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a b s t r a c t 

Widespread vaccination is the only way to overcome the COVID-19 global crisis. However, given the vac- 

cine scarcity during the early outbreak of the pandemic, ensuring efficient and equitable distribution of 

vaccines, particularly in rural areas, has become a significant challenge. To this end, this study develops 

a two-stage robust vaccine distribution model that addresses the supply uncertainty incurred by vaccine 

shortages. The model aims to optimize the social and economic benefits by jointly deciding vaccination 

facility location, transportation capacity, and reservation plan in the first stage, and rescheduling vaccina- 

tions in the second stage after the confirmation of uncertainty. To hedge vaccine storage and transporta- 

tion difficulties in remote areas, we consider using drones to deliver vaccines in appropriate and small 

quantities to vaccination points. Two tailored column-and-constraint generation algorithms are proposed 

to exactly solve the robust model, in which the subproblems are solved via the vertex traversal and the 

dual methods, respectively. The superiority of the dual method is further verified. Finally, we use real- 

world data to demonstrate the necessity to account for uncertain supply and equitable distribution, and 

analyze the impacts of several key parameters. Some managerial insights are also produced for decision- 

makers. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

The outbreak of coronavirus disease 2019 (COVID-19) has 

aused severe negative impacts on both social life and the econ- 

my across the globe. More than 6 6 6 million confirmed cases and 

 million deaths have been reported by the end of 2022, according 

o worldometers.info. The cumulative loss of global GDP over 2020 

nd 2021 due to the COVID-19 crisis was estimated to be around 9 

rillion dollars, according to the International Monetary Fund (IMF). 

lthough government measures related to lockdowns and social 

istancing can effectively prevent the spread of the pandemic, the 

nly way to eradicate coronavirus is through widespread vaccina- 

ion [30] . Within one year of the first confirmed case, over a hun- 

red types of COVID-19 vaccines are in development, eleven of 

hich are in phase III trials [59] . After the effective vaccines are 

icensed and become available, how to efficiently distribute vac- 
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ines worldwide and inoculate all populations is absolutely essen- 

ial [54] . 

The vaccine distribution chain can be categorized into four con- 

ecutive stages: sourcing, storage, transportation, and administra- 

ion [19] . The last decade has witnessed many studies on each 

tage. For the sourcing stage, studies are mainly on where, when, 

ow many and at what price to acquire the needed vaccines (e.g., 

azirandeh [49] ). In the storage stage, a vital consideration is how 

o make vaccines thermostable while minimizing the cost (e.g., 

ee et al. [38] ), or managing inventory to rule out expiry wastage. 

ransportation is to deliver vaccines from providers to the users, 

ypically through a hierarchical transportation network. For exam- 

le, vaccines may go through national, regional, district, and local 

ealth facilities before applying to people [36] . Finally, administra- 

ion is to schedule and perform the vaccination, for example, in a 

ealth facility. As emerging transportation technologies like drones 

re practically applied to vaccine delivery, the operation mode of 

he vaccine distribution chain produces new changes. Meanwhile, 

he sudden outbreak of the pandemic brings more challenges to 

he administration of vaccines as the supply encounters a shortage. 

hese backgrounds motivate our study on the joint transportation 

nd administration problem, and we further justify it in the fol- 

owing part of this section. 

https://doi.org/10.1016/j.omega.2023.102872
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2023.102872&domain=pdf
mailto:wangxin16@mails.tsinghua.edu.cn
mailto:ruiwei@umich.edu
mailto:qimy@sz.tsinghua.edu.cn
https://doi.org/10.1016/j.omega.2023.102872
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Drone delivery has become an ideal option for vaccine dis- 

ribution in recent years [28] . Unlike common products, vaccines 

re temperature sensitive and must be continuously preserved 

n the proper condition through a cold supply chain. Otherwise, 

he potency could be diminished or even destroyed [58] . Due to 

he limited shelf life of vaccines, delivery time is also critical. 

nfortunately, the lack of qualified infrastructures (e.g., electric 

ower, refrigerator equipment), poor road conditions, and inade- 

uate trained personnel pose a significant challenge to vaccine dis- 

ribution in rural areas [12] . According to their high speed, reduced 

raffic restrictions, and low manpower need, many governments 

ave attempted to utilize the emerging technologies of drone de- 

ivery to get out of the predicament. In February 2021, Zipline 

ade the first attempt to deliver COVID-19 vaccines to rural areas 

n Ghana via drones. It took only 30 to 40 min to complete each 

elivery, while the traditional transportation could hardly reach 

he place [57] . The application of drones allows for more frequent 

eliveries, less inventory, and less need for cold chain equipment. 

hus, our research digs into the drone-based vaccine distribution 

roblem, where drones are employed to deliver vaccines rapidly 

o health facilities in vulnerable places. Although there are lots of 

tudies focusing on drone delivery optimization problems (see, e.g., 

hung et al. [15] , Macrina et al. [43] , Otto et al. [48] ), very few of

hem concern vaccine distribution. 

Generally, a vaccine distribution chain is subject to both supply 

nd demand uncertainty [41] . However, in the early stages of vac- 

ine distribution after the pandemic outbreak, the supply of vac- 

ines is pretty scarce, then demand is supposed to outstrip sup- 

ly. Due to the limited production and unstable transportation, the 

umber of vaccines arriving at a distribution center in each time 

eriod is random, and it is difficult to obtain the accurate value. 

hat means the corresponding demand can be scheduled as long 

s there is an allocated supply. Hence, the uncertainty in supply 

ecomes the dominant barrier to effective vaccination regarding 

accine shortages. Neglecting the impact of this uncertainty, the 

ecision can be unsatisfactory in real-life contexts, such as incur- 

ing unmet vaccination appointments or wasted vaccines if the ar- 

ived vaccines are less or more than the pre-assigned volume, re- 

pectively. Nonetheless, even the research addressing any uncertain 

haracteristic is rather limited in the vaccine distribution prob- 

em [19] . To our best knowledge, little attention has been paid to 

upply uncertainty in this field. Generally, stochastic programming 

SP) and robust optimization (RO) are the most common meth- 

ds for solving uncertain problems with random parameters. Un- 

ike SP requiring accurate probability information, RO uses an un- 

ertainty set without the probability distribution to characterize 

he uncertain attributes and focuses on the worst-case optimiza- 

ion. In practice, it is often difficult to obtain sufficient informa- 

ion to support a probability distribution of uncertain parameters 

2,9,14,47,52] . Hence, this research adopts an RO method to hedge 

he influence of supply uncertainty on vaccine transportation and 

dministration. 

Equity is another critical issue that needs to be considered for 

accine distribution. It is particularly essential for not only justice 

ut also extinguishing the overall severity of the pandemic [1,37] . If 

accines are distributed inequitably, a large number of people will 

e exposed to the virus, leading to the potential for high trans- 

ission rates and fertile ground for the development and spread 

f new variants [56] . However, according to the data from WHO, 

NDP, Oxford University [60] , as of Nov 2021, only 7 . 46% of peo-

le in low-income countries have received at least one dose of 

OVID-19 vaccine, while the proportion in high-income countries 

s 63 . 87% . Besides, the gap in the coverage rate between urban

nd rural areas within a region is also considerable. In this regard, 

e propose several equity-related constraints to develop a practi- 

al approach for equitable distribution. 
2 
Most types of COVID-19 vaccines (e.g., Pfizer-BioNTech, Mod- 

rna, Sinovac Biotech) require multiple doses for high efficacy. The 

rst two doses are especially significant during the early stages and 

hould be administered only three to four weeks apart [55] . The 

onsideration of the two-dose regimen is important when schedul- 

ng vaccinations [8] . In summary, this research studies a drone- 

ased two-dose vaccine distribution problem with uncertain sup- 

ly by addressing the following three questions: 

1. How many health facilities should be selected for vaccination, 

and where are they located to balance the social and economic 

benefits? 

2. How to equitably schedule vaccinations or assign vaccines to 

the selected health facilities and then to the demand sites for 

each period? 

3. How many drones should be deployed for vaccine transporta- 

tion? 

The main contributions of this paper lie in the following as- 

ects: 

1. We address the supply rather than demand uncertainty in 

the vaccine distribution problem with a robust optimization 

method, which could better fit the vaccine shortage situation 

during the early pandemic outbreaks; 

2. This is the first study considering a joint vaccination facility lo- 

cation, transportation capacity design, and vaccination schedul- 

ing problem, which is tailored to addressing vaccination diffi- 

culties in rural or remote areas using drone delivery technolo- 

gies; 

3. We adopt a two-stage RO framework with a budgeted uncer- 

tainty set to deal with the uncertain problem, and propose two 

tailored column-and-constraint generation (C&CG) algorithms 

to solve the model exactly. The subproblems of C&CG are solved 

via the vertex traversal and the dual methods, respectively. In 

particular, a mixed-integer linear programming (MILP) formula- 

tion is provided for the nonlinear dual subproblem; 

4. We use real-world data to justify the model and demonstrate 

the necessity of considering equity and uncertain supply, which 

leads to several managerial insights for decision-makers. 

The rest of this paper is organized as follows. Section 2 gives a 

rief review of the related literature. Section 3 elaborates the prob- 

em and proposes a two-stage robust formulation. Section 4 pro- 

ides the two solution methods based on the C&CG algorithm. 

ection 5 uses the case study to demonstrate the efficiency of the 

lgorithm and analyze the problem. Finally, in Section 6 , we con- 

lude this study and give directions for future research. 

. Literature review 

A systematic review of the literature on the vaccine supply 

hain is presented in Duijzer et al. [21] and Lopes et al. [42] . An-

ther study by De Boeck et al. [19] summarizes the papers on the 

cope of vaccine distribution and categorizes them based on their 

ecision levels into strategic, tactical, and operational problems. In 

his section, we first review the related studies according to the 

ecision level and then analyze the research addressing specific 

haracteristics of pandemic vaccination, i.e., the equity consider- 

tion and the uncertain nature. We also examine a more general 

ocation-transportation problem (LTP), which we believe is relevant 

o our study. 

