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Abstract

The brain's functional architecture and organization undergo continual development

and modification throughout adolescence. While it is well known that multiple fac-

tors govern brain maturation, the constantly evolving patterns of time-resolved func-

tional connectivity are still unclear and understudied. We systematically evaluated

over 47,000 youth and adult brains to bridge this gap, highlighting replicable time-

resolved developmental and aging functional brain patterns. The largest difference

between the two life stages was captured in a brain state that indicated coherent

strengthening and modularization of functional coupling within the auditory, visual,

and motor subdomains, supplemented by anticorrelation with other subdomains in

adults. This distinctive pattern, which we replicated in independent data, was consis-

tently less modular or absent in children and presented a negative association with

age in adults, thus indicating an overall inverted U-shaped trajectory. This indicates

greater synchrony, strengthening, modularization, and integration of the brain's func-

tional connections beyond adolescence, and gradual decline of this pattern during

the healthy aging process. We also found evidence that the developmental changes

may also bring along a departure from the canonical static functional connectivity

pattern in favor of more efficient and modularized utilization of the vast brain inter-

connections. State-based statistical summary measures presented robust and signifi-

cant group differences that also showed significant age-related associations. The

findings reported in this article support the idea of gradual developmental and aging

brain state adaptation processes in different phases of life and warrant future

research via lifespan studies to further authenticate the projected time-resolved brain

state trajectories.
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1 | INTRODUCTION

The human brain is an organ that experiences continual adaptation

through different life stages—prenatal, neonatal, infancy, toddlerhood,

early childhood, middle childhood, adolescence, young adulthood,

middle adulthood, and late adulthood (Menon, 2013). Although each

life stage encompasses different developmental and aging adapta-

tions, studying neurodevelopment in adolescence is particularly rele-

vant as this phase is characterized by fundamental physical, cognitive,

neurobiological, psychological, social, and emotional changes. Princi-

pally, adolescence is the transient developmental period between mid-

dle (school-age) childhood and young adulthood and is divided into

the early, middle, and late stages spanning from 10 to 24 years of age

(Pringle et al., 2016; Sawyer et al., 2018). During this phase of brain

development, distributed functional brain networks develop critical

interactions in the maturation process to construct sophisticated cog-

nitive systems. Understanding functional interactions in this develop-

mental phase can inform scientists and clinicians about how the brain

achieves complex and extraordinary cognitive abilities, understand

aberrations in neuropsychiatric disorders, and thus design interven-

tions to diminish the incidence of critical health problems. Accumulat-

ing evidence suggests that most psychopathologies find their onset

and diagnosis in childhood or adolescence; therefore, it is vital to

understand the brain developmental phases. While functional interac-

tions in the brain undergo significant modifications with development,

the patterns in which they evolve from adolescence to young adult-

hood are not yet clear.

Presently, researchers study neurodevelopmental changes exten-

sively with brain imaging modalities, including the use of structural

magnetic resonance imaging (Giedd, 2008) to highlight anatomical

reorganization and functional MRI (fMRI) (Ernst et al., 2015) to study

cognitive changes associated with a task or in the resting state of the

brain. The resting-state fMRI (rs-fMRI) modality assumes that individ-

uals engage in unrestrained cerebral activity that reveals the brain's

functional organization. One approach to studying the large-scale

functional organization of the resting-state brain is to evaluate it as an

integrative network of various spatially distributed yet functionally

interacting resting-state networks (RSNs) that frequently process and

distribute information. Modern fMRI research typically identifies the

distributed brain regions and associated temporal signals by spatially

reducing the high-dimensional fMRI data via region of interest, stan-

dardized template/atlas-based approaches, or adaptive parcellation

techniques like group independent component analysis (gICA)

(Calhoun & Adalı, 2012; Calhoun et al., 2001). The gICA approach

quantifies the synchronous co-activation or coupling patterns of brain

regions (also termed functional connectivity, FC) by statistical covaria-

tion measures (e.g., correlation, coherence, mutual information, etc.),

as they collectively support specific brain functions.

