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Abstract

Alzheimer's disease (AD) and frontotemporal dementia (FTD) are common causes of

dementia with partly overlapping, symptoms and brain signatures. There is a need to

establish an accurate diagnosis and to obtain markers for disease tracking. We com-

bined unsupervised and supervised machine learning to discriminate between AD

and FTD using brain magnetic resonance imaging (MRI). We included baseline 3T-T1

MRI data from 339 subjects: 99 healthy controls (CTR), 153 AD and 87 FTD patients;

and 2-year follow-up data from 114 subjects. We obtained subcortical gray matter

volumes and cortical thickness measures using FreeSurfer. We used dimensionality

reduction to obtain a single feature that was later used in a support vector machine

for classification. Discrimination patterns were obtained with the contribution of each

region to the single feature. Our algorithm differentiated CTR versus AD and CTR

versus FTD at the cross-sectional level with 83.3% and 82.1% of accuracy. These

increased up to 90.0% and 88.0% with longitudinal data. When we studied the

classification between AD versus FTD we obtained an accuracy of 63.3% at the

cross-sectional level and 75.0% for longitudinal data. The AD versus FTD versus CTR

classification has reached an accuracy of 60.7%, and 71.3% for cross-sectional and

longitudinal data respectively. Disease discrimination brain maps are in concordance
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with previous results obtained with classical approaches. By using a single feature,

we were capable to classify CTR, AD, and FTD with good accuracy, considering the

inherent overlap between diseases. Importantly, the algorithm can be used with

cross-sectional and longitudinal data.

K E YWORD S

Alzheimer's disease, frontotemporal dementia, machine learning, magnetic resonance imaging,
neuroimaging markers

1 | INTRODUCTION

Alzheimer's disease (AD) and frontotemporal dementia (FTD) are com-

mon forms of dementia, with different, but partly overlapping, symp-

toms, and brain signatures. This complicates the differential diagnosis

and might lead to misdiagnosis (Balasa et al., 2011; Mendez, 2006).

On the other hand, accurate characterization of longitudinal trajecto-

ries is needed for prognosis and disease tracking purposes. In recent

years, clinical studies have been complemented with automated or

semiautomated algorithms, which hold promise toward computer-

aided diagnosis. In this line, machine learning (ML) techniques use clin-

ical and biomarker data to learn patterns that can be used as an aid

for differential disease diagnosis and tracking.

Magnetic resonance imaging (MRI) has been widely used to

detect disease-specific brain changes across different neurodegenera-

tive disorders. Concretely, using structural MRI, studies have

described patterns of cortical thickness (CTh) and gray matter

(GM) volume loss both in AD and FTD when compared separately

with healthy populations (Bocchetta et al., 2021; Canu et al., 2017;

Contador et al., 2021; Möller et al., 2013). In addition, in a previous

study including both diseases, we showed that distinct brain atrophy

patterns could potentially help in differentiating AD and FTD (Falgàs

et al., 2020). More recently, measures derived from MRI have been

used within ML algorithms to differentiate these diseases (Bron

et al., 2017; Li et al., 2021; Möller et al., 2016; Penny et al., 2007).

These approaches have shown good results. However, the large num-

ber of features needed can result in computationally expensive

methods that are difficult to implement in a clinical setting. In addi-

tion, obtaining spatial patterns of the features driving classification

can be challenging in some cases. These two issues limit the applica-

bility and interpretability of the algorithms.

Besides the description of atrophy patterns at a specific time

point, longitudinal neuroimaging studies have gained popularity in AD

and FTD (Bejanin et al., 2020; Irish et al., 2018; Sintini et al., 2020).

Using structural MRI, studies have described the trajectories of GM

volume and CTh loss with time, providing valuable information on the

characterization of disease trajectories and validation of prognostic

biomarkers (Risacher et al., 2010; Storsve et al., 2014). When com-

pared with cross-sectional studies, longitudinal designs can explore

the large heterogeneity of the effect of between-subject brain

changes which requires repeated measures and longitudinal designs

(Bernal-Rusiel et al., 2013; Thompson et al., 2011). Thus, while cross-

sectional studies depict patterns of differential or overlapping brain

atrophy, longitudinal studies are needed to understand the differences

in disease trajectories. In the context of ML, although longitudinal

data are sometimes used for diagnostic confirmation and/or for

exploring the predictive values of baseline acquisitions, few

approaches include longitudinal data in the training to improve the

models.