.1. Vaccine distribution problems 

Strategic level studies The problems involving a strategic level re- 

eive the most research attention, where long-term decisions such 
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s facility location and allocation, and vial size design are ad- 

ressed. Lim et al. [40] developed four types of coverage models to 

etermine the location of outreach vaccination facilities. It is also 

ommon to extend the strategic problem to two levels, incorporat- 

ng tactical decisions. Li et al. [39] provided a mixed-integer non- 

inear programming model for a location problem, incorporating 

he assignment of medical staff and their work schedules, which 

esolves conflicting objectives involving the travel distance, num- 

er of opened facilities, and operational cost. Generally, vaccina- 

ion may last for multiple periods, during which parameters such 

s demand, supply, and cost may change over time. A multi-period 

trategy addressing time-dependent parameters seems more ap- 

ropriate. In this regard, Azadi et al. [5] maximized the vaccina- 

ion coverage rate by deciding the tier of the supply chain and 

cheduling the transportation and inventory replenishment in each 

eriod. Chen et al. [11] investigated a location-allocation and in- 

entory problem in developing countries to improve the number 

f fully immunized children. Rastegar et al. [51] proposed an MILP 

odel for a location-inventory problem of influenza vaccines dur- 

ng the COVID-19 pandemic, in which the assumptions on multi- 

roup allocation, vaccine shortage, budget constraints, and time- 

ependent capacities are included. Tavana et al. [54] later extended 

he problem to a multi-product model with three types of COVID- 

9 vaccines, requiring cold, very cold, and ultra-cold refrigeration, 

espectively. Lai et al. [35] studied an integrated planning problem 

hat jointly optimizes the vaccination locations, the planning for 

ealth staff, vaccine ordering, and inventory in each period. De- 

and uncertainty is addressed via a two-stage stochastic program- 

ing method. 

Tactical level studies Tactical decisions are made with mid-term 

mpacts, such as inventory, vaccine flow (e.g., vaccine transporta- 

ion, plan, assignment), and service capacities (e.g., storage, trans- 

ortation, and staff capacity). Balcik et al. [7] investigated an eq- 

itable vaccine allocation problem within the country in terms of 

accine shortages, and proposed a new objective that minimizes 

he total deviation from the equitable coverage levels. Jahani et al. 

31] sought to efficiently and effectively distribute and store the 

OVID-19 vaccines, considering the congestion in the vaccination 

rocedure. They conducted a multi-period queuing-based model to 

inimize the total cost and the expected waiting time. Georgiadis 

nd Georgiadis [25] investigated the COVID-19 vaccine distribution 

hain from both tactical and operational levels, optimizing the vac- 

ine transportation, inventory, staff assignment, and daily schedul- 

ng of vaccination. The wastage of the vaccine is explicitly consid- 

red, and a rolling-horizon algorithm is conducted to cope with the 

emand fluctuations. Additional distribution problems for COVID- 

9 vaccines involving tactical decisions can also be found in Kumar 

t al. [34] , Rahman et al. [50] . 

Operational level studies For research at this level, short-term 

ecisions are captured, such as administration and daily schedul- 

ng. Azadi et al. [6] explored a vaccination problem consider- 

ng open vial wastage, which optimizes the vaccine ordering and 

ial opening decisions for various vial-size vaccines. Mofrad et al. 

46] modeled the vaccine administration problem as a Markov 

ecision process (MDP), which dynamically determines the open 

ours of a clinic, the current vial inventory, and the remaining 

pen days, and seeks to maximize the administrations of vaccines. 

adaki et al. [23] analyzed a vaccine allocation and administra- 

ion problem via a case study of Australia incorporating the risk of 

he uninoculated population, while Jarumaneeroj et al. [32] studied 

 case of Thailand addressing the pandemic transmission. Zhang 

t al. [65] developed a vaccination scheduling model which de- 

ermines the location and service sequence of vaccination sites, 

s well as the assignment, acceptance, and rejection of each ap- 

ointment. In addition to the fixed and travel costs, the rejec- 

ion and tardiness costs of a vaccination appointment are involved. 
3 
ang et al. [53] studied a bi-objective vaccination planning prob- 

em, providing suggestions on work scheduling, demand assign- 

ent, service capacity, and replenishment amount. A weighted- 

um, an ε-constraint, and a tailored genetic algorithm are adopted 

o get Pareto solutions. Rahman et al. [50] also optimized a bi- 

bjective problem with multi-level decisions, in which the vaccine 

oss is addressed via a chance constraint program (CCP). 

Equity of vaccination The significance of equity in vaccine dis- 

ribution was emphasized in Lee et al. [37] . Enayati and Özaltın 

22] built a mathematical model to allocate the vaccine among 

eterogeneous populations to eliminate the influenza outbreak. To 

ccess equity, they forced the dispersion of the vaccination rates 

mong all groups to a certain value. Chen et al. [13] , Yi and

arathe [63] also discussed equity among populations . In another 

ine of research, equity is addressed among locations . Chen et al. 

11] imposed limitations on the minimum vaccination rate of each 

acility at each time period to ensure equity. Lim et al. [40] sought 

o achieve equity by repeatedly running the proposed mathemat- 

cal model with different groups of candidate locations. Rastegar 

t al. [51] and Mohammadi et al. [47] adopted vaccine coverage to 

ccount for both population and locality equity. 

Uncertainty issues The research allowing for the uncertain na- 

ure of the vaccine distribution chain is quite limited [19] . To ad- 

ress the uncertain demand, Azadi et al. [6] proposed a two-stage 

tochastic programming (SP) model for a childhood vaccine admin- 

stration problem, which is solved by an L-shape method. Azadi 

t al. [5] derived a CCP for a stochastic distribution problem in 

ow-and middle-income countries. In addition to unstable demand, 

ang and Rajgopal [61] also dealt with the uncertainty of travel 

ime, which optimizes the location and routing decisions of mobile 

linics. A multi-period modeling method was employed to con- 

ider the worst-case scenario and update the decision. Moreover, 

armand et al. [62] considered a two-phase decision procedure 

or vaccine allocation to capture the stochastic nature of the epi- 

emic control outcomes (i.e., vaccination coverage). Mohammadi 

t al. [47] explored the impact of possible disruptions in the vac- 

ine distribution chain via a scenario-based static robust model, 

hich minimizes the total deaths and costs. However, few papers 

ave taken the uncertain supply into account. Lin et al. [41] ex- 

lored the uncertain production yield and demand of the vaccine 

upply chain regarding production and procurement decisions. Gi- 

ani and Sahebi [26] developed a single-stage data-driven robust 

ptimization model (DDRO) to address uncertain vaccine accessi- 

ility. A case study of Iran shows that DDRO performs 21% less 

onservatively than the classical uncertainty set. 

According to the above review, a summary of the most relevant 

iterature is given in Table 1 . It can be observed that little atten- 

ion, except for Gilani and Sahebi [26] , has been paid to supply un- 

ertainty in the vaccine distribution field, which is significant given 

he limited vaccine resources in the early stage. Additionally, none 

f the above literature takes into account drone delivery for vac- 

ine distribution in rural areas facing difficulties in vaccine storage 

nd transportation. Yet, drone delivery is a promising technology 

o improve vaccine access and deserves further study. Therefore, 

ur research investigates a drone-based equitable vaccine distribu- 

ion problem and develops a multi-period two-stage robust model 

o tackle the supply uncertainty. The model aims to optimize eco- 

omic and social benefits and jointly determines the facility loca- 

ion, the transportation capacity, and the vaccination reservation 

lan. 

.2. General location-transportation problem 

From the model structure perspective, our research relates 

o the general two-stage robust location-transportation problem 

TRLTP). Cooper [17] was the first to give a general formulation 
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Table 1 

A summary of the most relevant literature. 

Authors Decision level Multi-period Drone 

technology 

Equity type Uncertainty 

Strategic Tactical Operational Population Locality Type Method 

Location Service 

capacity 

Vaccine 

flow 

Inventory Administration Daily 

scheduling 

Lim et al. [40] � � – - 

Yang and Rajgopal [61] � � � Demand, travel time RO 

Chen et al. [11] � � � � � � – - 

Azadi et al. [5] � � � � Demand CCP 

Rastegar et al. [51] � � � � � � – - 

Tavana et al. [54] � � � � � � – - 

Mohammadi et al. [47] � � � � Disruption RO 

Li et al. [39] � � � – - 

Gilani and Sahebi [26] � � � � � Accessibility DDRO 

Lai et al. [35] � � � � � Demand SP 

Tang et al. [53] � � � – - 

Zhang et al. [65] � � – - 

Habibi et al. [27] � � � Demand, lead time Stochastic 

Kumar et al. [34] � � � � – - 

Rahman et al. [50] � � � � � � Vaccine loss CCP 

Balcik et al. [7] � � � – - 

Yarmand et al. [62] � Vaccination coverage SP 

Jahani et al. [31] � � � Arrival&service rate Queue 

Georgiadis and Georgiadis [25] � � � � � Demand Rolling-horizon 

Fadaki et al. [23] � � � � – - 

Azadi et al. [6] � Demand SP 

Enayati and Özaltın [22] � � – - 

Jarumaneeroj et al. [32] � � � – - 

This paper � � � � � � � Supply Two-stage RO 

4
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f LTP. Crainic and Laporte [18] decomposed transportation plan- 

ing and operations into three layers: strategic, tactical, and op- 

rational planning levels. A location transportation problem usu- 

lly contains all three levels, which decides the location of open 

acilities (strategic), the distribution of resources (tactical), and 

he amount to be transported (operational). Atamtürk and Zhang 

4] extended the nominal LTP to a two-stage robust LTP under un- 

ertain demand via a budgeted uncertainty set. They also demon- 

trated the NP-hard characteristic of TRLTP in the paper. Gabrel 

t al. [24] adopted Kelley’s cutting plane algorithm to exactly 

olve the problem and reformulated the nonlinear recourse prob- 

em as an MILP with a tight bound. Zeng and Zhao [64] solved 

he same problem by using a new method called the column-and- 

onstraint generation (C&CG) algorithm, which is also a general so- 

ution method for two-stage robust optimization problems. Com- 

utational results show the efficiency of C&CG as well as its su- 

eriority over the benders-style methods. Furthermore, Ardestani- 

aafari and Delage [3] extended the single-period TRLTP to multi- 

eriod. To overcome the computational difficulty, they derived six 

onservative tractable approximations based on the affine adjust- 

ent method. Marandi and van Houtum [44] further investigated 

RLTP with integer-valued demand and proved that the demand 

ould be relaxed to continuous values without loss of optimal- 

ty, leveraging the totally unimodal nature of the specific prob- 

em. Unfortunately, this characteristic is challenging to generalize 

o other problems. According to the nature of our problem, the 

&CG framework is applied in this study to solve the proposed 

wo-stage robust distribution problem. 