Functional connectivity (FC) has emerged as a promising tool for

understanding the brain's functional architecture (Friston, 2011; van

den Heuvel & Hulshoff Pol, 2010) and has been applied to understand

several stages of development and adaptation in a human lifespan. FC

characterization among networks at a whole-brain level, termed

functional network connectivity (FNC; Jafri et al., 2008), has been

studied at a static (i.e., time-averaged—by measuring FNC for the

entire temporal signal) or a dynamic scale (i.e., time-resolved—by eval-

uating FNC recurrently using short consecutive temporal frames of

the entire temporal signal). Given the unconstrained nature of mental

activity at rest, it is intuitive to presume that dynamic changes will be

even more prominent in rs-fMRI (Calhoun et al., 2014; Hutchison

et al., 2013; Miller et al., 2018; Preti et al., 2017). As a result, the last

decade has witnessed a significant paradigm shift in measuring FNC

from a time-averaged approach to a time-resolved manner, as the lat-

ter provides additional access to the rich temporal structure of the

FNC patterns (Lurie et al., 2020). Besides, one can probe the structure

and frequency of the underlying temporal fluctuations in the FNC pat-

terns by assessing brain network states and state summary measures

(Allen et al., 2014). A significant body of the literature confirms the

biological relevance of the time-resolved FNC (trFNC) states, with

studies validating their association with cognition, behavior, demo-

graphics, phenotypic traits, and neurological and psychiatric brain con-

ditions (Lurie et al., 2020). Moreover, the canonical utility and

robustness of the time-resolved brain state-based approach in short

to moderate-length resting-state sessions (Abrol et al., 2016; Abrol

et al., 2017) make it a rational choice to investigate the brain matura-

tion process.

Age-related differences in FC are evident in the early develop-

mental phase of the brain, with significant rewiring and topological

restructuring over time (Fair et al., 2007; Power et al., 2010; Supekar

et al., 2009). Existing time-resolved brain connectivity research in

infants, children, and adolescents has shown that the dynamic interre-

gional interactions accurately reflect neonatal maturity (Ma

et al., 2020), predict brain maturity (Qin et al., 2015), present marked

changes (Faghiri et al., 2018), and variability with maturity

(Hutchison & Morton, 2015; L�opez-Vicente et al., 2021), differ in

atypical development (Liu et al., 2019; Rashid et al., 2018), character-

ize risk for neurodevelopment disorders (Marusak et al., 2017) and

provide unique insights regarding pathophysiology (Sato et al., 2015).

In contrast, brain connectivity again evolves in middle and late adult-

hood and is accompanied by gradual cognitive decline. There is evi-

dence that advancing age induces increased functional topological

reorganization to establish compensatory mechanisms to counteract

the aging process (Fjell et al., 2017; Grady et al., 2016; Li et al., 2015;

Meunier et al., 2014; Sala-Llonch et al., 2015; Sugiura, 2016). The

underlying network mechanisms of brain plasticity are regional (Yin

et al., 2016), and processes vary in the stages of healthy aging, with

some evidence that aging-associated neural changes can originate

toward the end of early adulthood (Siman-Tov et al., 2016). Relevant

work has also demonstrated an age-related decline in modularization

and variation of the trFNC state patterns in late adulthood (Chen

et al., 2017; Tian et al., 2018) and a lack of a metastable brain state

responsible for efficient global communications in late adulthood, as

compared to middle-adulthood (Escrichs et al., 2021).

Most of the existing time-resolved brain connectivity research

has been conducted over short time spans in relatively small samples

of children/adolescents and adults and/or unilaterally (i.e., separate
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analysis for both groups). However, the launch of mega-scale long-

term studies such as the Adolescent Brain Cognitive Development

(ABCD) study and the UK Biobank (UKB) study provides an unprece-

dented opportunity to address the limitations of sampling variability

and permitting adequate statistical power and reproducible estima-

tions of the studied effect sizes (Marek et al., 2022). The ABCD study

is a large long-term sample of pediatric data sets (Casey et al., 2018),

including a diverse set of behavioral measures. In contrast, the UKB

study (Miller et al., 2016) is a large long-term biobank of middle and

old-age adults, including in-depth genetic and health information.

