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ABSTRACT: The traditional natural product discovery approach
has accessed only a fraction of the chemical diversity in nature. The
use of bioinformatic tools to interpret the instructions encoded in
microbial biosynthetic genes has the potential to circumvent the
existing methodological bottlenecks and greatly expand the scope
of discovery. Structural prediction algorithms for nonribosomal
peptides (NRPs), the largest family of microbial natural products,
lie at the heart of this new approach. To understand the scope and
limitation of the existing prediction algorithms, we evaluated their
performances on NRP synthetase biosynthetic gene clusters. Our
systematic analysis shows that the NRP biosynthetic landscape is
uneven. Phenylglycine and its derivatives as a group of NRP
building blocks (BBs), for example, have been oversampled, reflecting an extensive historical interest in the glycopeptide antibiotics
family. In contrast, the benzoyl BB, including 2,3-dihydroxybenzoate (DHB), has been the most underexplored, hinting at the
possibility of a reservoir of as yet unknown DHB containing NRPs with functional roles other than a siderophore. Our results also
suggest that there is still vast unexplored biosynthetic diversity in nature, and the analysis presented herein shall help guide and
strategize future natural product discovery campaigns. We also discuss possible ways bioinformaticians and biochemists could work
together to improve the existing prediction algorithms.

■ INTRODUCTION
Microbial natural products have been a fruitful source of
therapeutic small molecules.1 The vast majority of natural
products we know to date were found by scientists examining
the extracts of microbial fermentation broths; they were
produced by cultured microorganisms actively expressing
biosynthetic gene clusters (BGC). However, this tried-and-
true approach is faced with increasingly higher rediscovery
rates, such that the return-on-investments for this approach is
no longer justified.2,3 This is because the natural product BGC
amenable to this approach represent only a small fraction of
the natural biosynthetic diversity, which has been nearly
exhausted by decades of repeated screening.4,5 To circumvent
this challenge, many scientists have begun to use bioinformatic
algorithms to interpret the immense biosynthetic information
encoded in cryptic BGC. These bioinformatically predicted
natural products can then be examined in silico by virtual
screening6,7 or converted into real molecules via chemical
synthesis for wet lab studies.8−11 As bioinformatic analysis is
not constrained by our inability to culture and express the
microorganism and BGC of interest, it has the potential to
greatly expand the scope of natural product studies.
A bioinformatic algorithm, once trained, can interpret the

instructions encoded in biosynthetic genes and predict the
structure of the resulting natural product. The current training
set is a subcollection of known natural products and their

corresponding BGC sequences. However, due to the two
requisites of the traditional discovery approach mentioned
above, culture and gene expression, most known natural
products come from a few highly productive bacteria genera,
for example, Pseudomonas and Streptomyces species, which
constitute the training set for the existing algorithms. Since the
scope and limitation of the aforementioned bioinformatics-
based new approaches depend on accurate predictions, it is
reasonable to ask whether the existing algorithms perform
differently across major bacterial phyla in light of such a
phylogenetically biased training set. We decided to address this
question by looking into nonribosomal peptide synthetase
(NRPS) BGC, the largest family of microbial natural products.
Our results suggest that these algorithms have not been
overtrained to suit A domains associated with actinobacteria,
the bacterial phylum most thoroughly examined in modern
natural product research, and that actinobacteria still have a lot
of biosynthetic diversity yet to be explored. Our analysis also
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identified both underexplored and oversampled niches, which
could help guide and strategize future natural product
discovery and algorithm improvement endeavors.
NRPs are the largest family of microbial natural products,12

displaying extremely diverse structures and functions.13−15

Many NRPs (or their derivatives) have been used in clinical
applications as therapeutic agents and in basic research as
molecular probes (Figure 1a).16,17 We therefore decided to
focus on NRPs in this study. The NRP biosynthesis machinery
has been extensively studied and was the target of early efforts
aimed at building a bioinformatic algorithm capable of
predicting natural product structures based solely on the
primary sequences of their biosynthetic genes. The first NRP
prediction algorithm became available in 1999,18 and many
more have been reported since.19−27 Today, these tools are
packaged into a software suite�antibiotics and secondary
metabolite analysis shell (antiSMASH)�that accepts whole
genome sequences as the input, identifies BGC, parses out
individual enzymatic domains, and finally outputs the
predicted NRP structure. It is currently the most advanced
and widely used web server that provides this analysis free of
charge to the research community.28