In this study, we developed a classification algorithm using cross-

sectional and longitudinal MRI data from 399 subjects, including AD

and FTD patients and healthy controls (CTR). We implemented a fea-

ture reduction algorithm using unsupervised techniques followed by a

widely used classifier, namely the support vector machine (SVM).

Besides maximizing classification performance, by studying the

weights of the features from the unsupervised part, we aimed to

investigate the brain patterns that collected a higher amount of vari-

ance for the different classification settings, thus providing interpret-

ability to our results.

2 | MATERIALS AND METHODS

2.1 | Participants

We selected 339 subjects prospectively recruited from the Alzhei-

mer's disease and other cognitive disorders unit of the Hospital Clínic

de Barcelona (HCB), all having a complete clinical work-up and at least

one 3T high-resolution structural MRI scan. Additionally, a subset of

subjects underwent a second acquisition after �2 years. Participants

were classified into three groups:

• AD: patients who presented AD biomarker profiles suggesting

underlying AD neuropathology (abnormal amyloid and tau, A + T+)

with neurodegeneration (N+) according to National Institute on

Aging/Alzheimer Association Research Framework 2018 (Jack

et al., 2018) and Mini-Mental State Examination (MMSE) ≥ 18.

They also fulfilled diagnostic criteria for mild cognitive impairment

due to AD or AD mild dementia (Albert et al., 2011; McKhann

et al., 2011).

• FTD: patients who met diagnostic criteria for either behavioral var-

iant frontotemporal dementia (bvFTD) or primary progressive

aphasia (PPA), including semantic variant PPA (svPPA), and nonflu-

ent variant PPA (nfvPPA) (Gorno-Tempini et al., 2011; Rascovsky
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et al., 2011). FTD showed normal values for AD cerebrospinal fluid

(CSF) biomarkers.

• CTR: healthy adults having cognitive performance within the nor-

mative range (cutoff 1.5 SD from the normative mean) and normal

levels of AD CSF biomarkers.

Subjects were collected as part of other ongoing and past studies

within the HCB. All were approved by the HCB Ethics Committee and

all participants gave written informed consent.

2.2 | MRI acquisition

A high-resolution 3D structural data set (T1-weighted, MP-RAGE, rep-

etition time = 2.300 ms, echo time = 2.98 ms, 240 slices, field-of-

view = 256 mm, voxel size = 1 � 1 � 1 mm) was acquired for each

individual at each time point in a 3T Magnetom Trio Tim scanner

(Siemens Medical Systems, Germany) or in a 3T Prisma scanner

(Siemens Medical Systems, Germany) at HCB using equivalent acquisi-

tion protocols. Before these analyses, we performed tests to evaluate

the interscanner variability (results can be found in Supplementary

Material S1), and we found low variability induced by the scanner.

2.3 | MRI processing

We used the processing stream available in FreeSurfer version 6.0

(http://surfer.nmr.mgh.harvard.edu.sire.ub.edu/) to perform cortical

reconstruction and volumetric segmentation of the T1-weighted

acquisitions. For longitudinal data, we used the longitudinal stream in

FreeSurfer. All FreeSurfer preprocessing steps are reported in detail

elsewhere (Fischl & Dale, 2000; Fischl et al., 2004; Reuter

et al., 2012). Briefly, FreeSurfer allowed us to generate automated

CTh maps and segmentation of the subcortical structures. From

reconstructed data, we obtained global measures of mean CTh and

GM volumes of the left and right hemispheres (lh and rh). In addition,

we used the summary measures of mean CTh in 68 cortical parcella-

tions and GM volumes of 17 subcortical structures, all derived from

atlases available in FreeSurfer (Desikan et al., 2006; Seidman

et al., 1997). Volume measures were normalized by the estimated

intracranial volume. All images and individual segmentations were

visually inspected and manually corrected if needed.

2.4 | Cross-sectional study: Brain signatures and
classification performance

We used all the CTh values and subcortical volumes at baseline

obtained with FreeSurfer to create our ML pipeline. We introduced

the global and regional measures of both hemispheres (rh and lh) sep-

arately leading to a total of 103 values per subject. Subcortical regions

were normalized using the intracranial volume and then all values

(subcortical volumes and CTh measures) were converted to z-score.

Therefore, the features of our ML algorithm were the subcortical vol-

umes and the CTh measures transformed to z-scores obtained after

processing the T1-weighed MRI images.