In line with the hypothesis that the brain connectivity state pat-

terns may vary in adolescence compared to adulthood, we probed

these two large brain imaging adult and adolescent resting-state fMRI

repositories. We focused on using a fully automated and adaptive spa-

tially constrained group independent component analysis (SC-gICA)

approach (Du et al., 2020) to estimate individual-specific spatial maps

and activity time-courses corresponding to shared aggregate RSNs.

Subsequently, we sought to access the intrinsic temporal dynamics of

the trFNC patterns with a sliding window correlation approach (Allen

et al., 2014; Sako�glu et al., 2010), estimating the recurring, transient

and replicable brain state profiles with unilateral and pooled k-means

clustering analyses on youth and adult data sets. We systematically

probe the associated state summary measures to gain complementary

insights into the significant trFNC differences in adults and adoles-

cents, as detected by our time-resolved analyses. Notably, the differ-

ences we seek are typically thought to reflect developmental and

aging-related brain adaptations and thus constitute a significant

research problem. The following sections cover the materials and

methods, a demonstration of noteworthy results, and a discussion of

key outcomes of our article.

2 | MATERIALS AND METHODS

2.1 | Functional MRI data

We used rs-fMRI scans (eyes open: passive crosshair viewing) from

the UKB (n = 36,461, F:M = 19,474:16,987, Age = 44–82 years)

(Miller et al., 2016) and the ABCD (n = 9617, F:M = 4722:4895,

Age = 9–13 years; Casey et al., 2018) studies for the discovery (origi-

nal) analyses in this article. Furthermore, we used the Human Connec-

tome Project (HCP: n = 833, F:M = 439:394, Age � 22-35y) (Van

Essen et al., 2013) and the Developmental Chronnecto-Genomics

(Dev-CoG: n = 191; F:M = 95:96, Age = 8–16 years; Stephen

et al., 2021) studies for replication (confirmatory) analyses (see

Table 1). Written informed consent was obtained from all human sub-

jects participating in the several data repositories (UKB, ABCD, HCP,

and Dev-CoG). The study procedures were approved by the institu-

tional review boards of all participating centers. The enrollment proce-

dure of human subjects was inclusive of all participants without

limitations by sex or gender, race, ethnicity, and age other than as sci-

entifically justified and as specified in the enrollment inclusion and

exclusion criteria of the respective data sets.

The fMRI data sets available from the data repositories under-

went rigid body motion correction, distortion correction, normaliza-

tion to the Montreal Neurological Institute template using the old

SPM12 normalization module, and smoothing using a Gaussian kernel

with a full width at half maximum = 6 mm. We also implemented

thorough quality control (QC) on the preprocessed fMRI images to

discard the images that exhibited (1) poor correlation with individual

and group data masks, (2) markedly briefer scan lengths, and (3) high

head motion parameters (>3� rotations and >3 mm translations). We

used only one image per subject in this analysis, and the reported

numbers are post-QC sample sizes.

2.2 | Time-resolved feature extraction

In the following data processing stage, we extracted time-resolved rs-

fMRI features used in this article. We first estimated spatial maps and

activity time courses for RSNs from the fMRI data. To that end, we

decomposed the preprocessed and quality-controlled fMRI time

courses using the SC-gICA approach, as explained next (Du &

Fan, 2013). We applied our multidata set generated Neuro-

mark_fMRI_1.0 template (included in the GIFT software at http://

trendscenter.org/software/gift and also at http://trendscenter.org/

data; Du et al., 2020) as a spatial reference for this decomposition

(n = 53 brain regions), grouped in seven brain subdomains (see

Figure 1).