. Model formulation 

This section elaborates on the equitable vaccine distribution 

roblem and presents the two-stage robust model. 

.1. Problem description 

The problem addressed in this study mainly aims at under- 

eveloped regions, where there are significant challenges in stor- 

ng and transporting vaccines in rural areas. Drone delivery is a 

romising solution that allows for more frequent deliveries, less 

nventory, and less need for cold chain equipment at health fa- 

ilities. To this end, a three-tier drone-based vaccine distribution 

hain is adopted in this research. The schematic illustration of the 

etwork is shown in Fig. 1 , where the size of the circles represents

he population ρ j of the demand area. Vaccines enter the network 

t the distribution center such as a central hospital or near that, 

hich is able to meet the requirements for storing the vaccines. 

nly one distribution center with a given location is involved. Then 

he vaccines are delivered to the local health facilities via drones. 

eople in demand areas make vaccination appointments based on 

he vaccine assignment plan, and travel to the health facilities for 

noculation according to their appointments. Given the shortage of 

accines, appointment no-shows are not considered. Due to the ef- 
Fig. 1. Illustration of the vaccine distribution chain. 

θ

θ

3

m

s

c

s

5 
cient drone delivery, vaccines are administered the same day they 

re delivered to the health facilities, which eliminates the need for 

nventory or wastage at health facilities. Consequently, vaccines are 

nly stored at the distribution center. 

We consider a set I of candidate health facilities and a set J of 

emand areas. The total scheduled vaccinations at facility i could 

ot exceed its capability D i . Let d i be the distance from the dis- 

ribution center to facility i , and e i j be the distance from facility i

o demand site j. In general, COVID-19 vaccines are delivered on a 

eekly basis from the government to the distribution center. Based 

n that, we take one week as the length of the period. A finite time

orizon T = { 1 , 2 , . . . , T } is considered. 

Vaccines are assumed to be distributed in single-dose vials. As 

he two-dose vaccine is considered, let R = { 1 , 2 } denote the set

f the shot type, and u represent the recommended time interval, 

hich means the second shot should be scheduled u periods after 

he first shot. Additionally, it is allowed to assign vaccination shots 

n a demand area to different health facilities at different time pe- 

iods. 

Besides, we assume each drone can only serve one health fa- 

ility at a time. We set the capacity of a drone to q doses. The

ndurance of a drone is given as E T ; the facilities out of the range

ould not be selected. Since this requirement could be pre-checked, 

e assume all nodes in I are within drone endurance. The total de- 

ivery distance of a drone in each time period is restricted to E D . 

.1.1. Equity of vaccine distribution 

Equity is a critical issue for vaccine distribution. Nevertheless, 

here is not a unified agreement on how to define equity, and var- 

ous measurements have been taken in the literature. For a sum- 

ary of these measures in facility location problems, the reader is 

eferred to Marsh and Schilling [45] . One of the widely recognized 

easures is to consider the difference between the best and the 

orst performing groups, denoted by 

ax 
i 

θi − min 

i 
θi , 

here θi is the performance of group i . 

In this research, we define the group performance θ j as the ra- 

io of v j the total number of scheduled vaccinations to ρ j the pop- 

lation of the demand area. We include equity as a constraint to 

estrict the relative gap between the best and the worst group per- 

ormance, denoted by θmax and θmin . Then we obtain 

θmax − θmin 

θmax 
≤ ξ , 

here ξ is a given parameter of restricted inequity level. Multi- 

lying both sides by θmax to linearize the constraint, the complete 

ormulation addressing distribution equity yields 

j = 

v j 
ρ j 

, ∀ j ∈ J, (1a) 

min ≤ θ j ∀ j ∈ J, (1b) 

max ≥ θ j ∀ j ∈ J, (1c) 

max − θmin ≤ ξθmax . (1d) 

.1.2. Robust problem with uncertain supply 

To address the uncertainty of supply, a two-stage robust opti- 

ization method is applied. A robust model uses an uncertainty 

et to characterize the uncertain attributes and focuses on worst- 

ase optimization. One of the most used uncertainty sets to de- 

cribe the randomness is the so-called budget of uncertainty, see 
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ertsimas and Sim [10] and Krumke et al. [33] . The corresponding 

xpression in our model takes the following form: 

 γ = 

{
γ ∈ R 

T 
+ : γt ∈ [ a t , b t ] , t ∈ T , and � ≤

∑ 

t∈T 
γt ≤ �

}
, (2) 

here γt is the uncertain supply arrived at the distribution center 

t time period t , a t and b t are the lower and upper bounds of the

ncertain variable γt respectively. � and � comprise the bound of 

he uncertainty budget, restricting the deviation of the total supply. 

he rationale is that the total supply during the planning horizon 

e.g., six weeks) is less fluctuating than the received supply in each 

eriod, leading to less conservative solutions. 

ssumption 1. In order to get a meaningful uncertainty set, we 

ssume 
∑ 

t∈T a t ≤ �, 
∑ 

t∈T b t ≥ �, and � ≤ �, therefore, U γ is non- 

mpty. 

.1.3. Decisions and objectives 

The two-stage robust approach allows us first to make the 

rst-stage decision and adopt the optimal recourse decision af- 

er the uncertainty is confirmed, without encountering infeasibil- 

ty. Before getting the supply information, we need to decide: (i) 

 i ∈ { 0 , 1 } that equals 1 if health facility i is selected and 0 oth-

rwise; (ii) k the number of drones deployed at the distribution 

enter; (iii) D 

P 
i jtr 

the number of scheduled vaccinations of shot 

for demand site j assigned to health facility i at time period 

. Given the first-stage decisions, we can reschedule the vaccina- 

ions via D 

S 
i jtr 

according to the realization of vaccine supply, which 

s the actual number of vaccinations of shot r for demand site 

j completed at health facility i at time t . If the realized vaccine 

upply to a facility at time t is less than the scheduled num- 

er, the unmet demand will be rescheduled to the coming peri- 

ds as long as extra vaccines are supplied later. The main pur- 

ose of the model is to optimize the first-stage decisions, which 

ake into account the future uncertainty under all situations. In 

ractice, the recourse decisions can be made in a rolling man- 

er, meaning that only the recourse decision of the forthcoming 

period is implemented at the beginning of the period when its 

ncertainty is realized. Then, based on the newly revealed infor- 

ation in the next period, an optimization problem of reschedul- 

ng the vaccinations is solved again, and so on. 

Two objectives are considered in our problem, which aims to 

ptimize the social and economic benefits. The social benefit is 

mproved through maximizing the vaccination profit , which con- 

ists of: (i) the profit of successful vaccinations, (ii) the penalty of 

accination delays, (iii) the penalty of eventually unsatisfied vac- 

inations as planned, and (iv) the penalty of vaccine wastage due 

o inefficient use of resources. The economic benefit is enhanced 

y minimizing the total cost , which contains: (i) the setup cost of 

ealth facilities, (ii) the deployment cost of drones, (iii) the access- 

ng cost for vaccination, and (iv) the inventory cost. To tackle the 

wo-objective problem, we employ a new coefficient α to adjust 

he weight of the vaccination profit. Then the problem is integrated 

nto a single-objective form, which maximizes the total profit , as 

hown later in (3a) . 

.2. Robust model 

A summary of all notation is given in Table 2 . 

Q 

(
k, D 

P , γ
)

:= max 
D S , D A , L 

−
∑ 

t∈T 
C I L t + α

( ∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

t∈T 

∑ 

r∈ R 
6 
Now, we provide the mathematical model for our equitable 

andemic vaccine distribution problem (PVDP). The whole robust 

ounterpart model for our pandemic vaccine distribution problem 

ith uncertain supply can be formulated as 

 

RC-PVDP ) max 
x , D P ,k 

−
( ∑ 

i ∈ I 
C f x i + C k k + 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

t∈T 

∑ 

r∈ R 
C e e ij D 

P 
ijtr 

) 

+ min 

γ∈U γ
Q 

(
k, D 

P , γ
)

(3a) 

.t. 
∑ 

r∈ R 

∑ 

j∈ J 
D 

P 
i jtr ≤ D i x i , ∀ i ∈ I, t = 1 , . . . , T , (3b) 

 

P 
i jt2 = D 

P 
i j(t−u )1 , ∀ i ∈ I, j ∈ J, t = u + 1 , u + 2 , . . . , T , (3c) 

 

P 
i jt2 = D 

S 
i j(t−u )1 , ∀ i ∈ I, j ∈ J, t = 1 , 2 , . . . , u, (3d) 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

r∈ R 

D 

P 
i jtr 

q 
d i ≤ E D k, t = 1 , 2 , . . . , T , (3e) 

 j = 

∑ 

r∈ R 

∑ 

t∈T 

∑ 

i ∈ I 
D 

P 
i jtr , ∀ j ∈ J, (3f) 

 i ∈ { 0 , 1 } , ∀ i ∈ I, (3g) 

 ∈ Z 

+ , (3h) 

 

P 
i jtr ≥ 0 , ∀ i ∈ I, j ∈ J, r ∈ R, t = 1 , 2 , . . . , T , (3i) 