Firstly, we performed a principal component analysis (PCA) to

reduce the number of regional measures (all CTh measures and all vol-

umetric values) to a single feature, by keeping only the first principal

component (PC). The first PC is the one with the highest value of

explained variance, so it is the best choice to study the weights used

in the transformation while keeping good classification accuracy. The

weights to obtain this first PC will be used to provide a regional inter-

pretation of the classification results. Second, this feature was intro-

duced into a SVM algorithm to perform classifications between the

three groups and between pairs of groups. Eventually, the weights of

the PCA were used to create disease-specific patterns. These pat-

terns, allow having an interpretable ML algorithm that returns the

accuracy and the associated patterns of the classification between

groups. So, the proposed pipeline is not only focused on obtaining the

best accuracy, but it also focuses on giving explainability to the ML

algorithm.

To address circularity in the PCA and to avoid overfitting, we

implemented all the steps in a cross-validated setting, in which train

data was used in the entire PCA + SVM, and a group of subjects was

hold-out to be used as test data. For testing, original data were pro-

jected into the PCA space to obtain the unique feature and this was

used in the SVM classification. Overall performance was assessed

using k-fold cross-validation with 20 iterations of the procedure

explained above. Figure 1 shows a schematic representation of the

algorithm. Additionally, the SVM hyperparameters: kernel (options:

linear, rbf, and polynomial), C (values = [0.1,1, 10, 100, and 1000]),

and gamma (values = [1, 0.1, 0.01, and 0.001]) were introduced with a

Grid Search using an additional cross-validation of 10, with the train

set. The algorithm was implemented in Python version 3.8 (www.

python.org), and we used the library scikit-learn (Pedregosa

et al., 2011) for PCA, Grid Search, and SVM.

To assess the effect of age in the classification, we performed

two complementary analyses: (1) we evaluated if age itself was able to

classify the different groups; (2) We repeated all analyses by adding

age as a feature together with all the regions. To assess the effect of

sex in the classification we repeated all analyses by adding sex as a

feature together with all the regions.

2.5 | Longitudinal study: Brain signatures and
classification

We used all global and regional volumes and CTh measures derived

from the FreeSurfer longitudinal stream for the longitudinal classifica-

tion analysis. As in the cross-sectional analysis, we introduced the

measures of both hemispheres (rh and lh) separately, subcortical

regions were divided by intracranial volume, and all values were con-

verted to z-score.

Here, the overall pipeline also consisted of an unsupervised algo-

rithm followed by an SVM classification. For the unsupervised part,
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we performed a multiple factor analysis (MFA), which is a generaliza-

tion of PCA. MFA allows implementing a factor analysis with repeated

samples (i.e., the same measures for different time points for each

subject; Abdi et al., 2013). As before, we only kept the first compo-

nent. We kept the first component with the same objective as we did

with the PCA in the cross-sectional analyses. The weights to obtain

this first component will give us the interpretability of the classifica-

tion results of the algorithm. Then, this first component was intro-

duced to the SVM algorithm. Here, the use of MFA facilitates the

creation of a longitudinal ML in the SVM context, while keeping the

interpretability of results. As before, overall performance was

assessed using k-fold cross-validation with k = 20, in which test data

was not included in any of the procedures within the pipeline (MFA

and SVM). As an internal quality control, we revised the number of

subjects included in the train/test set for each iteration, and we

observed that they were equally distributed across iterations. Figure 2

shows a scheme of the algorithm.

With the objective to study how the longitudinal data can help to

improve the classification in ML algorithms and how should be intro-

duced to the algorithm, different settings were considered for the lon-

gitudinal analysis: (1) including all regional measures from time point

1 and time point 2 as different observations for each subject in the

MFA decomposition. (2) including all measures from each time point

together with a change variable (computed as time point2–time

point1) for each region in the MFA decomposition. (3) using only the

change variable in a standard PCA analysis. So, this setting will be the

equivalent of a study with longitudinal data but analyzed at a cross-

sectional level. In addition, to allow comparison with the cross-

F IGURE 1 Machine Learning Algorithm scheme

F IGURE 2 Longitudinal Machine Learning Algorithm scheme
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sectional analysis we performed a PCA decomposition of the data

from time point 1 with the subsample having a longitudinal

acquisition.