The Neuromark_fMRI_1.0 template provides spatial priors based

on two independent resting-state fMRI data sets—the Brain Genomics

Superstruct Project (Holmes et al., 2015) and the HCP (Van Essen

et al., 2013). We first decomposed these two data sets separately

using standard gICA analysis (Calhoun et al., 2001) to identify inde-

pendent sets of aggregate (i.e., group-level) RSNs. Next, we matched

the two sets of RSNs using greedy spatial correlation analysis to

determine the set of replicable RSNs retained. This overall strategy

successfully discovered key shared and distinct biomarkers in various

TABLE 1 Data demographics (total and gender-wise sample size and age range), repetition time (TR), scan lengths, and sliding window length

Data set Sample size (F/M) (post-QC) Age TR (ms) Total TRs/scan length (s) Window width (#TRs/length[s])

UKB 36,461 (19,474/16987) 44–82 years 735 450/330.75 s 40/29.4 s

ABCD 9617 (4722/4895) 9–13 years 800 320/256 s 40/32.0 s

HCP 833 (439/394) 22–35 years 720 1200/864 s 40/28.8 s

Dev-CoG 191 (95/96) 8–16 years 460 650/299 s 60/27.6 s

Abbreviations: ABCD, Adolescent Brain Cognitive Development; HCP, Human Connectome Project; UKB, UK Biobank.
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clinical populations (Du et al., 2021), is generally quite robust to pro-

cessing pipeline (DeRamus et al., 2021) and data length variation

(Duda et al., 2022), and has been carefully evaluated in both adult and

adolescent data (Fu et al., 2022). We could use another robust tem-

plate of spatial priors, but we wanted to leverage the extensive

amount of work already known about the current template to focus

on the fundamental idea here, which is to evaluate RSNs specific to

individual subjects that are also comparable across subjects and

data sets.

Subsequently, for each subject, we calculated the trFNC features

between all pairs of brain regions (i.e., for n = 53C2 = 1378 brain con-

nections) using a tapered sliding window featuring convolution of a

rectangular window (width = “n” TRs) with a Gaussian (σ = 3 TRs),

where n is the number of TRs for each data set as listed in Table 1.

We shifted this window in gradual steps of 1 TR, resulting in “w” win-

dows, where w is the width of the window for each data set, as listed

in Table 1. This procedure generated a temporal series of windowed

correlations, for which we identified recurring, transient trFNC brain

state patterns as multidimensional cluster centroids using a k-means

clustering algorithm (Allen et al., 2014). These brain state patterns are

transient patterns of whole-brain FC states that the brain navigates

through during the entire scan length. A significant body of literature

supports the biological relevance of brain state patterns, with studies

validating their association with cognition, behavior, demographics,

phenotypic traits, and neurological and psychiatric brain conditions

(Lurie et al., 2020).

A first-level clustering estimated an initial point input to stabilize

the grouping in the second-level clustering, while all windowed FNC

data was clustered in the second-level clustering (Abrol et al., 2017;

Allen et al., 2014; Pascual-Marqui et al., 1995). We found the initial

point input to the second level clustering by estimating and clustering

the subject exemplars corresponding to windows of subject-level FNC

data featuring the highest variance in FNC. The centroid connectivity

patterns resulting from this first-level clustering were then used to ini-

tialize the second-level clustering of all FNC data. The initial and final

clusterings were repeated 150 times to increase the likelihood of

escaping local minima to derive stable aggregate connectivity

patterns.

We conducted unilateral (i.e., independent), pooled (i.e., conjoint),

and cross-data unilateral (i.e., using ABCD and UKB pooled clustering

F IGURE 1 Resting state networks (RSNs). Spatial maps of the RSNs (n = 53) derived from a spatially constrained group independent
component analysis are plotted at the exhibited sagittal, coronal, and axial slices. The RSNs are partitioned into brain sub-domains based on
anatomical and functional properties of the (n = 53) brain components: AUD, Auditory; CC, Cognitive control; CEREB, Cerebellum; DMN, Default
mode network; SC, Subcortical; SM, Somatomotor; VIS, Visual
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states as a common basis to interrogate clustering summary measures

of both groups in a unilateral manner) clustering. The unilateral clus-

tering analysis provided independent estimates of the brain state pat-

terns for each data set, thus yielding prominent insights into the

expected group differences. While, pooled clustering of adult and

adolescent data sets allowed us to contrast the brain state patterns

more directly by providing a more equivalent basis for clustering the

data sets. Likewise, the cross-data unilateral analyses allowed us to

evaluate both groups using an equivalent basis for clustering the data

sets. The pooled and cross-data unilateral analyses thus augment and

further validate our findings from the unilateral clustering analyses.