1a)-(1d) , (3j) 

here, 

tr −
∑ 

i ∈ I 

∑ 

j∈ J 

T −1 ∑ 

t=1 

∑ 

r∈ R 
C A r D 

A 
ijtr −

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

r∈ R 
C U r D 

A 
ijTr − C w L T 

) 

(4a) 

.t. L t = L t−1 + γt −
∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

r∈ R 
D 

S 
i jtr , t = 1 , 2 , . . . , T , (4b) 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

r∈ R 

D 

S 
i jtr 

q 
d i ≤ E D k, t = 1 , 2 , . . . , T , (4c) 

∑ 

r∈ R 

∑ 

j∈ J 
D 

S 
i jtr ≤ D i , ∀ i ∈ I, t = 1 , 2 , . . . , T , (4d) 

 

A 
i jt1 = D 

P 
i jt1 + D 

A 
i j(t−1)1 − D 

S 
i jt1 , ∀ i ∈ I, j ∈ J, t = 1 , 2 , . . . , T , 

(4e) 

 

A 
i jt2 = D 

P 
i jt2 + D 

A 
i j(t−1)2 − D 

S 
i jt2 , ∀ i ∈ I, j ∈ J, t = 1 , 2 , . . . , u, 

(4f) 

 

A 
i jt2 = D 

S 
i j(t−u )1 + D 

A 
i j(t−1)2 − D 

S 
i jt2 , ∀ i ∈ I, j ∈ J, t = u + 1 , u + 2 , . . . , T , 

(4g) 

 

A 
i jtr , D 

S 
i jtr , L t ≥ 0 , ∀ i ∈ I, j ∈ J, r ∈ R, t = 1 , 2 , . . . , T . (4h) 
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Table 2 

Notation. 

Sets 

I Set of candidate health facilities 

J Set of demand sites 

R = { 1 , 2 } Set of shot categories 

T = { 1 , 2 , 3 . . . , T } Set of time periods 

Parameters 

e i j Distance from health facility i to demand site j

d i Distance from the distribution center to health facility i 

ρ j Population of demand site j

u Recommended interval between the two shots 

ξ Restricted deviation level of equity 

D i Service capability of health facility i 

E D The maximum delivery distance of a drone in a time period 

q Capacity of a drone 

D S 
i jt1 

Number of completed vaccinations for the first shot of demand area j assigned to facility i at time t ( t ≤ 0 ) before time horizon 

L 0 Initial inventory 

γt Supply of vaccine at the distribution center at time t

C f Setup cost of a health facility 

C k Deployment cost of a drone 

C e Accessing cost of a vaccination 

C I Inventory cost per vial 

C w Penalty of wasting a vaccine dose 

C S r Profit of a successful vaccination for dose r

C A r Penalty of a service delay of dose r for each time period 

C U r Penalty of an ultimately unsatisfied vaccination planned for dose r

Variables 

First-stage 

θ j Ratio of the total scheduled vaccinations to the population of demand site j

θmin The minimum value of θ j 

θmax The maximum value of θ j 

v j Total number of scheduled vaccinations of demand site j

D P 
i jtr 

Number of scheduled vaccinations of demand site j assigned to facility i at time t for shot r

k Integer variable, number of drones deployed at the distribution center 

x i Binary variable that equals 1 if health facility i is selected and 0 otherwise 

Second-stage 

D S 
i jtr 

Number of successful vaccinations of demand site j assigned to facility i at time t for shot r

D A 
i jtr 

Accumulated unsatisfied vaccinations of demand site j assigned to facility i at time t for shot r

L t Vaccine inventory at the distribution center at the end of time t

c
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v
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The objective function (3a) seeks to maximize the total profit, 

ontaining the fixed cost of health facilities and deploying drones, 

he accessing cost of vaccinations, and the worst-case profit of the 

econd stage. Constraints (3b) ensure that all vaccinations can only 

e assigned to the open facilities and the capability of the facil- 

ties should be respected. Constraints (3c) and (3d) indicate the 

econd shot should be scheduled u days after the first shot. Con- 

traints (3f) calculate the total number of scheduled vaccinations 

f each demand site. Constraints (3e) avoid exceeding the delivery 

apability of drones at the distribution center. The right side ap- 

roximates the plannable delivery distance and provides an upper 

ound. Although it is impossible to assign each delivery to multi- 

le drones, this approximation is acceptable in practice since many 

rone trips (e.g., over 100 in a region) are required per time period. 

onstraints (3g) –(3i) impose the constraints of the variables. 

The objective function (4a) of the second-stage problem con- 

ists of the inventory cost and all components of the vaccination 

rofit. Constraints (4b) demonstrate the inventory balance. Similar 

o constraints (3e), (4c) bound the delivery capability of deployed 

rones at the distribution center. Constraints (4d) are the limita- 

ions on the service capability of the health facilities. The rela- 

ionship among the initially scheduled vaccinations D 

P 
i jtr 

, the actual 

ompleted vaccinations D 

S 
i jtr 

, and the accumulated unsatisfied vac- 

inations D 

A 
i jtr 

are given in constraints (4e) –(4g) . The accumulated 

nsatisfied vaccinations equal the sum of the vaccinations sup- 

osed to be served in this period and the accumulated unsatisfied 

accinations in the previous period minus the vaccinations satis- 
p

7 
ed in this period. Besides, the rescheduling of the second shot is 

elated to the inoculations of the first shot accomplished u days 

go. Constraints (4h) ensure the non-negativity of the variables. 

rom model (4) , we can see that the problem has fixed recourse 

i.e., the coefficients of the second-stage decision variables are not 

ffected by uncertainties). Since the unsatisfied and accumulated 

accinations are associated with penalties, the second-stage prob- 

em is always feasible and the problem is relatively complete (i.e., it 

s always possible to find a solution for the recourse problem given 

he first-stage decisions and uncertainty set). 

. Solution method 

Generally, a robust counterpart which is a semi-infinite linear 

rogram is NP-hard [9] . It can not be directly solved via an off- 

he-shelf software like Gurobi in terms of the max-min (min-max) 

orm. Fortunately, our two-stage robust model holds the property 

f relatively complete and fixed recourse, and the linear inner re- 

ourse problem has strong duality. Therefore, according to Theo- 

em 4.6 in Delage [20] , the optimal solutions of the robust coun- 

erpart problem RC-PVDP can be obtained by only focusing on the 

ertices of the polyhedron defined by the uncertainty set. As a 

esult, we can use the vertex enumeration method to transform 

he original two-stage model to a single mixed-integer linear pro- 

ram by adding a copy of the second-stage variables for each ver- 

ex. However, this whole enumeration approach will significantly 

ncrease the scale of the problem, leading to computational com- 

lexities. One effective methodology is referred to as column-and- 
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onstraint generation (C&CG), which is a reduced vertex genera- 

ion method first introduced by Zeng and Zhao [64] . The algorithm 

s performed in a master-subproblem framework, where the mas- 

er problem (MP) is formulated and solved to obtain the first-stage 

ecisions. The subproblem (SP) is used to identify the worst-case 

ncertain values under the given decisions of the first stage and 

hen add columns and constraints to the master problem on-the- 

y . 

In this section, we first describe the framework of the C&CG 

lgorithm in Section 4.1 . Then two tailored algorithms for the sub- 

roblem, namely vertex traversal and dual methods, are proposed 

n Sections 4.2 and 4.3 , respectively. With respect to the bilinear 

haracter of the dual subproblem, we accordingly give a lineariza- 

ion procedure. 

.1. C&CG framework 

Incorporate C & CG algorithm with the proposed RC-PVDP model, 

nd the formulation of the master problem is given as follows. 

MP) 	 := max −( 
∑ 

i ∈ I 
C f x i + C k k + 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

t∈T 

∑ 

r∈ R 
C e e i j D 

P 
i jtr ) + s 

(5a) 

.t. s ≤ −
∑ 

t∈T 
C I L l t + α( 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

t∈T 

∑ 

r∈ R 
C S r D 

Sl 
i jtr −

∑ 

i ∈ I 

∑ 

j∈ J 

T −1 ∑ 

t=1 

∑ 

r∈ R 
C A r D 

Al 
i jtr

−
∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

r∈ R 
C U r D 

Al 
i jT r − C w L l T ) , l = 1 , 2 , . . . , p, (5b) 

 

l 
t = L l t−1 + γ l 

t −
∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

r∈ R 
D 

Sl 
i jtr , t = 1 , 2 , . . . , T , l = 1 , 2 , . . . , p,

(5c) 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

r∈ R 

D 

Sl 
i jtr 

q 
d i ≤ E D k, t = 1 , 2 , . . . , T , l = 1 , 2 , . . . , p, (5d) 

∑ 

r∈ R 

∑ 

j∈ J 
D 

Sl 
i jtr ≤ D i , ∀ i ∈ I, t = 1 , 2 , . . . , T , l = 1 , 2 , . . . , p, (5e) 

 

Al 
i jt1 = D 

P 
i jt1 + D 

Al 
i j(t−1)1 − D 

Sl 
i jt1 , ∀ i ∈ I, j ∈ J, t = 1 , 2 , . . . , T , l = 1 , 2 , . . . , p, 

(5f) 

 

Al 
i jt2 = D 

P 
i jt2 + D 

Al 
i j(t−1)2 − D 

Sl 
i jt2 , ∀ i ∈ I, j ∈ J, t = 1 , 2 , . . . , u, l = 1 , 2 , . . . , p, 

(5g) 

 

Al 
i jt2 = D Sl 

i j(t−u )1 + D Al 
i j(t−1)2 − D Sl 

i jt2 , ∀ i ∈ I, j ∈ J, t = u + 1 , u + 2 , . . . , T, l = 1 , 2 , . . . , p, 

(5h) 

 

P 
i jtr , D 

Al 
i jtr , D 

Sl 
i jtr , L 

l 
t ≥ 0 , ∀ i ∈ I, j ∈ J, r ∈ R, t = 1 , 2 , . . . , T , l = 1 , 2 , . . . , p, 

(5i) 

3b)-(3j) . (5j) 

MP attempts to obtain the optimal decisions of the facility lo- 

ation, the drone deployment, and the vaccination reservation plan 

ased on the collection of scenarios identified from the subprob- 

em. Since MP is based on a subset of the uncertainty set U r , it

rovides an upper bound (UB) of the complete RC-PVDP problem. 

he original second-stage variables now feature an extra index l

nd are denoted by D 

Al 
i jtr 

, D 

Sl 
i jtr 

, L l t , representing the l th iteration of

&CG algorithm. Similarly, the realization of the uncertain sup- 

ly becomes γ l 
t . SP is denoted as φ := min γ ∈U γ Q (k, D 

P , γ ) , which
8 
elps to provide a lower bound (LB) at each iteration. We com- 

ute the relative gap between UB and LB every time after SP is 

olved. If the gap is less than the given optimality tolerance ε, the 

lgorithm terminates. Otherwise, the identified worst scenario and 

ts corresponding variables and constraints are added to MP. MP 

s a mixed-integer linear program that can be directly solved by 

n off-the-shelf solve like Gurobi, while the min-max SP will be 

olved by the vertex traversal and the dual methods illustrated in 

ections 4.2 and 4.3 respectively. The detailed process of the C & CG 

lgorithm is described in Algorithm 1 . 