Finally, for each of the four decomposition settings mentioned

above, we used the weights of the obtained component from the

MFA/PCA to create disease-specific patterns. The SVM optimal

parameters were obtained with a Grid Search with cross-validation of

10, with the train set.

The algorithm was implemented in Python version 3.8 we used

the libraries prince (https://pypi.org/project/prince/) for MFA and

scikit-learn (Pedregosa et al., 2011) for PCA, Grid Search, and SVM.

3 | RESULTS

3.1 | Sample demographics

Of the 339 subjects included in the analyses, 153 were AD patients

(n = 20 with longitudinal data); 87 were FTD (n = 26 with longitudinal

data), and 99 were CTR (n = 68 longitudinal). The FTD group included

subjects with 49 bvFTD patients (n = 14 longitudinal data), 20 svPPA

patients (n = 7 longitudinal data), 17 nfvPPA patients (n = 4 longitudi-

nal data), and 1 unspecified PPA patient (n = 1 longitudinal data).

Demographic information and group statistics are shown in Table 1. In

summary, there was a significantly greater proportion of men in the

FTD group compared with the AD and CTR groups. In addition, CTR

subjects were slightly younger than AD and FTD groups (p < 0.05) at

the first visit. However, there were no differences in age for the sec-

ond visit. The time between scanners was lower in the FTD group

compared with AD and CTR (p < .0001) but did not differ between

AD and CTR.

3.2 | Cross-sectional analyses: Classification

Our algorithm had an accuracy of 83.3% ± 12.7% in the CTR versus

AD classification, 82.1% ± 14.7% for CTR versus FTD, 63.3% ± 9.1%

for AD versus FTD, and 60.7% ± 12.7% when discriminating the three

groups. Including age or sex in the algorithm led to similar results (see

Supplementary Material S1)

3.3 | Cross-sectional analyses: Brain patterns and
relevant features

The weights of each of the regional measures (CTh cortical regions

and GM volumes for subcortical regions) were obtained as their con-

tribution to the main feature (i.e., the first component). Figure 3 shows

these PCA weights for the separate analysis of CTR versus AD and

CTR versus FTD. As all algorithms were cross-validated using k-fold,

these patterns show the mean weights obtained with all the train sets

across iterations.

As can be seen in Figure 3, for AD, the three most important

regions were rh supramarginal, lh supramarginal, and rh precuneus.

For the FTD group, these were rh supramarginal, rh superior frontal,

and rh inferior parietal. The complete list of regions with their associ-

ated weights for each setting is shown in Supplementary Material S1.

3.4 | Longitudinal analyses: Classification

First, when using the two time points separately for each subject in

the MFA, we obtained an accuracy of 90.0% ± 14.7% in the CTR ver-

sus AD classification, 88.0% ± 16.4% for CTR versus FTD, 75.0%

± 36.9% for AD versus FTD, and 71.3% ± 13.1% for the three-group

classification (Table 2)

Including change as an additional measure for each subject and

region led to higher classification scores for CTR versus AD and the

three-group classification. The accuracies were 94.5% ± 11.8% in the

CTR versus AD classification, 87.8% ± 17.8% for CTR versus FTD,

60.8% ± 33.4% for AD versus FTD, and 77.7% ± 19.0% when dis-

criminating the three groups. Interestingly, including change in the

algorithm increased the accuracy for CTR versus AD and decreased

the accuracy for CTR versus FTD. Including age or sex in all the longi-

tudinal analyses led to similar results (see Supplementary

Material S1)

TABLE 1 Group summaries are given as the mean and the SD of each measure.

CTR AD FTD

CTR–AD CTR–FTD AD–FTD

p-value p-value p-value

N at first MRI 99 153 87 — — —

N at second MRI 68 20 26 — — —

Sex at first MRI, men/women 30/69 59/94 47/40 .22 .005 .03

Sex at second MRI, men/women 18/50 10/10 15/11 .09 .02 .77

Age at first MRI, years (SD) 60.2 (10.5) 64.3 (9.7) 63.6 (8.3) .003 .03 .5

Age at second MRI, years (SD) 65.0 (7.2) 62.1 (4.5) 63.8 (5.9) .3 .5 .5

Time between MRIs, years (SD) 2.1 (0.4) 1.9 (0.3) 1.4 (0.5) .3 2.5 e-9 4.7 e-5

Note: Differences between groups are calculated using Fisher test for sex and the ANOVA test for the rest of the variables. Significant group differences

are highlighted in bold, and pairwise differences were measured with Benjamini–Hochberg correction (p-values threshold .05).