As the name suggests, NRPs are peptides that are not
biosynthesized by the ribosome; they are instead constructed
via an enzymatic assembly line.29 Each module in the assembly
line is responsible for incorporating a building block (BB), in
most cases an amino acid (AA), into the NRP backbone. A
module typically contains multiple semi-autonomously folded
domains, each with its own function, including most
commonly the condensation (C), adenylation (A), and
thiolation (T) domains. The A domain is an enzyme that
catalyzes the activation of a substrate BB to form an aminoacyl-
adenylate, which is then attached via a thioester bond onto the
phosphopantetheine arm of the T domain. Peptide bond
formation between the BB on the neighboring T domains is
catalyzed by the C domain in between, wherein the amino
group of the BB on the NRP intermediate attacks the activated
BB on its N-terminal side. This reaction extends the peptide
intermediate by one residue and effectively moves it down the
assembly line from the Nth to the N + 1st module (see Figure
S1 for a graphical illustration). The resulting NRP is colinear
to the biosynthetic gene sequences due to such an arrange-
ment. The genetically encoded biosynthetic instructions can
therefore be “translated” into a NRP structure by cracking the

Figure 1. Predict NRP structures. (a) Examples of famous NRP. The genes grsA, entF, and cssA9 (d) encode A domains responsible for the
activation of Phe (red), Ser (green), and Val (blue) in gramicidin S, enterobactin, and cyclosporine biosynthesis, respectively. Gramicidin S and
enterobactin have 2- and 3-fold symmetry, wherein three Ser and two Phe were activated by the same A domain, respectively. (b) Crystal structure
of GrsA with Phe, AMP, and Mg(II) bound in its active site (PDB: 1amu). (c) Ten residues that constitute the active site (red), termed the
“nonribosomal code”, were identified by A domain sequence alignment. (d) Strong correlation between the nonribosomal code and the identity of
its substrate BB provide the framework for the development of a prediction algorithm that requires only the A domain primary sequence.
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“nonribosomal code”, that is, correlation between the primary
sequence of an A domain and its substrate BB specificity. This
correlation lies at the heart of NRP structure prediction.

■ METHODS
The raw data for analyses were obtained from sources available to all
researchers. The dataset for training A domain substrate BB
prediction algorithms is obtained from the supplementary information
associated with the SANDPUMA study (https://bitbucket.org/
chevrm/sandpuma). The minimum information about a biosynthetic
gene cluster (MIBiG) dataset is part of the Genomic Standards
Consortium project that is freely available to researchers worldwide
(https://mibig.secondarymetabolites.org). Bacterial genomes were
downloaded from the GenBank FTP site (https://ftp.ncbi.nlm.nih.
gov/genomes/). Genomes were analyzed by antiSMASH 5.0
(https://antismash.secondarymetabolites.org). The predicted sub-
strate BB information in the antiSMASH output file were extracted
using an automated script and tabulated for further analyses and
graphical presentations (Table S1).
The 10-residue nonribosomal code, sometimes referred to as the

Stachelhaus code, were aligned head-to-tail and clustered at 70% AA
identity using CD-HIT v4.6 (Figure S2).20,30,31 Incomplete
Stachelhaus codes, that is, those with “−” in the code, were excluded
from clustering analysis. The rarefaction curve was then estimated by
sampling the nonribosomal codes without replacement and
cumulatively calculating the number of clusters belonging to the
nonribosomal codes. Random sampling was repeated 10 times to
obtain the averaged cumulative cluster numbers. The curve was then
plotted using R 4.1.1 (https://www.r-project.org/). A Heaps’ law
model was adopted to determine whether or not the rarefaction curve
at hand is saturated.32,33 The formula for this model is as follows