The sliding window-related parametrical choices were made to

maximize correspondence in the window length across data sets used

in the unilateral analyses, while the data were calibrated to the fastest

TR in pooled and cross-data unilateral clustering analyses. Further-

more, the unilateral clustering experiments in this article used the

original data TR, whereas it was calibrated to the fastest TR for the

pooled clustering cases to permit a consistent time-resolved assess-

ment. Finally, as detailed in the succeeding subsection, we computed

the statistical state summary measures to gain further insights into

the brain state development and adaption process in adolescence and

adulthood.

2.3 | Statistical measures

To compare brain state profiles between adolescents and adults, we

sorted them using Pearson's correlation using a greedy matching

approach. The greedy sorting approach used in this article generates a

bijective mapping between the sets of states based on the correlation

metric by iteratively matching states with the highest correlation

value without replacement. This was done separately for all discovery

and replication data sets for the unilateral clustering experiments. We

sorted the state patterns using unilateral patterns as references for

the pooled experiments.

Next, we computed several state-based summary measures, com-

prising hard clustering metrics—mean dwell times and fractional occu-

pancy times (frequency), and a fuzzy clustering metric—regression

betas. We computed the mean dwell time as the mean period of a

given state's temporally consecutive runs and fractional occupancy time

as the percentage of windows apportioned to that state in the corre-

sponding imaging session. We also recorded weighted state member-

ships in a fuzzy framework—regression betas, computed as the beta-

coefficient estimates of the multiple linear regression of the windowed

correlations on the cluster centroids, averaged across all windows.

3 | RESULTS

3.1 | Unilaterally clustered brain state profiles in
adulthood and adolescence

We estimated the brain state profiles for all four data sets

independently—discovery: UKB (adults) and ABCD (adolescents);

replication: HCP (adults) and DevCoG (adolescents) and sorted them

across the data sets using Pearson's correlation metric. The lower tri-

angular matrices in Figure 2 demonstrate the sorted brain state pro-

files for the optimal clustering model order (k = 4) modularized by the

assessed seven brain subdomains. In contrast, the upper triangular

matrices in this figure display this data averaged by subdomains to

highlight the most dominant intra- and inter-domain brain connectiv-

ity patterns. Notably, the most striking difference constitutes the

coherent strengthening of brain connections within the auditory,

visual, and motor subdomains, supplemented by anticorrelation with

other subdomains in the adults' S1 profile.

This distinctive brain profile (S1) also featured stronger correlation

patterns within the subcortical subdomain and between the subcortical

and cerebellar subdomains and stronger anticorrelation patterns of the

subcortical and cerebellar subdomains with the auditory, visual, and

motor subdomains in adults. Additionally, this unique adult brain state

profile (S1) presented a higher correlation strength among the subcor-

tical regions and certain regions in the cognitive control domains (spe-

cifically, the medial cingulate cortex, inferior and middle frontal gyrus,

and hippocampus), and similarly, some default-mode network regions

involving the anterior and posterior cingulate cortex. Generally, the

corresponding patterns were less modular for adolescents, with a visi-

bly lower correlation strength within the visual and motor subdomains

and disjointed subcortical and cerebellum subdomains.

Remarkably, the distinctive pattern presented in S1 in adults was

consistently absent in adolescents. Furthermore, we replicated these

results for a range of clustering model orders (k = 2–5) in both discov-

ery and replication data sets, wherein we observed similar trends

across all model orders. Additionally, all results held for a matched

sample size of UKB with respect to ABCD for repeated subsampling

of the UKB data, that is, for 9617 UKB subjects, compared to using all

UKB subjects. These results are included in supplementary data fig-

ures S1 (k = 2), S2 (k = 3), S3 (k = 4), and S4 (k = 5).

We also conducted a post hoc comparison to highlight group dif-

ferences in the trFNC state profiles. For this analysis, we estimated

the subject-wise state representations as medians of subject-wise

windowed observations for a given state per the state membership

functions. Finally, we evaluated the group-level aggregate representa-

tions by computing the state-wise medians of the subject-level state

patterns. Figure 3 illustrates the group-level state-wise medians for

adults (UKB subjects: top panel) and adolescents (ABCD subjects:

middle panel) while also plotting the difference between the two

groups (UKB-ABCD: bottom panel). This result underscores S1 as the

most contrastive state between the two groups, thus further validat-

ing this observation from our previous results. Other brain states

showed several modular differences that were not as contrastive as

the S1 pattern.