Abbreviations: AD, Alzheimer's disease; CTR, controls; FTD, frontotemporal dementia; MRI, magnetic resonance imaging.
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When including only change as a feature for each region

(i.e., without the individual time point data), we obtained lower classi-

fication scores compared with the full-longitudinal setting. The classi-

fication scores were: 86.5% ± 13.2% in the CTR versus AD

classification, 80.0% ± 15.4% for CTR versus FTD, 58.3% ± 32.2% for

AD versus FTD, and 46.7% ± 21.2% for the three-class classification.

This result indicates that this variable is not the unique source of dis-

crimination power across groups. However, we observed that includ-

ing it in the longitudinal study together with the measures at each

time point was beneficial for classification

Finally, to be able to directly compare the two approaches, we

repeated the cross-sectional analyses for the baseline data of the

subjects that had longitudinal data available. We obtained a cross-

sectional accuracy of 79.5% ± 9.8% in the CTR versus AD classifica-

tion, 81.0% ± 16.0% for CTR versus FTD, 67.5% ± 32.2% for AD

versus FTD, and 59.7 ± 10.4% for the three-class classification. These

results highlight the increase in performance for the longitudinal

approach when compared with a cross-sectional approach with an

equivalent sample. Table 2 shows a summary of all the accuracies for

each analysis and comparison

F IGURE 3 Subcortical and cortical patterns of the first principal component's weights associated with Alzheimer's disease (AD) and
frontotemporal dementia (FTD). Top: Cortical regions of interest (ROIs) included in the component. Bottom: subcortical ROIs of the component.
The cool color scale represents negative weights, and the warm scale represents positive weights within the component

TABLE 2 Classification performance of the different approaches.

Longitudinal reduced sample

Cross-sectional all
subjects (%) Tp1, Tp2 (%) Tp1, Tp2, change (%) Only change (%)

Baseline of the
longitudinal sample

CTR vs. AD 83.3 ± 12.7 90.0 ± 14.7 94.5 ± 11.8 86.5 ± 13.2 79.5 ± 9.8

CTR vs. FTD 82.1 ± 14.7 88.0 ± 16.4 87.8 ± 17.8 80.0 ± 15.4 81.0 ± 16.0

AD vs. FTD 63.3 ± 9.1 75.0 ± 36.9 60.8 ± 33.4 58.3 ± 32.2 67.5 ± 32.2

CTR vs. AD vs. FTD 60.7 ± 12.7 71.3 ± 13.1 77.7 ± 19.0 46.7 ± 21.2 59.7 ± 10.4

Note: The best accuracy for each group is highlighted in bold.

Abbreviations: AD, Alzheimer's disease; CTR, controls; FTD, frontotemporal dementia, Tp1, timepoint 1; Tp2, timepoint 2.
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3.5 | Longitudinal analyses: Brain patterns and
relevant structures

The contributions of each brain region (CTh cortical regions and GM

volumes for subcortical regions) to the first MFA component are

shown in Figure 4. Using these weights, we created a pattern for each

comparison and visit: CTR versus AD and CTR versus FTD. As before,

patterns were obtained with the mean weights obtained with all train

sets across iterations.

As can be seen in Figure 4, for the longitudinal analysis the most

important regions for differentiating AD were rh pars triangularis, rh

entorhinal, and lh transverse temporal from Visit 1, and rh paracentral,

rh inferior temporal, and rh amygdala from Visit 2. For FTD, these

were rh pars triangularis, lh pars orbitalis, and lh rostral anterior cingu-

late from Visit 1 and rh temporal pole, rh inferior temporal, and rh

bankssts from Visit 2. The complete list of features and associated

weights for each comparison can be found in Supplementary

Material S1.

4 | DISCUSSION

In this study, we show the utility of machine learning approaches for

the differential diagnosis of AD and FTD. We used a combination of

unsupervised and supervised techniques that allowed (1) reducing all

subcortical GM volumes and CTh measures from MRI into a single

feature and (2) obtaining blind classifications from MRI data while pro-

viding meaningful atrophy patterns at the group level using the

weights of the unsupervised part of the algorithm. We implemented

two equivalent algorithms for cross-sectional and longitudinal data,

and we observed that longitudinal approaches outperformed cross-

sectional analyses in differentiating AD and FTD.