=n N

where n is the average number of clusters, N is the number of sampled
nonribosomal codes, and both κ and γ were obtained by fitting the
above equation. The curve is deemed “open” (unsaturated growth)
when γ > 0 and closed if otherwise.32,33

■ RESULTS AND DISCUSSION
An A domain substrate prediction algorithm must be trained
before it becomes operational. NRPS A domains are highly
conserved in terms of both structure and sequence, except for

the nonribosomal codes, which refer to the 10 residues
encompassing the active sites. The nonribosomal codes are
diverse and define the binding pockets that accommodate a
wide range of substrate BBs (Figure 1b).34 Sequence analysis
indicates that the nonribosomal code correlates highly with the
identity of the substrate BB an A domain recognizes and
activates (Figure 1c). This correlation provides the framework
for algorithm training and A domain substrate BB prediction
(Figure 1d). The NORINE database documents 1,740
structurally characterized NRPs,35 and the MIBiG database
links 606 known NRPs to their BGC sequences.36 The latest
training set selects 434 non-redundant representative A
domains paired to their corresponding BB.27 While this
collection of 434 substrate BB/A domain pairs is the
culmination of decades of research, most of which are derived
from actinobacterial and proteobacterial NRPS BGC, it is
hardly a large dataset for algorithm training. Whether or not
such an uneven phylogenetic representation skews algorithm
training remains an unanswered question. Specifically, the two
most fruitful NRP producing genera, that is, Pseudomonas and
Streptomyces, together account for approximately 4 out of every
10 entries in MIBiG (41%) and the training set (40%, Table
S1).27,36 These considerations prompted us to assess system-
atically the performance of the existing A domain prediction
algorithms.

Compile a Phylogenetically Uniform Genome Collec-
tion. We began by compiling a collection of microbial
genomes that uniformly represent the genetic and microbial
biosynthetic diversity humans have accessed thus far. We first
downloaded all prokaryote genomes deposited in GenBank of
scaffold or better assembly quality. Note that the data
associated with a few extensively studied model organisms
make up a sizeable portion of this database, for example,
GenBank contains more than 26,000 and 14,000 genome
assembly reports for Escherichia coli and Staphylococcus aureus,
respectively. To represent genome sequences uniformly, only
one copy is included in our curated collection when a
microorganism has been sequenced multiple times. We termed
this curated collection GB1, which contains a total of 19,150

Figure 2. NRP predictions categorized by bacterial phyla. (a) Actinobacteria contributed the highest number of A domains. It also has the largest
fraction of “unpredictable” A domains, followed by proteobacteria, cyanobacteria, and firmicutes. (b) The top five most frequently used substrate
BB in NRP biosynthesis by bacterial phyla. Four BB (Ser, Thr, Val, and Gly) are among the top five most frequently used BB across the four major
phyla.
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prokaryotic genome sequences (Figure S3). The entire GB1
was subjected to antiSMASH analysis, yielding 5,352 NRPS
BGC and 20,794 A domains, each associated with a substrate
BB prediction. All 606 NRPS entries in the MIBiG database
were also analyzed in the same way to yield 2,822 substrate BB
predictions.