3.2 | Conjointly clustered brain state profiles in
adulthood and adolescence

To provide a more equivalent basis for the clustered data, we con-

trasted the brain state profiles estimated via conjoint (i.e., pooled)
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clustering of adult and adolescent data sets. In this analysis, we

probed the structure of the state patterns and critical state summary

measures assessed in previous literature. The lower triangular matri-

ces in Figure 4 provide the trFNC patterns for the pooled clustering

case with sample-size matched UKB (n = 9617) and ABCD (n = 9617)

data sets for a range of model orders (k = 2–5), while the upper trian-

gular matrices provide the supplementary domain-averaged result.

We sorted the patterns presented in this result as per the brain state

patterns from the unilateral clustering (i.e., as per patterns visualized

in Figure 2). The central objective of testing different model orders

F IGURE 2 Time-resolved functional network connectivity (trFNC) state patterns with unilateral clustering. Windowed functional connectivity
features (i.e., windowed pair-wise correlations estimated from the activity time-courses of the brain components) were clustered unilaterally for
discovery (UK Biobank [UKB] [n = 36,461] and Adolescent Brain Cognitive Development [n = 9617]) and replication (Human Connectome
Project [HCP] [n = 833] and DEVCoG [n = 191]) data sets for a range of model orders (k = 2–5). The lower triangular parts of the matrices
represent the cluster centroid patterns marking the quasistable trFNC state patterns of the human brain that reoccur over time. The trFNC state
patterns were matched across the clustering model orders using greedy sorting with correlation as the similarity metric. The upper triangular parts
of the matrices represent the matched trFNC state profiles averaged at the domain level to highlight dominant inter-domain and intra-domain
brain state patterns. Vertical and horizontal black lines partition the brain state patterns by (n = 7) domains based on anatomical and functional
properties of the (n = 53) brain components: AUD, Auditory; CC, Cognitive control; CEREB, Cerebellum; DMN, Default mode network; SC,
Subcortical; SM, Somatomotor; VIS, Visual
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here is to confirm the algorithm stability and verify if the contrastive

pattern of significant interest appeared consistently across all model

orders. Analyzing the brain state patterns across a range of clustering

model orders involves multiple unsupervised learning analyses

(e.g., one independent decomposition for each clustering model

order). Thus, there may be uncertainty in the validated cluster cen-

troids. Given that the underlying data distribution (in the windowed

correlations) is identical, assuming a high similarity in the emergent

states across different model orders is rational. As expected, the brain

state patterns replicate across the range of model orders, but more

interesting is the fact that the unique adult state pattern (S1) was

prevalent for all model orders, and the other states emerged consis-

tently with an increase in the clustering model order. Furthermore,

repeated sub-sampling of the UKB data successfully reproduced this

result. We plot the equivalent brain connectograms for the optimal

model order (k = 4), thresholded at a Pearson's correlation value of

0.5, in Figure 5.