At the cross-sectional level, we demonstrated that ML can be

used to support clinical diagnosis using a method that is not computa-

tionally expensive. Previous ML neuroimaging studies with cross-

sectional structural MRI data have shown accuracies between 80%

and 95% for AD versus CTR, 72%–88% for FTD versus CTR, and

69%–89% for AD versus FTD (Bron et al., 2017; Klöppel et al., 2008;

Möller et al., 2016). In the case of the three-class classification, Bron

et al. (2017) reported an accuracy of 70%. In our cohort, we obtained

accuracy scores that are in agreement with these studies. Our study

has a higher sample size than those mentioned above and differs in

two important methodological aspects: first, we used a feature reduc-

tion algorithm that results in a single component being fed into the

classification stage. This component encompasses information from

all CTh values and GM volume measures. Even if there is an obvious

risk of losing information in this step, we demonstrated that it is still

useful for discrimination, while reducing the computational cost. Sec-

ond, our FTD group included patients with both PPA and bvFTD vari-

ants, not only bvFTD patients as in some of the abovementioned

F IGURE 4 Subcortical and cortical patterns of the contributions of the first component associated with Alzheimer's disease (AD) and
frontotemporal dementia (FTD) for both visits. The cool color scale represents negative weights, and the warm scale represents positive weights
within the component
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studies. Even if further studies with similar algorithms should attempt

to differentiate disease subtypes, we believe that our approach can be

very useful to support differential diagnosis across diseases. Notewor-

thy, the wide range of misclassified subjects both in ours in previous

studies suggests that some heterogeneities and overlaps need to be

further explored (Habes et al., 2020).

We developed an algorithm that used longitudinal data for train-

ing the classification models, which resulted in a noticeable increase in

classification accuracy for all comparisons, increasing up to 15% of

the overall accuracy score. Only a few studies have used longitudinal

data in ML algorithms. For example, previous studies reported accura-

cies between 80% and 94% for AD versus CTR (Gavidia-Bovadilla

et al., 2017; Guo et al., 2020; Zhang et al., 2017). In our cohort, we

obtain accuracy scores of 90% and 95% for this specific comparison,

outperforming previous approaches. To our knowledge, no previous

studies have used longitudinal data to differentiate FTD versus CTR

or AD versus FTD. Our approach uses the MFA decomposition, which

captures the variance of the data while modeling intra-subject

variability.

The accuracy obtained in all the longitudinal experiments sug-

gests that the proposed methodology is useful to support the diagno-

sis problem of distinguishing AD from FTD. Longitudinal analyses

allowed studying disease change and disease trajectories. Here, we

first applied the ML algorithm combining all longitudinal data in a

repeated measures fashion (Visit 1 plus Visit 2). We then tested the

algorithm using the longitudinal data (Visit 1 and Visit 2) in combina-

tion with the variable change that was the difference between both

visits. We observed that including the change variable in the algorithm

boosted the accuracy for CTR versus AD and worsened the accuracy

for CTR versus FTD. This could indicate that in AD patients the

change variable has higher discriminative power. On the contrary, in

FTD the change variable did not add discriminative power (indeed,

there is a slight decrease in accuracy), indicating that the patterns

themselves provide more discriminability than the change. This finding

could be associated with the fact that FTD patients could show floor

effect in atrophy rates due to an advanced stage of disease, while AD

patients included in this study might be in a less advanced stage

(Pankov et al., 2016). Finally, as regards the abovementioned results,

we acknowledge that the change variable, computed as a difference,

might add collinearity to the algorithm. However, by including it, we

were able to make guesses about the different spatial patterns being

important for classification.

Besides maximizing performance, we were interested in depicting

the spatial patterns that drive accuracy for each classification setting.

In ML, this represents a crucial step for developing algorithms that are

interpretable at the biological and pathological levels (Stiglic

et al., 2020). Here, we used the weights of the PCA/MFA components

to identify the regions that contributed the most to the group vari-

ances. To add explainability to our algorithm, we studied the most

important regions providing classification between pathologies. In

general, we found widespread brain patterns of variance, with com-

mon AD/FTD regions appearing within the ones on the top of the

lists, depicting pathological patterns in concordance with the literature

(Möller et al., 2016; Rabinovici et al., 2008). However, our classifica-

tion feature was obtained from the PCA, and therefore it includes

contributions across all brain regions, accounting for both overlapping

and differential patterns across disorders. ML techniques search for

robust interactions between features (in our case the brain regions),

so it is plausible that AD and FTD patterns present both differential

and overlapping regions. Previous works (Davatzikos et al., 2008;

Falgàs et al., 2020; Laakso et al., 2000) have also found some overlap-

ping patterns of degeneration across disorders. Overall, we believe

that the joint analysis of overlapping patterns (i.e., indicating common

neurodegeneration) and specific regional alterations will be crucial in

future works investigating differential diagnosis.