Predictability and Usage Pattern Differ across
Bacterial Phyla. The most direct way to evaluate the
performance of existing algorithms is to use biochemical
assays to experimentally validate (or refute) the predicted
substrate BB of an A domain. Unfortunately, this task is
unattainable at a large enough scale for a statistically
meaningful evaluation. An alternative is to compare the
predicted substrate BB that come from NRPS BGC associated
with GB1 and MIBiG sequences. GB1 can be viewed as a
microcosm of the biosynthetic diversity in nature accessed by
humans thus far. MIBiG, on the other hand, is a database of
annotated BGC of characterized natural products and can be
viewed as a collection that reflects the requisites imposed by
the traditional discovery approach and the associated
phylogenetic biases. As mentioned above, the traditional
discovery approach is applicable only to actively express
BGC belonging to microorganisms that are readily cultured in
the laboratory. Microbial sequences deposited in GenBank are
not nearly as biased since these requisites (culture and gene
expression) do not apply to DNA sequencing. While whether
the substrate BB of a particular A domain is predicted correctly
or not can only be definitively determined by biochemical
assays, a bioinformatic analysis that compares GB1 versus
MIBiG substrate BB predictions shall be able to unveil
algorithm performance biases, if any, when performed
systematically at a large scale.

Actinobacteria Have the Most Unpredictable A
Domains. The predicted substrate BBs were first grouped
based on their phylogenetic origin. As expected, among the
20,794 substrate BB predictions of GB1, actinobacteria
contributed the most (9,399, 45%); proteobacteria, firmicutes,
cyanobacteria, and species from other phyla contributed 34,
10, 4.8, and 5.5%, respectively (Figure 2a). Some A domains

yielded no prediction because the algorithms failed to align the
primary sequences at hand or, if well aligned, failed to identify
a matching or comparable nonribosomal code in the training
set. The output may also be displayed as “no prediction” when
conflicting calls were made by the two algorithms consulted by
antiSMASH [support vector machine (SVM) and Stachelhaus
code].18,20 Regardless of the scenario, these “unpredictable” A
domains are less similar to the training set and bioinformati-
cally more difficult to handle. They are expectedly more
prevalent among A domains from GB1 (42%) than MIBiG
(30%). More than half of all A domains from actinobacteria
(51%) are unpredictable, followed by proteobacteria (35%),
firmicutes (27%), and cyanobacteria (33%) (Figure 2a). This
came as a surprise as actinobacteria have contributed the most
characterized natural products to date. The fact that they also
have the largest fraction of intractable A domains suggests that
existing algorithms were not overtrained to suit A domains
associated with actinobacteria and that enormous actino-
bacterial biosynthetic novelty still awaits our exploration.

Overall Substrate Composition Is More Skewed in
Actinobacterial and Proteobacterial NRPs. Aside from
unpredictable A domains, we asked which substrate BBs are
the most prevalent and whether they differ by phyla. Glycine
(Gly), serine (Ser), threonine (Thr), and valine (Val) turn out
to be four of the five most frequently predicted substrate BBs
in NRPs across all phyla (Figure 2b). However, this is not to
say that all NRPs have a similar BB composition. NRPs
produced by actinobacteria and proteobacteria are predicted to
be overrepresented by Ser, accounting for 15.1 and 18.9% of
their BBs, followed by Thr at 15.0 and 10.4%, respectively.
Together, these two AAs with a side-chain OH group account
for approximately 3 out of every 10 BBs in actinobacterial and
proteobacterial NRPs. In comparison, the predicted composi-
tion of firmicutes and cyanobacterial NRPs is not nearly as
skewed, wherein the top two BBs combined account for ∼20%
of the total. Firmicutes most frequently use Leu (10.8%) and
Gly (10.0%), and cyanobacteria most frequently use Gly
(11.1%) and Ser (10.2%), to construct their NRPs.