3.3 | Cross-data unilateral state clustering analysis

We further examined the trends by fixing the unilateral ABCD and

UKB states as a common basis to interrogate clustering summary

measures of both groups in a unilateral manner. In this analysis, we

regressed the data onto the predefined set of state patterns, assigned

the state membership based on the highest regression beta coeffi-

cient, and measured the hard clustering metrics using the derived

state memberships. For this analysis, we measured effect sizes of the

difference in means of the derived state measures (fractional rates

and mean dwell times) assessed via Cohen's d for independent

F IGURE 3 Group differences in time-resolved functional network connectivity (trFNC) state patterns with unilateral clustering. We assessed
the group-level median patterns from the subject-level median patterns in the trFNC state patterns. This figure demonstrates the group-level data
for adults (UK Biobank [UKB] subjects) in the top row and adolescents (Adolescent Brain Cognitive Development [ABCD] subjects) in the middle
panel. In contrast, we plot the patterns in their group differences (UKB-ABCD) in the bottom row. Consistent with previous results, the most
contrastive pattern between the two groups is presented in the S1 brain state profile, though other states also differ marginally. Vertical and
horizontal black lines partition the brain state patterns by (n = 7) domains based on anatomical and functional properties of the (n = 53) brain
components: AUD, Auditory; CC, Cognitive control; CEREB, Cerebellum; DMN, Default mode network; SC, Subcortical; SM, Somatomotor; VIS,
Visual
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samples for four cases, as shown in Figure 6: (1) comparing unilateral

UKB states on UKB data and ABCD data (UsUd – UsAd), (2) comparing

unilateral ABCD states on ABCD data and UKB data (AsAd – AsUd),

(3) comparing unilateral UKB states and unilateral ABCD states on

UKB data (UsUd – AsUd), and (4) comparing unilateral ABCD states

and unilateral UKB states on ABCD data (AsAd – UsAd).

Note, for ease of interpretation of the tested cross-data unilateral

clustering cases in Figure 6, we intuitively set the order of the argu-

ments (i.e., states and data sets), expecting a positive effect for the S1

brain pattern in all tested cases. If validated, this would imply a greater

mean value of the assessed metrics for adults as compared to adoles-

cents for state 1 (S1) while also providing a reference order to assess

trends in other state patterns. Results for the S1 state pattern verify

strong positive effects for all these tests, further validating the known

robust contrast presented by this state as per earlier unilateral and

pooled clustering results. In contrast, we observed a mixed pattern for

the other three state patterns. While the S2 and S4 state patterns,

which are most comparable to the static FC pattern, as expected,

F IGURE 4 Time-resolved functional network connectivity (trFNC) state patterns with pooled clustering. Windowed functional connectivity
features (i.e., windowed pair-wise correlations estimated from the activity time-courses of the brain components) were clustered conjointly for
sample-size matched UK Biobank (UKB; n = 9617) and Adolescent Brain Cognitive Development (n = 9617) data sets for a range of model orders
(k = 2–5). The lower triangular parts of the matrices represent the cluster centroid patterns, whereas the upper triangular elements represent the
matched trFNC state profiles averaged at the domain level to highlight dominant inter-domain and intradomain brain state patterns. Vertical and
horizontal black lines partition the brain state patterns by (n = 7) domains based on anatomical and functional properties of the (n = 53) brain
components: AUD, Auditory; CC, Cognitive control; CEREB, Cerebellum; DMN, Default mode network; SC, Subcortical; SM, Somatomotor; VIS,
Visual
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share the same direction of the effect, the S3 pattern presented the

exact opposite direction of the effect in all tested cases. Taken

together, the observations in the cross-data unilateral clustering ana-

lyses strengthen our prior unilateral and pooled clustering outcomes

on the contrastive S1 pattern, while also providing additional insights

into the trends for other state patterns.

3.4 | Replicability of brain state summary
measures across a range of model orders

As expected, the trFNC brain state patterns estimated via the vari-

ous clustering trials bear a strong resemblance. However, probing

the state summary measures provides the appropriate tool to

F IGURE 5 Connectogram plots for conjoint brain state patterns via pooled clustering. Here we highlight the connectivity strengths of the
most significant brain state connections (thresholded at a correlation value of ±0.5) for the patterns illustrated in Figure 3 (for the optimal model
order: k = 4), also plotting the peak activations in the spatial maps of the corresponding resting state brain networks on the connectogram ring
periphery. The colors on the connectogram ring partition the brain state patterns by (n = 7) domains based on anatomical and functional
properties of the (n = 53) brain components: AUD, Auditory; CC, Cognitive control; CEREB, Cerebellum; DMN, Default mode network; SC,
Subcortical; SM, Somatomotor; VIS, Visual. Component names for the listed component indices are listed in Figure 1
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contrast the groups, as evaluated in this analysis. Figure 7a includes

group differences in the pooled clustering assessed via the consid-

ered hard clustering summary measures—mean dwell times and frac-

tional occupancy rates (state frequencies). Similarly, Figure 7b

shows the group differences in the pooled clustering case assessed

via the fuzzy clustering metric—regression betas, which are the

beta-coefficient estimates of multiple linear regression of the win-

dowed FC features on the cluster centroids, averaged across all

windows.

