 

Using a 10− 4 mol/L RDS solution, EMV was measured for 5 h to 
estimate the intermediate potential stability. For sensors III and IV, small 
drift measurements of 1.2 and 0.7 mV h− 1; respectively, were observed. 
The drift on Sensor II was higher, at 2.9 mV h− 1. While sensor I recorded 
the greatest drift (18.4 mV h− 1). These findings are consistent with those 
of graphene-based SC sensors [39], PANI NPs-based sensors [40] and G/ 
PANI based sensors [27] that were previously published. 

Daily calibration was used to evaluate the proposed electrodes’ 
lifetime. The proposed sensors’ life times (long potential stability) were 
discovered to be 30, 60, 50 and 60 days without any notable changes; 
respectively, for sensors I, II, III and IV. 

Water layer growth between the ion selective membrane and the 
solid contact may be the cause of the blank sensor’s shorter lifespan, 
increased potential drift and longer response time. Potentiometric water 
layer testing was done to assess this. 

3.4. Potentiometric water layer test 

In some solid contact ion selective electrodes (SC-ISEs), the creation 
of an aqueous film (or “water layer”) between the ion-selective mem
brane and its solid contact may be partially responsible for the drifting 
potentials and the poor potential repeatability and reproducibility [41]. 
The “water layer test” procedure has been a standard procedure for 
evaluating the performance traits of SC-ISEs. 

This test is used to identify the presence of a water layer between the 
ion-to-electron transducer layer and the ion sensing membrane. It relies 
on identifying potential drift when a SC electrode that has reached full 
equilibrium in a main ion solution (RDS; 10− 4 M) is then exposed to a 
solution that solely contains competing ions (FAV; 10− 2 M), and the 
electrode potential is recognized until the new equilibrium is reached. 
The electrode is then returned to the primary ion solution, and its po
tential is once more recorded until the initial equilibrium is reached. 

When the solution’s composition abruptly changes (for instance, 
when it goes from RDS to FAV and back to RDS), the electrode potential 
immediately steps up. This occurs with SC electrodes devoid of a water 
layer because the electrode potential depends on the selectivity coeffi
cient and the concentration change. However, for non-ideal SC electrode 
behavior that has a water layer between the SC and the ion-selective 
membrane, the electrode potential gradually drifts in a different direc
tion to the potential before the step-change in the solution composition. 

Fig. 5 demonstrates that in sensors III and IV, the response to the 
principal ion is the same (same potential) both prior to and following 
exposure to the competing ion. This driftless potential response shows 
that there is no aqueous layer at the contact between the ion sensing 
membrane with each of PANI and G/PANI. The large potential drift as 
depicted in Fig. 5 occurred due to the absence of an ion-to-electron 
transducer layer in sensor I. Instead, a water layer was formed 
beneath the membrane. In addition, sensor II also suffered a very small 
drift at 6 hr, however, this drift was eliminated by adding polyaniline 
layer in sensor IV. 

Fig. 2B. SEM images of G/PANI nanocomposite.  
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Ion fluxes and atmospheric gas diffusion are caused by the creation of 
an aqueous layer underneath the membrane causing changes in ionic 
composition of the ion sensing membrane and the characteristic po
tential drifts. Each modification in the composition of the sample ne
cessitates a re-equilibration of the water layer that serves as an ionic 
reservoir, which in turn lengthens the response time. Additionally, the 
aqueous layer causes the membrane to rapidly detach from the solid 
contact. As a result, the sensor’s lifespan is drastically reduced [42] as 
shown by 30 days lifetime for sensor I. 

Neither PANI nor G/PANI can produce a water film because of their 
extreme hydrophobicity. Additionally, they have a remarkable quality 
that allows for a reversible change from ionic to electronic conductivity, 

and they have a large capacitance, which provides the possibility of 
stability. 

3.5. Effect of pH 

With the aid of Britton Robinson buffer and 10− 4 M RDS, the impact 
of pH on the potential response of the sensors under investigation was 
explored over a range of pH 2 to 10. As illustrated in Fig. A4, the four 
proposed sensors displayed steady potentials between pH 2 and 4. As a 
result, this range was selected for the suggested sensors in order to 
function. It was shown that the potentials decrease above pH 4, which 
may be related to RDS’s instability at alkaline pH [43]. 

RDS has a pka of 3.56 and at pH 2, the majority of RDS has a positive 
charge [44]. Due to the low aqueous solubility of RDS, standards were 
prepared in HCl acidic solutions adjusted at pH (3) to increase the drug’s 
solubility as well as to prolong the sensors’ lifetime. 

3.6. Sensors selectivity 

Using the matched potential method (MPM) [45], the potential co
efficients of selectivity (Kpot A, B) of the suggested sensors were assessed 
for related pharmaceuticals like Favipiravir, Molnupiravir and Oselta
mivir, and inorganic ions like potassium and sodium chloride. 

The IUPAC-recommended MPM [46] has a wide range of applica
tions for ions with different charges, including non-Nernstian interfering 
ions. Thus, using MPM enables the production of unbiased more 
meaningful results than those obtained using the separate solution 
approach [45]. 