Figure 3. Usage pattern of NRP BB differs across bacterial phyla. (a) Common substrate BBs were grouped based on the physical and chemical
properties of their side chains. Shown here were only representative BBs; see Table S1 for the full list of BBs in each group. (b) The Ω values were
calculated for a group of BBs for all predictions (overall) and for each bacteria phyla; “n/a” indicates that no predictions fall in that group.
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NRP Substrate BBs Show Oversampled and Under-
explored Niches. The physical and chemical properties of
NRP BBs, for example, hydrophobicity, nucleophilicity,
geometry, and flexibility, influence those of the NRPs which
in turn affect their bioactivity (Figure 3a). An analysis of the
predicted BB based on these properties may therefore reveal
useful insights. Since natural products are often discovered as
groups of congeners with similar, if not identical, bioactivities,
we decided to perform this analysis in groups of BBs with
similar properties. The “default” BB, alanine (ala), has an
unsubstituted β-carbon and was placed in a group of its own.
Gly lacks the β-carbon altogether and, as the smallest and the
only achiral AA, confers flexibility to the NRP backbone. In
contrast, cysteine (cys) residues in NRPs often undergo
cyclodehydration to form thiazol(in)es to rigidify the NRP
backbone; the side-chain free thiol is otherwise a strong
nucleophile under physiological conditions. As such, gly and
cys were also each placed in a group of their own due to these
unique features. All other groups encompassed more than one
type of BB. Secondary AA (sec) and those with a β-sp2 carbon
(sp2) were two other groups of BBs that limit NRP backbone
flexibility. The former included mainly proline and piperidine,
and the latter included phenylglycine and its hydroxylated
and/or halogenated derivatives. The benzoyl group included
various hydroxylated benzoic acid derivatives that often serve
as metal cation chelators in siderophore NRPs. The acidic,
aliphatic, amido, aromatic, basic, and hydroxyl groups are
self-explanatory and included AA with side chains that have the
indicated functionalities. Finally, others included BBs that do
not belong to any of the groups mentioned above (see Table
S1 for the full list of BBs in each group).
As described above, GB1 is a microcosm of the biosynthetic

diversity of nature, and MIBiG is a phylogenetically uneven
collection that reflects the natural product BGC that are
amenable to the traditional discovery approach. As such, a
comparison between MIBiG and GB1 can be viewed as a proxy
of comparing the “known” to the entire natural products space.
Unpredictable A domains were excluded from this analysis,

and all others were compared based on the aforementioned
groups of BBs. We defined the parameter Ω as follows

= M GLog ( / )i i i2

wherein Mi and Gi are the fractions of group i BB (%)
predicted from MIBiG and GB1, respectively. A group of BBs
predicted less frequently from MIBiG than GB1 would
manifest a negative value (Ω < 0), suggesting that they have
been underexplored by the traditional discovery approach
(Figure 3b, shades of blue). In contrast, Ω > 0 indicates a more
frequent occurrence in MIBiG than GB1, suggesting that the
traditional discovery approach has been finding NRPs that
contain this group of BBs at a rate that outpaces the overall
NRP discovery rate; that is, this group of BBs is relatively
oversampled (Figure 3b, shades of green).

Most Oversampled and Underexplored Groups of
NRP BBs are sp2 and Benzoyl, Respectively. Two groups
of BBs stood out in this analysis. First, the sp2 group is highly
oversampled (Ωsp2 = +2.39, entry 1). Only 0.8% of the
predicted BBs associated with GB1 belong to this group; the
corresponding number is 4.2% for MIBiG. This group of BB is
characteristic of the glycopeptide antibiotics, wherein vanco-
mycin and teicoplanin are among the most famous members of
this family.37 In glycopeptide antibiotics, the aromatic moieties
of the sp2 BB undergo oxidative coupling to constrain free
rotation, and the resulting atropisomerism restriction is key to
their tight binding to cell wall biosynthesis intermediates. This
class of NRP was once an intense research focus in both
industry and academia, and this historical backdrop offers a
likely explanation for the oversampling of sp2 group BBs. At
the other end of the spectrum are the most underexplored
benzoyl group BBs (Ωsp2 = −1.98, entry 13). They often serve
as dentate(s) for iron chelation in siderophores. Many
microorganisms produce siderophores to extract soluble iron
from the environment.38,39 Since soluble iron is an extremely
scarce resource on Earth, it is no surprise that microorganisms
have evolved siderophores of diverse structures. Our analysis
has identified benzoyl BB as a greatly underexplored group.