Algorithm 1: C&CG framework. 

1 Initialization: Let LB = −∞ , UB = ∞ , n = 0 ; 

2 Solve the deterministic model with fixed γ and obtain the 

initial solution of ( ̂ k , ˆ D 

P , ˆ x ). Set UB as the optimal objective 

value of the solution; 

3 Solve the subproblem via the vertex traversal or the dual 

methods with respect to ( ̂ k , ˆ D 

P ), and find the worst-case 

scenario.Let ˆ φ be the optimal value of the subproblem, and 

update 

LB = max { LB, −( 
∑ 

i ∈ I 
C f ˆ x i + C k ˆ k + 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

t∈T 

∑ 

r∈ R 
C e e i j ̂

 D 

P 
i jtr ) + 

ˆ φ} ,

and n = n + 1 ; 

4 If (UB − LB ) /UB ≤ ε, the algorithm terminates; otherwise, add 

the recourse variables ( ˆ D 

S , ˆ D 

A , ̂  L ) and its corresponding 

constraints associated with the identified worst-case scenario 

to MP; 

5 Solve the MP to get the optimal solution of ( ̂ k , ˆ D 

P , ˆ x ) and its 

objective value ˆ 	 . Update UB = 

ˆ 	 . Go to Step 3. 

.2. Subproblem with vertex traversal 

In this section, we provide the vertex traversal approach to 

olve the min-max SP and identify the worst case. The idea is to 

raverse the elements in the vertex set � of the uncertainty set U γ
nd identify their minimum value as the optimal solution of SP, i.e., 
ˆ = min γ̄∈ � Q (k, D 

P , γ̄ ) . To this end, we introduce Theorem 1 de-

ived from Conforti et al. [16] to generate all vertices. 

heorem 1. If U γ is a pointed polyhedron, then γ̄ is a vertex of U γ
s equivalent to the statement that γ̄ satisfies at equality of T linearly 

ndependent inequalities of { a t ≤ γt ≤ b t ∀ t ∈ T , and � ≤ ∑ 

t∈T γt ≤
}. 

Obviously, there are T + 1 groups of constraints linearly inde- 

endent of each other when T ≥ 2 . And the two constraints within 

ach group are linearly dependent. We have to select T out of T + 1

onstraint groups and choose one constraint within each group to 

et all vertices. The feasibility should also be satisfied. The proce- 

ure to get the vertex set � is displayed in Algorithm 2 . There are

ess than (T + 1)2 T vertices in U γ . Then, we solve the maximiza-

ion problem Q (k, D 

P , γ̄ ) traversing all γ̄ ∈ � at each iteration and

gure out the worst case as the result of SP. Compared to the ba- 

ic whole vertex enumeration method, C&CG with vertex traversal 

till needs to generate all vertices, but does not need to add them 

o the master problem at one time, which significantly improves 

omputational efficiency. 

.3. Subproblem with dual method 

We now provide another approach that attempts to tackle the 

ubproblem via the dual method instead of the vertex traversal in 
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Algorithm 2: Procedure to get the vertex set of U γ . 

Data : �, �, a t , b t ∀ t ∈ T 
Result : Vertex set �

1 Initialization: n = 0 , � = ∅ ; 

2 Step 1: select constraint groups 1 ∼ T , enumerate all 2 T 

scenarios: 

3 Let γ̄t = a t or b t , ∀ t ∈ T , generate all 2 T basic solutions γ̄
; 

4 Check the feasibility of γ̄: if � ≤ ∑ 

t γ̄t ≤ �, add γ̄ to 

�.Step 2 : select a constraint group n from 1 to T , use the 

other T constraint groups to enumerate all T 2 T scenarios: 

5 Let γ̄t = a t or b t , ∀ t ∈ T \ n , γ̄n = � − ∑ 

t∈T \ n γ̄t or 

� − ∑ 

t∈T \ n γ̄t , generate all T 2 T basic solutions γ ; 

6 Check the feasibility of γ̄: if a n ≤ γ̄n ≤ b n , add γ̄ to 

�.Return the final �. 
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he C&CG framework. Given 

ˆ k , ˆ D 

P obtained from MP, we take the 

ual to convert the min-max SP to a min-min problem, which can 

e regarded as a minimization problem. Let λ, δ, β be the dual 

ariables for constraints (4b) –(4d) , π for (4e) , and η for (4f) –(4g) ,

espectively. The resulting dual formula of the inner maximization 

roblem Q ( ̂ k , ˆ D 

P , ̂  γ ) with fixed 

ˆ γ is written as 

DSP ( ̂ k , ˆ D 

P , ̂  γ ) : 

min 

,δ,β,π,η
−( ̂  γ1 + L 0 ) λ1 −

T ∑ 

t=2 

ˆ γt λt + 

T ∑ 

t=1 

E D ˆ k δt + 

∑ 

i ∈ I 

T ∑ 

t=1 

D i βit 

−∑ 

i ∈ I 

∑ 

j∈ J 

T ∑ 

t=1 

ˆ D 

P 
i jt1 

πi jt −
∑ 

i ∈ I 

∑ 

j∈ J 

u ∑ 

t=1 

ˆ D 

P 
i jt2 

ηi jt , 

(6a) 

.t. λt − λt+1 ≤ C I , t = 1 , 2 , . . . , T − 1 , (6b) 

T ≤ C I , (6c) 

t − δit − βit + πi jt − ηi j(t+ u ) ≤ 0 , ∀ i ∈ I, j ∈ J, t = 1 , 2 , . . . , T − u, 

(6d) 

t − δit − βit + πi jt ≤ 0 , ∀ i ∈ I, j ∈ J, t = T − u + 1 , T − u + 2 , . . . , T , 

(6e) 

t − δit − βit + ηi jt ≤ 0 , ∀ i ∈ I, j ∈ J, t = 1 , 2 , . . . , T , (6f) 

i jt − πi j(t+1) ≤ αC A 1 , ∀ i ∈ I, j ∈ J, t = 1 , 2 , . . . , T − 1 , (6g) 

i jT ≤ αC U 1 , ∀ i ∈ I, j ∈ J, (6h) 

− ηi j(t+1) + ηi jt ≤ αC A 2 , ∀ i ∈ I, j ∈ J, t = 1 , 2 , . . . , T − 1 , (6i) 

i jT ≤ αC U 2 , ∀ i ∈ I, j ∈ J, (6j) 

t , βit ≥ 0 , ∀ i ∈ I, j ∈ J, t = 1 , 2 , . . . , T . (6k) 

Let V denote the feasible region of DSP ( ̂ k , ˆ D 

P , ̂  γ ) , which is a

ounded non-empty polyhedron. 

Next, we equivalently transform the complete min-max SP into 

 single-level minimization problem as 
9 
DSP ( ̂ k , ˆ D 

P ) : 

min 

,δ,β,π,η,γ
−(γ1 + L 0 ) λ1 −

T ∑ 

t=2 

γt λt + 

T ∑ 

t=1 

E D ˆ k δt + 

∑ 

i ∈ I 

T ∑ 

t=1 

D i βit 

−∑ 

i ∈ I 

∑ 

j∈ J 

T ∑ 

t=1 

ˆ D 

P 
i jt1 

πi jt −
∑ 

i ∈ I 

∑ 

j∈ J 

u ∑ 

t=1 

ˆ D 

P 
i jt2 

ηi jt 

(7a) 

.t. (6b)-(6k) , (7b) 

 t ≤ γt , t = 1 , 2 , . . . , T , (7c) 

 t ≥ γt , t = 1 , 2 , . . . , T , (7d) 

∑ 

t∈T 
γt ≥ �, (7e) 

∑ 

t∈T 
γt ≤ �. (7f) 

.3.1. Reformulation 

Due to the existence of the bilinear term γt λt in the ob- 

ective function, where γt and λt are both continuous variables, 

SP ( ̂ k , ˆ D 

P ) is a nonlinear program that cannot be efficiently solved 

y existing optimization solvers (e.g., Gurobi). To this end, we pro- 

ide a reformulation method to recast this bilinear constraint to a 

inear formulation. 