A selectivity coefficient of 1.0 means that the membrane reacts to 
primary and interfering ions equally. The electrode is said to be selective 
to primary ion over interfering ion if the value is less than 1.0, which 
suggests that it responds more to primary ions than interfering ions. 
Table 2 as well as Fig. A5 demonstrate the selectivity coefficients of the 
suggested sensors which selectively respond to the drug under 

Fig. 3. UV–VIS characterization of (a) PANI in the ES form, (b) after dedoping to the EB form using 0.5 M NaOH, (c) PANI/Graphene nanocomposite.  

Table 1 
Performance characteristics of RDS Solid Contact sensors.  

Parameter Sensor 1 Sensor 2 Sensor 3 Sensor 4 

Slope (mV/decade) 
± SDa 

49.61 ±
3.80 

49.53 ±
3.60 

51.18 ±
1.40 

55.39 ±
0.50 

Intercept 474.50 588.59 495.42 467.05 
Linear range (mol/ 

L) 
10− 6–10− 2 10− 7–10− 2 10− 6–10− 2 10− 7–10− 3 

Correlation 
Coefficient (r) 

0.9977 0.9989 0.9980 0.9993 

LOD (mol/L) 1.00 × 10− 6 1.00 × 10− 7 1.00 × 10− 6 1.00 × 10− 7 

Response time (sec.) 25 ± 4 10 ± 2 15 ± 3 7 ± 1 
Stability (days) 30 60 50 60 
Working pH range 2–4 2–4 2–4 2–4 
Accuracyb (%) ±

SD 
100.22 ±
2.20 

100.18 ±
1.47 

100.92 ±
2.71 

100.03 ±
1.09 

Repeatability (%R. 
S.D) 

1.94 1.21 3.02 2.85 

Intermediate 
precision (%R.S. 
D) 

1.61 0.46 1.58 1.31  

a Standard deviation. 
b Assessed by recovery rates of standard samples. 
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investigation. The findings suggest that all of the sensors exhibit 
reasonable selectivity. Sensors III & IV display the greatest selectivity 
and the least response to potentially interfering compounds owing to 
their lower selectivity coefficients compared to sensors I & II. As a result, 
both sensors are thought to be the best for detecting RDS in the presence 
of other interfering compounds. 

It is also obvious that Oseltamivir displays relatively higher selec
tivity coefficient. This may be due to the fact that Oseltamivir has similar 

structural characteristics to RDS such as valency, solubility and lip
ophilicity where Oseltamivir is monovalent (n = 1) due to –NH group 
which is connected to CO [47] similar to RDS which has a phosphate 
attached to –NH group as shown in Fig. 1. The partition coefficient (Log 
P) between octanol and water is commonly used as measure of lip
ophilicity. Log p for Oseltamivir is 1.1 [48], while for RDS is 3.2 [49]. 
Thus, both have low water solubility. In contrast, the ionic size, solu
bility and lipophilicity of Favipiravir (Log P = − 0.49) [50] and 

Fig. 4. Profile of the potential (mV) versus -log concentrations of RDS (mol/L) of the proposed sensors.  

Fig. 5. Potentiometric water layer test. EMF was recorded successively in (A) 10− 4 mol/L RDS, then (B) 10− 2 mol/L Favipiravir and back to (A) 10− 4 mol/L RDS by 
the proposed sensors. 
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Molnupiravir (Log P = − 0.8) [51] compared to RDS ions is primarily 
responsible for the strong selectivity against these compounds as they 
are more water soluble and less lipophilic in addition to their low mo
lecular weights. Also, inorganic cations as sodium and potassium did not 
interfere due to the variations in their ionic size, mobility, and perme
ability when compared to the RDS ions. 

3.7. Potentiometric determination of RDS in IV injections and human 
Plasma 

Remdesivir’s maximum concentration in the human plasma reaches 
3 μmol/L [52]. Thus, a sensitive, selective and reliable method is 
required for its quantitation. The suggested sensors were successfully 
employed for the assessment of RDS in Remdesivir® IV injections as well 
as spiked human plasma where they proved to be successful in obtaining 
precise and reliable recoveries without tedious sample pretreatment. 
However, best recoveries in human plasma were obtained using sensor 
IV as illustrated in Table 3. 

4. Conclusions 

Four ion selective electrodes have been developed for the estimation 
of the anti-COVID-19 medication RDS. Excellent potentiometric 
analytical performance, highest sensitivity and low cost were all dis
played by the graphene-based electrode, which was also simple to 
fabricate. High selectivity and excellent reproducibility were obtained 
using the PANI/solid contact sensor system. In order to obtain a sensitive 
and selective detection, we have employed a composite material made 
of graphene nanoplatelets and electrically conductive PANI. Graphene’s 
inclusion has further enhanced response properties and potential sta
bility owing to the electrocatalytic action of the G/PANI composite, 
which speeds up electron transfer at the substrate/transducer interface. 
It also increased the reliability of the response in conjunction with its 
enhanced hydrophobicity. Having a slope of 55.39 ± 0.5 mV /decade, 
an LOD of 100 nmol/L and strong potential response stability, the ISE 
using G/PANI as the transducer was the best sensor for Remdesivir 
determination in comparison to the coated graphene ISE or the neat 
PANI transducer. 
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