Figure 4. Rarefaction analysis suggests the presence of more unexplored NRPs. Rarefaction analyses were performed (a) on nonribosomal codes of
all A domains and (b) separately on A domains associated with each of the four major bacterial phyla. The x-axis represents the numbers of codes
sampled, and the y-axis represents the number of clusters based on 70% identity clustering. None of these curves have saturated as judged by the
Heaps’ law growth model. The γ values are 0.41, 0.45, 0.47, and 0.30 for actinobacteria (green), proteobacteria (blue), firmicutes (yellow), and
cyanobacteria (red) rarefaction curves, respectively. Data and extrapolations were plotted as solid and dashed lines, respectively; a solid datapoint
marks the transition from data to extrapolation.
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This suggests that either there remains lots of new side-
rophores to be discovered or that NRPs with benzoyl BB may
possess functions unbeknown to scientists.

Oversampled/Underexplored Pattern Differs across
Bacterial Phyla. We calculated Ω for MIBiG versus GB1
predictions for each phylum (Figure 3b). The sp2 and benzoyl
remain the most oversampled and underexplored BBs,
respectively. We noticed a number of other noteworthy
features. For example, while cys is overall an underexplored
group, it is slightly oversampled outside the four major bacteria
phyla (Ωcys,OTHERS = +0.63, entry 11). In contrast, while the
sec BB is overall oversampled, it is slightly underexplored in
cyanobacteria (Ωsec,CYA = −0.18, entry 3). Furthermore, some
groups of BB show significant differences across phyla. For
example, proteobacteria and firmicutes use ala BB more
frequently in the predicted NRP than in the structurally
characterized NRP (Ωala = +0.16 and 1.40, respectively, entry
6), whereas they are predicted to use acidic BB relatively less
frequently (Ωacidic = −0.40 and −0.52, respectively, entry 8).
Perhaps, the most unexpected finding was that basic BB
showed opposite relative usage frequencies in the two most
common phyla (entry 10). Specifically, it is highly oversampled
in proteobacteria (Ωbasic,PRO = +1.59) and underexplored by
actinobacteria (Ωbasic,ACT = −0.77). The above analysis points
to different usage patterns across bacterial phyla and suggests
that decades of natural product research by using the
traditional discovery approach, based on extracting and
screening of microbial fermentation broths, has resulted in
inadvertent oversampled/underexplored niches in bacterial
NRPs.

Much NRP Biosynthetic Diversity Remains Unex-
plored. A rarefaction analysis was then performed to assess
the extent of biosynthetic diversity covered by A domains
characterized thus far. Our analysis was based on the 10-
residue nonribosomal code of each A domain. The suitable
clustering identity was determined by checking the “cleanli-
ness” at various cutoffs and set at 70% (Figure S2), yielding
1,894 clusters and a rarefaction curve that shows no sign of
saturation (Figure 4a). The parameter γ has been established
as a proxy of growth tendency, and higher γ values are
correlated with more unidentified entities.33 Fitting the
rarefaction curve to a Heaps’ law model confirmed that the
growth has not saturated (γ = 0.4). This result supports the
notion that there are many unexplored nonribosomal codes,
which belong to A domains that likely activate new BB for
NRP biosynthesis. We then conducted separate analyses on the
four major bacterial phyla, and none of which showed signs of
saturation either (γ = 0.41, 0.45, 0.47, and 0.30 for
actinobacteria, proteobacteria, firmicutes, and cyanobacteria,
respectively, Figure 4b). The rarefaction curve is similar to
previous studies.27 Interestingly, with the highest growth
tendency (γ = 0.47) among the major bacteria phyla,
Firmicutes appear to harbor the most unexplored A domain
diversity in NRP biosynthesis.33