We first implement Algorithm 1 to enumerate the vertex set 

of the uncertainty set U γ . Let γ̄ = [ ̄γ1 , γ̄2 , . . . , γ̄T ] denote a ver-

ex in �, and G t = { g 1 , g 2 , . . . , g n } be the set of all possible values

f γ̄t , ∀ ̄γ ∈ �. For example, if T = 2 and there are two vertices of

 γ which are γ̄1 = [1 , 2] , γ̄2 = [1 , 3] , then γ̄1 can only take value 1

nd γ̄2 could be 2 or 3, ∀ ̄γ ∈ �. Accordingly, G 1 = { 1 } , G 2 = { 2 , 3 } .
hen, we introduce the following lemma. 

emma 1. There exists an optimal solution (λ∗, δ∗, β∗, π∗, η∗, γ∗) 
f DSP ( ̂ k , ˆ D 

P ) such that γ∗ is a vertex of U γ and γ ∗
t ∈ G t , ∀ t =

 , 2 , . . . , T . 

roof. Let E and � be the vertex sets of V and U γ respec- 

ively. As DSP ( ̂ k , ˆ D 

P ) is a bilinear problem and both V and U γ
re bounded polyhedra, then there exists an optimal solution 

λ∗, δ∗, β∗, π∗, η∗, γ∗) such that (λ∗, δ∗, β∗, π∗, η∗) is a vertex

f V and γ∗ is a vertex of U γ [29] . Accordingly, γ ∗
t ∈ G t , ∀ t =

 , 2 , . . . , T . �

Based on the above lemma, we reformulate the nonlinear pro- 

ram ( ̂ k , ˆ D 

P ) as a mixed-integer linear program, which could be ef- 

ciently solved by off-the-shelf software like Gurobi based on the 

ollowing Theorem. 

heorem 2. The nonlinear programming DSP ( ̂ k , ˆ D 

P ) can be recast as 

ollows: 

LDSP ( ̂ k , ˆ D 

P ) : 

min 

,δ,β,π,η,γ
− L 0 λ1 −

T ∑ 

t=1 

h t + 

T ∑ 

t=1 

E D ˆ k δt + 

∑ 

i ∈ I 

T ∑ 

t=1 

D i βit (8a) 

−
∑ 

i ∈ I 

∑ 

j∈ J 

T ∑ 

t=1 

ˆ D 

P 
i jt1 πi jt −

∑ 

i ∈ I 

∑ 

j∈ J 

u ∑ 

t=1 

ˆ D 

P 
i jt2 ηi jt 

.t. (6b)-(6k) , (8b) 

 tg = 1 ⇒ h t = gλt , ∀ t ∈ T , ∀ g ∈ G t , (8c) 
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Fig. 2. Map of Linshui County. 
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∑ 

g∈ G t 
z tg = 1 , ∀ t ∈ T , (8d) 

∑ 

t∈T 

∑ 

g∈ G t 
z tg g ≥ �, (8e) 

∑ 

t∈T 

∑ 

g∈ G t 
z tg g ≤ �, (8f) 

 tg ∈ { 0 , 1 } ∀ t ∈ T , ∀ g ∈ G t , (8g) 

here (8c) are indicator constraints, in which the linear equality holds 

hen z tg = 1 . 

roof. Let h t substitute for the bilinear term γt λt in (7a) . Then we 

liminate this nonlinear equation h t = γt λt by introducing a new 

inary z tg that equals 1, if g is chosen to be the optimal value of

t , and 0 otherwise. Consequently, we obtain constraints (8d), (8g) , 

nd 

 t = 

{
0 , if z tg = 0 

gλt , if z tg = 1 

, ∀ t ∈ T , g ∈ G t . (9) 

Although the big- M method is a common approach to deal with 

he type of nonlinear formulation of (9) , which contains a binary 

ariable, it is not appropriate for our dual problem. Because a rig- 

rous value of big- M is difficult to choose, since there are no valid 

ounds on the gap of limit values of λt . The use of an arbitrary

ig value will reduce the efficiency of solving the problem and 

ead to the risk of incorrect results. Alternatively, we use the so- 

alled indicator constraints to reformulate constraints (9) as con- 

traints (8c) , which can be directly implemented in the optimiza- 

ion solvers like Gurobi. In addition, since g ∈ G t is a possible value

f γ̄t in a vertex, constraints (7c) and (7d) are inherently guar- 

nteed. Constraints (7e) and (7f) and are substituted by (8e) and 

8f) respectively. At this point, the proof has been completed. �

. Case study 

In this section, we first describe the settings of our numer- 

cal study and introduce the data of Linshui County in Sichuan 

rovince, PR China. We conduct computational experiments to test 

he efficiency of the proposed C & CG algorithms with the vertex 

raversal and the dual methods, respectively. Then we use the case 

tudy to evaluate the performance of the nominal and robust prob- 

ems and analyze the impact of important coefficients. In addition, 

he significance of considering equity in vaccine distribution is also 

llustrated. 

All numerical experiments in this research are implemented in 

ython language, using Gurobi (v9.0.1) to solve the mathematical 

rograms. All tests are performed on a Macbook Pro with a 2 GHz 

ntel i5 CPU and 16 G memory running the mac OS operating sys- 

em. 

.1. Data generation 

The procedure to generate the data is described as follows. The 

apacity q and the endurance E T of a drone are set to 25 vials

nd 25 kilometers, respectively, while E D the total delivery dis- 

ance in a period (one week) is capped at 7 × 20 times E T , that

s 3500 kilometers. The recommended interval between two shots 

 is three weeks. We consider a default planning horizon T of 6 

eeks and limit ξ the restricted deviation of vaccination equity 

o 0.1. Moreover, the deployment cost C k of a drone is fixed at 

0 0 0 US dollars, which is the reference price from the business- 

o-business e-commerce website b2b.baidu.com, and the setup cost 
10 
 

f of a health facility is by default set to 60 0 0 dollars. We set the

ccessing cost C e = 0 . 2 , and the inventory cost C I = 0 . 2 . As for the

oefficients related to the vaccination profit, we have the penalty 

f vaccine wastage C w = 2 . Since two-shot inoculation is scheduled, 

.e., R = { 1 , 2 } , we accordingly set the profit of successful vaccina-

ions C S = (3 , 4) , the penalty of vaccination delays C A = (1 , 2) , and

he penalty of eventually unsatisfied vaccinations C U = (2 , 3) re- 

pectively. The weight coefficient α is set to 5 by default. 

Regarding the uncertain supply, we use the nominal supply de- 

oted by γ ′ as the baseline. Let ε indicate the deviation of the sup- 

ly uncertainty level, taking 0.7 as the default value. Accordingly, 

 t = (1 − ε) γ ′ 
t and b t = (1 + ε) γ ′ 

t . Note that both a t and b t are

orced to be integer values. For the budget of total supply, we as- 

ume � = max t { a t + 

∑ 

t ′ ∈T \ t b t ′ } and � = min t { b t + 

∑ 

t ′ ∈T \ t a t ′ } to

llow for a moderate budget which cuts off the most extreme sit- 

ation. 

Except for the test of algorithm performance in Section 5.2 , 

hich is conducted based on the randomly generated instances, all 

he experiments are performed through the data of Linshui County. 

inshui is located in the remote area of Sichuan Province, PR China 

ith many mountainous areas and 45 sub-districts under its ju- 

isdiction. The name and population of these villages are given in 

able 7 in the Appendix, where the population data is obtained 

rom the 2021 census conducted by Guang’an Bureau of Statis- 

ics. The central hospital is identified as the vaccine distribution 

enter. According to the actual situation of medical infrastructure 

n each area, 15 of these villages are chosen as the candidate fa- 

ilities. The map of Linshui County along with the above three 

ypes of sites is displayed in Fig. 2 . The coordinates of all loca- 

ions are obtained from Google Maps, then the Euclidean distance 

s calculated to get d i and e i j . The service capabilities D i are clas- 

ified into three levels as [30 0 0, 70 0 0, 10,0 0 0] given in Table 7 .

he nominal value of vaccine supply is taken from Linshui’s ac- 

ual supply of six weeks between May and July 2021, specified as 
′ = (25 , 200 , 10 , 000 , 64 , 948 , 44 , 400 , 25 , 706 , 37 , 998) . The data

s collected from the announcement of Linshui Center for Disease 

ontrol and Prevention. 
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Table 3 

Algorithm efficiency of C&CG algorithms on RC-PVDP. 

| I| | J| T Vertex 

CPU time(s) 

Iter 
C&CG with traversal C&CG with dual Gap(%) 

total MP SP total MP SP total SP 

10 

15 

4 20 8.2 0.8 7.4 1.2 0.8 0.4 85.8 94.7 2.0 

5 41 21.9 1.3 20.6 5.2 1.3 3.9 76.4 81.3 2.3 

6 72 43.9 1.8 42.1 3.9 1.8 2.1 91.1 95.0 2.3 

30 

4 20 17.5 2.1 15.5 2.7 2.0 0.7 84.6 95.6 2.3 

5 43 48.9 4.6 44.3 9.7 4.7 5.1 80.1 88.5 2.7 

6 72 96.1 6.1 90.0 9.7 6.2 3.4 90.0 96.2 2.7 

50 

4 23 25.9 2.7 23.2 3.6 2.7 0.9 86.2 96.1 2.0 

5 42 78.0 7.6 70.5 11.1 7.5 3.6 85.8 94.9 2.7 

6 72 159.3 14.9 144.4 19.6 14.9 4.6 87.7 96.8 2.7 

20 

30 

4 21 54.7 11.9 42.8 13.4 11.8 1.6 75.5 96.3 3.9 

5 42 111.2 12.4 98.8 17.2 12.5 4.7 84.6 95.2 3.5 

6 72 190.9 12.2 178.7 16.2 12.2 4.0 91.5 97.8 3.0 

50 

4 20 98.3 23.3 75.0 25.7 23.2 2.5 73.8 96.6 4.2 

5 42 186.1 21.5 164.6 28.4 21.5 6.8 84.7 95.8 3.6 

6 72 325.5 22.0 303.5 28.8 22.5 6.3 91.1 97.9 3.0 

80 

4 20 173.8 55.4 118.4 59.9 55.6 4.3 65.6 96.4 4.1 

5 43 337.5 48.4 289.1 64.1 48.4 15.7 81.0 94.6 3.4 

6 72 596.3 55.0 541.3 63.9 54.3 9.6 89.3 98.2 3.2 

30 

50 

4 21 179.9 59.6 120.3 63.2 59.4 3.8 64.9 96.8 4.1 

5 41 355.2 85.4 269.8 95.6 86.5 9.1 73.1 96.6 3.6 

6 72 591.5 94.6 496.9 101.6 93.6 8.1 82.8 98.4 3.2 

80 

4 21 418.9 246.9 172.1 256.4 251.4 5.0 38.8 97.1 3.8 

5 40 741.9 332.6 409.3 346.2 334.3 11.9 53.3 97.1 3.6 

6 72 1075.7 285.9 789.8 295.4 283.6 11.8 72.5 98.5 3.3 

100 

4 21 750.8 493.8 257.0 503.5 496.3 7.3 32.9 97.2 4.7 

5 42 1044.2 516.4 527.8 521.5 506.4 15.1 50.1 97.1 3.6 

6 72 1639.3 625.5 1013.8 616.8 602.5 14.3 62.4 98.6 3.3 

Average 347.1 112.8 234.3 117.9 111.8 6.2 75.4 95.8 3.2 
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.2. Comparison of algorithm performance 

This section compares the performance of the proposed C&CG 

lgorithms with the vertex traversal and the dual methods. We 

un 27 groups of experiments using different values of | I| , | J| , and

 . Ten instances are randomly generated under each setting, and 

he average values are taken for performance analysis. Candidate 

ealth facilities and demand sites are randomly drawn from a uni- 

orm distribution U(0 , 50) . The coordinate of the distribution cen- 

er is set to (25,25). We independently and uniformly generate ρ j 

rom (1,5), γt from (20,0 0 0, 70,0 0 0), and D i from (10 0 0, 10,0 0 0). 