We developed an ML algorithm for differential diagnosis of FTD

and AD with good to excellent accuracy. Our algorithm combines

unsupervised and supervised methodologies. In addition, we adapted

our algorithms to longitudinal data, which was not included in previ-

ous works in the field (Bron et al., 2017; Chagué et al., 2021; Klöppel

et al., 2008; Möller et al., 2016). Therefore, the main novelty is the

combination of advanced methods (PCA/MFA and SVM) together

with the use of longitudinal data, a key point to understanding neuro-

degenerative diseases (Clifford et al., 1999). Moreover, the PCA was

not only used for the feature reduction step, as in previous studies

(Bachli et al., 2020; Davatzikos et al., 2008; Kim et al., 2019), but also

for obtaining the weights of the features for interpreting the findings.

Our study has some limitations. Regarding the sample size: First,

it is important to consider that our sample size at baseline, is lower

compared with the sample size which can be obtained in a multi-

centric study. However, all the data has been acquired in the same

center, allowing us to have the same MRI scanner protocol and the

same clinical criteria for the diagnosis. Another limitation is the rela-

tively small sample size at the follow-up visit, in some analyses, espe-

cially for the comparison between AD and FTD, the number of

subjects was low, due to the difficulty of obtaining longitudinal sam-

ples in these dementias. Regarding the MRI data, it is known that the

combination of different modalities of MRI, such as diffusion tensor

imaging (DTI), resting-state, amyloid positron emission tomography, or

arterial spin labeling could improve the accuracy scores (Agostinho

et al., 2022; Bron et al., 2014, 2017), while in our case we only used

structural MRI. Thus, as future work, we could include some of these

image modalities in our algorithm. Finally, the different clinical variants

in the FTD group (bvFTD and PPA) were studied as a single group and

there is the possibility that our results are biased by the different FTD

atrophy patterns. Due to sample size limitations, it was impossible to

subdivide the FTD group to study in detail the different variants of

the pathology. Future studies taking into consideration this point

should be considered.

In our study, we focused on differentiating AD and FTD using ML

on MRI data. Other studies have reported differences between these

pathologies using a wide range of methods and MRI sequences. For

example, the work of Du et al. (2007) used structural MRI to compare

regional CTh between AD and FTD and their relationship with neuro-

psychological scores at a vertex-wise level. They found that FTD

patients, compared with AD patients, had a thinner cortex in parts of
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the bilateral parietal and precuneus regions. Similarly, Steketee et al.

(2016) used perfusion and structural MRI to differentiate AD and

FTD. They studied the sensitivity, specificity, and diagnostic perfor-

mance of the different regions and found that AD patients, compared

with FTD patients, showed hypoperfusion in the posterior cingulate

cortex. However, they also found that regional atrophy did not differ

between AD and FTD. In this sense, we could differentiate AD and

FTD with atrophy values, suggesting that ML techniques, that incor-

porate information across the whole brain, might be more sensitive.

Finally, Avants et al. (2010) used sparse canonical correlation analysis

with DTI and T1-weighed MRI data to identify patterns of reduced

white matter (WM) integrity for AD and FTD. They found that, in

FTD, frontal and temporal degeneration is correlated across modali-

ties. In AD, they reported a significant association between CTh and

WM in parietal and temporal regions. Considering all these studies, in

future work, we aim to add different MRI modalities and other clinical

variables to our algorithm.

5 | CONCLUSION

In conclusion, our study leads to three important points: First, the

combination of PCA or MFA and SVM successfully separates patients

with AD or FTD from CTR subjects. Second, they perform well in the

differential diagnosis of two pathologies (AD vs FTD). Thirdly, the

follow-up visits are beneficial in ML algorithms to distinguish these

pathologies, especially AD. All these points suggest an important

breakthrough in computer-aided diagnostic image analysis for clinical

research and practice.
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