Many scientists believe that bioinformatic analysis and
chemical synthesis could join forces to play a pivotal role in
natural product research. Instead of examining fermentation
culture extracts for new molecules, the future “discovery”
process may begin with choosing a BGC of interest, followed
by interpreting in silico the encoded biosynthetic instructions
to predict the probable structure of the end product. The
predicted structure can then be subjected to virtual screen-
ing6,7 or chemically synthesized for experimental evalua-

tion.8−11 As the largest family of natural products with
countless applications in both the clinics and basic research,
NRP has been studied as a proof of principle of this new
approach, whose scope and limitation depend critically on the
performance of NRP structure prediction algorithms. Herein,
we report our assessment of the performance of existing
algorithms.
The training set for substrate prediction algorithms is a

collection of select known A domains, enzymes responsible for
activating a BB, usually an AA, so that it can be incorporated
into a growing NRP chain. Actinobacteria have been the
biggest contributor of natural products known to date, and the
training set is likewise overrepresented by their A domains.
After examining more than 20,000 A domain predictions, our
bioinformatic analysis showed that actinobacteria, more than
any other phyla, have the largest fraction of A domains that are
intractable to the trained algorithms (51%). This suggests that,
despite being the most extensively studied bacteria phylum,
current algorithms have not been overtrained to suit
actinobacterial A domains and that actinobacteria still has an
enormous amount of unexplored biosynthetic diversity. This
notion is corroborated by a rarefaction analysis of the
nonribosomal code, the 10 residues that form the specificity
conferring substrate binding pocket of an A domain, wherein
all rarefaction curves appear to be unsaturated for the four
major bacterial phyla (actinobacteria, cyanobacteria, firmicutes,
and proteobacteria). In particular, nonribosomal codes
associated with firmicutes are the least explored, showing the
highest γ value (0.47) based on a Heaps’ law growth model.

Strategize Future Studies. Algorithm improvement
ultimately rests on expanding the training set to establish
more well-characterized substrate BB/A domain pairs. While
there are assays to biochemically validate (or refute) the
predicted substrate BB, they are not designed for high-
throughput experimental evaluation.40−46 Furthermore, be-
cause thousands of A domains remain uncharacterized,
assaying nonselectively will not provide the impetus for
efficient algorithm improvement. Our analysis herein points
to two complementary strategies for the experimental
characterization of A domains. The first is to investigate A
domains with conflicting predictions from the two most
commonly used algorithms, SVM and Stachelhaus code.18,20

The second is to investigate intractable A domains that neither
algorithm can predict. The former helps to improve the
internal consistency and the latter expands the scope of
existing algorithms.
We also examined genome sequences in MIBiG, which is the

largest database that links known natural products to their
BGC. A comparison of the predicted BBs from MIBiG versus
GB1 informed us the differences between known NRPs and
the entire NRP space. Such a comparison helped determine
whether a certain group of BBs, categorized based on their
physical and chemical properties, have been oversampled or
underexplored. The benzoyl BBs as a group, which includes
2,3-dihydroxybenzoate, are the most underexplored according
to our analysis (Ωbenzoyl = −1.98). We hypothesize that metal
chelation is only one of many functional roles they can
potentially take on. The fact that known NRP containing
benzoyl BB are all siderophores suggests that, despite a large
presence in the literature, we are far from fully exploring these
NRPs. Formalizing a discovery campaign based on this notion,
that is, a systematic search for NRP with benzoyl BBs, may
lead to the discovery of a reservoir of NRPs with new
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functions. Alternatively, BGC harboring oversampled A
domains are good starting points if one wishes to find
congeners of a known NRP. While they will be highly similar
to known NRP, minor structural and functional tweaks are
often critical in improving pharmacological properties in drug
development.
Last, we argue that algorithm improvement shall entail a

process analogous to the scientific method, which requires
scientists to experimentally test predictions derived from a
theory. The theory is then refined in accordance to the
experimental observations. We hope that the two strategies
proposed herein will inspire bioinformatic and experimental
scientists to work together to close the prediction−validation
cycle for the study of NRP bioinformatics and biosynthesis,
thereby advancing a tool that has the potential to revolutionize
the future of natural product discovery, drug development, as
well as many other fields of research.
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