The results are reported in Table 3 , where column Vertex rep- 

esents the total number of vertices of the uncertainty set U γ and 

olumn Iter indicates the iteration times between the master and 

he subproblem. The computational time to solve the complete, 

aster, and sub problems is provided in total, MP, and SP, respec- 

ively. Gap(%) illustrates the relative gap of CPU time between the 

wo algorithms. Since both methods share the same C&CG frame- 

ork, they converge in the same number of iterations. All in- 

tances can be solved optimally within a small number of itera- 

ions with an average of 3.2. Moreover, we can observe that all 

PU time rises with the problem size in general. As expected, the 

alues of the master problem of the two algorithms are nearly the 

ame. For subproblems, the dual method consumes very little CPU 

ime even for the largest instance, while the traversal method takes 

ver one thousand seconds. 

On average, C&CG with the dual approach outperforms the 

raversal method in computational efficiency in total, which mainly 

esults from the resolution for subproblem. These advantages be- 

ome more prominent as the scale of the problem increases. C&CG 
11 
ith the dual method can efficiently solve all instances to opti- 

ality. Based on the above results, C&CG with the dual method is 

dopted for our further analysis. 

.3. Impact of the uncertainty 

From this section, the models are applied to the case study of 

inshui County. We compare the worst-case results of the deter- 

inistic model and the robust model when the uncertain level 

varies from 0 to 0.9, with the weight coefficient of vaccination 

rofit α ∈ { 0 . 5 , 1 , 5 , 20 } . The detailed results are given in Table 4 ,

here the rows with ε = 0 depict the solutions under the deter- 

inistic situations. To show the result of the optimal decisions, 

e use X sum 

to represent the total number of selected facilities 

i.e., X sum 

= 

∑ 

i ∈ I x i ), k is the number of deployed drones, and D 

P 
sum 

rovides the total number of scheduled vaccinations (i.e., D 

P 
sum 

= 

 

i ∈ I 
∑ 

j∈ J 
∑ 

r∈ R 
∑ 

t∈T D 

P 
i jtr 

). As for the calculation of the profit, we 

et the instance with α = 5 , ε = 0 . 5 for the robust model as the

enchmark, and other results are computed by the percentage in- 

rease compared to its total profit. The column Gap provides the 

ifference ratio value of the robust and deterministic model. 

We first analyze the impact of uncertainty on the decision 

tructure. The optimal decision of the deterministic model (de- 

icted by ε = 0 ) is fixed under a given α independent of the un- 

ertainty level ε. As for the robust model, we see that when the 

eight coefficient α is small (e.g., α = 0 . 5 or 1 ), the number of 

pened facilities and deployed drones reduces with the rise of the 

ncertain level ε. While the trend turns out the opposite as α be- 

omes larger (e.g., α = 5 or 20 ). This implies when the decision- 

aker cares about the economic benefit (lower α), it is reason- 
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Table 4 

Results of different uncertainty levels. 

α ε X sum k D P sum 

Total profit ratio 

Robust Deterministic Gap 

0.5 0 11 8 144,548 −0 . 89 −0 . 89 0 

0.1 11 8 140,434 −1.02 −1.07 0.05 

0.3 10 7 130,978 −1.27 −1.48 0.21 

0.5 10 6 119,596 −1.53 −1.89 0.36 

0.7 10 6 110,510 −1.81 −2.29 0.48 

0.9 8 5 98,901 −2.07 −2.7 0.63 

1 0 11 8 144,548 0.01 0.01 0 

0.1 11 8 139,887 −0.19 −0.27 0.08 

0.3 10 7 129,325 −0.61 −0.87 0.26 

0.5 10 6 117,496 −1.04 −1.49 0.45 

0.7 10 6 106,889 −1.47 −2.1 0.63 

0.9 8 5 94,549 −1.9 −2.71 0.81 

5 0 11 8 144,548 1.81 1.81 0 

0.1 11 8 139,377 1.46 1.34 0.12 

0.3 12 8 128,982 0.74 0.33 0.41 

0.5 12 10 118,536 0 −0.69 0.69 

0.7 14 11 107,250 −0.76 −1.71 0.95 

0.9 14 11 95,176 −1.53 −2.74 1.21 

20 0 12 8 144,548 2.45 2.45 0 

0.1 15 8 139,252 2.03 1.92 0.11 

0.3 15 8 128,670 1.22 0.76 0.46 

0.5 15 10 118,057 0.4 −0.41 0.81 

0.7 15 12 106,906 −0.45 −1.58 1.13 

0.9 15 12 94,674 −1.33 −2.75 1.42 
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ble to decline the investments to save cost, since the vaccination 

rofit cannot dominate the cost when the vaccine supply is too 

npredictable. However, when social benefit really matters, more 

acilities and drones are required in the robust model to accelerate 

he vaccination procedure and improve the total profit, coping with 

he increased uncertainty. An interesting observation is that the to- 

al number of scheduled vaccinations inevitably decreases with the 

rowth of ε, even with large values of α. This is because no matter 

ow important the vaccination profit is, planning additional vacci- 

ation will incur higher waste penalties or inventory costs in terms 

f the turbulent supply. Therefore, it is suggested to plan fewer 

accinations to diminish the higher uncertainty. 

Another effect is reflected in profits. The decline in total profits 

s the price of the increased supply uncertainty in both problems. 

hereas, the robust model is less affected compared to the deter- 

inistic model. Besides, the robust model performs better on the 

otal profit, and this advantage rises as the uncertainty level grows. 
Fig. 3. Comparative results on profits under differe

12 
o better illustrate this observation and further investigate the im- 

acts on the components of the total profit, we plot the detailed 

rofit ratios with α = 5 by varying ε in Fig. 3 . The lines depicting

he total and the vaccination profits of the robust model lie over 

hose of the deterministic model, declining much flatter, which 

erifies our former conclusion. Meanwhile, the cost remains steady 

t −0.01 in the deterministic model, while it shows a tortuous up- 

ard trend in the robust model. This is owing to the interaction of 

he increased fixed cost and decreased accessing cost. In addition, 

he change caused by supply uncertainty in cost ( < 0 . 04 ) is rela-

ively small compared to the profits ( > 1 ), indicating that some- 

imes a small rise in the nominal cost can lead to a substantial 

rop in the worst-case profit. It is beneficial for decision-makers 

o account for future supply variation when determining the facil- 

ty locations as well as their capacity and vaccination reservation 

lan in the first planning stage. 

.4. Sensitivity analyses 

In this section, we leverage the robust model to provide the 

ensitivity analyses of the following three parameters: the weight 

oefficient α, the wastage penalty C w , and the facility fixed cost 

 

f . The analyses mainly focus on two aspects: (i) the structure of 

he optimal decisions, comprising the number of selected facilities, 

eployed drones, and total scheduled vaccinations; (ii) the normal- 

zed profits, including the total profit, the vaccination profit, and 

he revised cost ( - cost is used to transform the cost into profit 

ersion). The total profit is normalized through dividing the objec- 

ive value by 1 + α, and the vaccination profit is calculated without 

. 

.4.1. Impact of the weight coefficient α
The impact of the vaccination weight coefficient α on the op- 

imal decisions is illustrated in Fig. 4 . The larger the α, the more

ignificant the social benefit. The growing of α leads to more in- 

estment in facilities and drones. This is because additional facil- 

ties and drones are required for quicker delivery to improve the 

accination profit, as the cost becomes less critical in the objec- 

ive function. On the contrary, the number of total scheduled vac- 

inations shows a declining trend, which is quite counter-intuitive. 

he reason behind this is complicated, as the cost of inventory, the 

enalty of wastage and injection delay, and the profit of completed 

accinations are all tied to the scheduled vaccinations, compound- 

ng the impact on the final result. One of the critical factors lines 

n inventory cost. The optimal decision of the robust problem in 
nt uncertainty levels ε ∈ [0 , 0 . 9] with α = 5 . 
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Fig. 4. Impact of the weight coefficient α on the optimal decisions. 

Fig. 5. Impact of the weight coefficient α on the profits. 
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Fig. 6. Impact of the wastage penalt

13 
his study is to balance all scenarios of vaccine supply, making the 

rofit of the worst case more acceptable. Except for the inventory 

ost, all the other costs are nearly the same under all scenarios. 

hus, as the cost becomes more prominent, more vaccinations are 

cheduled to lower the inventory cost for the worst case. Overall, 

he decisions are sensitive to α, but the number of scheduled vac- 

inations is inconsistent with the changes in α. 

Figure 5 gives the information on the impact of α on the prof- 

ts. As we put more emphasis on the social benefit, which is man- 

fested by the growing of α, the vaccination profit goes up while 

he cost goes down as expected. Consequently, the total profit rises 

hroughout. It is noted that when α reaches 100, the total profit is 

lmost equal to the vaccination profit. When α is extremely small, 

he total profit is supposed to approach the value of - cost. Hence, 

he impact of α on the social and economic benefits is significant. 

.4.2. Impact of the waste penalty C w 

Figure 6 presents the change of the solution structure with C w ∈ 

 0 , 1 , 2 , 3 , 4 } . The number of opened facilities, distributed drones,

nd scheduled vaccinations increases as expected, which dimin- 

shes the waste by speeding up the delivery process and accom- 

lishing more vaccinations. Figure 7 shows a monotone downward 

rend in the total profit and the vaccination profit with the grow- 

ng of C w , which agrees with our intuition. Although the revised 
y C w on the optimal decisions. 
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Fig. 7. Impact of the wastage penalty C w on the profits. 
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Fig. 9. Impact of the facility fixed cost C f on the profits. 

Table 5 

Trade-off between profit and vaccination equity. 

ξ

Profit Vaccination rate (%) 

total vaccination cost θmax θmin Gap 

0.05 29,265 78,621 217,512 16.1 15.3 5.0 

0.1 29,541 78,574 215,623 16.4 14.8 9.7 

0.2 30,247 78,625 211,640 17.2 13.8 19.8 

0.5 32,728 78,608 196,673 20.6 10.3 50.0 

1 40,884 73,381 121,600 100 0 100.0 

5

o

e

ξ
t  

e

t

ost drops in general, there is a little rise from C w = 3 to 4. The

eason is that the reduction of the inventory cost sometimes over- 

eighs the increase of the investment cost. Consequently, the so- 

ution is quite sensitive to the wastage penalty C w . With larger val- 

es of C w , the decision-makers tend to take full advantage of the 

ossible vaccine supply and should schedule more vaccinations. 

.4.3. Impact of the facility fixed cost C f 

Figure 8 illustrates the decrease of the three components of the 

ptimal decisions as the facility fixed cost coefficient C f changes 

rom 30 0 0 to 24,0 0 0. The number of opened facilities drops

harply from 15 to 6, and drones from 12 to 7. The scheduled 

accinations show a mild change for about 40 0 0 vials, compared 

o 80,0 0 0 vials by varying C w in Fig. 6 . Moreover, the downward

rends of the three profits are observed in Fig. 9 . The perturba- 

ion in the cost with C f = 12 , 0 0 0 could also be explained by the

nfluence of the inventory cost. Also note that the cost is greatly 

ffected by coefficient C f , while the total or vaccination profits are 

ess affected under the setting with α = 5 . 
Fig. 8. Impact of the facility fixed co

14 
.5. Analysis of equity 

Vaccine distribution equity is one of the main considerations in 

ur study. Thus, in this section, we analyze the trade-off between 

quity and profit by changing ξ from 0.05 to 1. The smaller the 

, the fairer the distribution. Then we compare the facility loca- 

ion and allocation decisions between equitable ( ξ = 0 . 1 ) and in-

quitable ( ξ = 1 ) models. 

Table 5 reports the results of profit values and the maximum, 

he minimum, and their relative gap of vaccination rates under dif- 
st C f on the optimal decisions. 
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Fig. 10. Map of Linshui County with the facility location-allocation decisions considering or neglecting equity. 
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Table 6 

Imformation about the opened facilities. 

Code Village Capability Distance 

(km) 

Opened facilities 

Considering 

equity 

Neglecting 

equity 

1 Dingping 10,000 0.2 � � 

3 Chengnan 7000 0.8 � � 

7 Moujie 7000 10.2 � � 

8 Heliu 7000 17.2 � � 

11 Longjiu 7000 24 � � 

13 Yuanshi 3000 17 � 

14 Fenghe 7000 21.1 � � 

16 Shiyong 7000 17.2 � � 

19 Taihe 3000 22.9 � 

21 Lengjia 3000 10.1 � � 

22 Changan 3000 4.7 � � 

28 Chunmu 3000 21.6 � 

33 Longqiao 3000 18.5 

40 Jingping 3000 16.2 � 

44 Tongshi 3000 19.2 � 

r

t

b

a

T

p

a

m

d

t

l

d

b

t

erent ξ . With the rise of ξ , which indicates the release of the eq-

ity requirement, the total profit goes up and the cost goes down. 

n contrast, the relative gap between θmax and θmin in the final re- 

ult steadily increases, reaching 100% for the problem that com- 

letely neglects equity. When the supply of COVID-19 vaccines is 

imited, they are first distributed to the nearest demand sites to 

romote the total cost without equity consideration. In a word, 

quity and profit are a trade-off; equitable vaccine distribution is 

chieved at the price of higher cost during the vaccine shortage. 

To further investigate the insights regarding the facility 

ocation-allocation decisions, we display the results of the prob- 

ems considering ( ξ = 0 . 1 ) and neglecting ( ξ = 1 ) equity in Fig. 10 .

he arc in the figure indicates at least one vaccination assignment 

hroughout the time horizon. No arc can be found in Fig. 10 (b) for

he decisions neglecting equity, and all vaccines are concentrated 

t the opened facilities (marked as triangles) to pursue less access- 

ng cost. On the contrary, additional facilities are opened in remote 

reas like 19.Taihe in the top and 28.Chunmu in the bottom, and all 

illages are covered under equitable distribution. Actually, without 

onsidering equity, facilities near the central hospital with large ca- 

ability are of higher priority to be selected. To support this con- 

lusion, we list the detailed information of the opened facilities in 

able 6 . It shows that all facilities with a capability over 70 0 0 are

elected, as well as those with 30 0 0 and the least distances (21

engjia, 22 Changan). In conclusion, it is particularly essential to 

ddress equity when distributing limited vaccine resources; other- 

ise, vaccines are concentrated into the center or dense areas. 

. Conclusion and future work 

This paper aims to optimize an equitable vaccine distribution 

roblem considering both social and economic benefits. We for 

he first time, explore a joint vaccination facility location, trans- 

ortation capacity design, and vaccination scheduling optimization 

roblem, which is tailored to addressing vaccination difficulties in 
15 
ural areas using drone delivery technologies. This study also fills 

he research gap where there is little attention on vaccine distri- 

ution with supply uncertainty. A two-stage robust model with 

 budgeted uncertainty set is adopted to tackle this uncertainty. 

wo tailored column-and-constraint generation algorithms are pro- 

osed, where the subproblems are solved via the vertex traversal 

nd the dual methods, respectively. In particular, an MILP refor- 

ulation is provided for the nonlinear dual subproblem. We also 

emonstrate the efficiency of the dual method over the vertex 

raversal with randomly generated instances. 

Real-world data of Linshui County is used to analyze the prob- 

em. The results indicate that the robust model outperforms the 

eterministic model, especially at a large uncertain level. It is really 

eneficial for decision-makers to account for future supply varia- 

ion when determining the vaccine distribution plan. Besides, if the 
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ecision-makers are more concerned about the vaccination profit, 

hey are suggested to invest more facilities and drones, and sched- 

le fewer vaccinations to cope with the increased uncertainty. It 

lso notes that the weight coefficient α has a significant impact 

n balancing the importance of social and economic benefits. The 

umber of scheduled inoculations does not increase with α but 

fficiently rises with the penalty of vaccine wastage. Another con- 

lusion is that it is particularly necessary to address equity when 

istributing limited vaccine resources. Otherwise, vaccines are con- 

entrated into the center or dense areas. The results can help the 

ecision-makers to determine a robust and equitable vaccine dis- 

ribution plan under supply uncertainty when facing vaccine short- 

ges. 

For future research, the problem can be extended in the fol- 

owing ways. First of all, the delivery of vaccines to rural areas is 

nly realized by drones in the current network. A hybrid delivery 

ethod could be applied, which allows traditional transportation 

o reach some less vulnerable sites, promoting the efficiency of the 

istribution. Moreover, the single type (one dose) of vaccine vial 

ould be extended to multiple types in future studies. The use of 

ulti-dose vials can effectively reduce vaccination costs, but comes 

ith a higher risk of open vial wastage. Lastly, our two-stage ro- 

ust model assumes that the information of uncertain supply of all 

ime periods is realized at once before the second-stage decisions. 

 multi-stage or dynamic model considering the sequential rela- 

A

Table 7 

Data of Linshui County. 

Code Village Population Capability 

0 Central hospital – –

1 Dingping 113,699 10,000 

2 Chengbei 34,671 –

3 Chengnan 31,079 7000 

4 Ganzi 13,268 –

5 Longan 10,943 –

6 Guanyinqiao 17,351 –

7 Moujie 14,851 7000 

8 Heliu 13,958 7000 

9 Tantong 28,559 –

10 Gaotan 20,691 –

11 Longjiu 44,582 7000 

12 Yulin 18,886 –

13 Yuanshi 19,040 3000 

14 Fenghe 37,632 7000 

15 Baer 10,639 –

16 Shiyong 20,779 7000 

17 Xingren 17,736 –

18 Wangjia 16,760 –

19 Taihe 12,457 3000 

20 Xinzhen 5353 –

21 Lengjia 7001 3000 

22 Changan 11,746 3000 

16 
ionship of decisions over the time periods is suggested for future 

esearch. 
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ppendix A. Data of Linshui County 
Code Village Population Capability 

23 Xitian 7164 –

24 Liangban 9595 –

25 Ganba 6668 –

26 Sihai 8611 –

27 Qiufeng 4033 –

28 Chunmu 6750 3000 

29 Huaying 2501 –

30 Zizhong 9051 –

31 Fengya 5479 –

32 Lijia 8314 –

33 Longqiao 11,015 3000 

34 Guanhe 7700 –

35 Lianghe 7057 –

36 Changtan 9690 –

37 Liangshan 6950 –

38 Fusheng 13,460 –

39 Gulu 5586 –

40 Jingping 8316 3000 

41 Liutang 8921 –

42 Shizi 12,195 –

43 Hulin 8753 –

44 Tongshi 3626 3000 

45 Sangu 11,579 –

https://doi.org/10.13039/501100001809
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