The S1 pattern showed significantly lower frequency, mean dwell

times, and regression beta values in adolescents than adults. This evi-

dence further substantiates the strengthening of the S1 pattern in

adults. We replicated this result across the model orders and replica-

tion data sets alike. Here we additionally display the effect size of the

difference in means of these metrics (UKB-ABCD), assessed via

Cohen's d for independent samples in the horizontal bar plots on the

left of each panel. In this figure, the histogram bar plots are colored by

the state number, while the color of the metric distributions (histo-

grams) signifies the corresponding data set. We report a consistently

strong pattern in effect size that replicates across model orders,

states, and metrics.

3.5 | Projection analysis validates distinguished
structure in the brain state patterns

We conducted a rigorous QC check to visualize, quantify and further

validate the structure in the latent projection encodings of the trFNC

F IGURE 6 Cross-data unilateral state clustering analysis: We used the time-resolved functional network connectivity (trFNC) brain state
patterns (S1: State 1, S2: State 2, S3: State 3 and S4: State 4) from unilateral UK Biobank (UKB) and Adolescent Brain Cognitive Development

(ABCD) clustering to estimate state summary measures (frequency: FR and mean dwell times: MDT) in ABCD and UKB data, respectively. The bar
plots (columns 1 and 6) show the effect size of the difference in means of the derived state measures assessed with Cohen's d. Column panels (2–
5 and 7–10) plot the normalized histograms of the two state summary measures (FR and MDT on the x-axis) for the four cross-data unilateral
state clustering cases. The S1 pattern always showed a positive effect size, implying the dominance of this pattern in adult data for all cases. In
contrast, the other three patterns showed a mixed direction for both measures. In all tested cases, the S2 and S4 state patterns (most comparable
to the static functional connectivity pattern) shared the same direction of the effect as anticipated, whereas the S3 pattern presented the exact
opposite direction of the effect.
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features (Figure 8). This analysis uses the t-distributed stochastic

neighbor embedding (tSNE) algorithm to project the high-dimensional

(n = 1378) windowed correlations (i.e., trFNC features) to a two-

dimensional space for pooled clustering data from “All” groups

(i.e., the UKB and ABCD groups), the UKB group and the ABCD group,

for a range of clustering model order (k = 2–5).

Figure 8a shows the bivariate histograms for the trFNC projections

that reveal consistent localization of the density peaks across model

F IGURE 7 Group differences in pooled clustering. (a) Hard clustering metrics. We plot the distributions for the fractional occupancy rates
(frequency) and the mean dwell times of the brain states for the UK Biobank (UKB) and Adolescent Brain Cognitive Development (ABCD) groups
for a range of clustering model orders (k = 2–5) on the right of each top panel. (b) Fuzzy clustering metric. We plot the distribution for the fuzzy
regression beta coefficients for the UKB and ABCD groups for a range of clustering model orders (k = 2–5) on the right side of the bottom left
panel. The effect size of the difference in group means of these metrics, assessed via Cohen's d for independent samples, is shown in the
horizontal bar plot on the left of each panel. All brain state patterns showed replicable effects across the model orders and metrics, with the S1
and S3 patterns consistently showing a robust positive effect size. In contrast, the S2 and S4 patterns revealed negative effect sizes.
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orders and groups, verifying the clustering patterns revealed by our anal-

ysis. We further evaluate the trFNC data projections using the Kullback–

Leibler metric to capture group differences in the densities of these joint

histograms. As expected, the KL-divergence was the highest for the S1

brain state pattern across all clustering model orders, as highlighted in

Figure 8b, thus confirming S1 as the most contrastive pattern.

F IGURE 8 Bivariate projections of the windowed correlations for a range of clustering model orders. This analysis uses the t-distributed
stochastic neighbor embedding (tSNE) algorithm to project the high-dimensional (n = 1378) windowed correlations to a two-dimensional space
for pooled clustering data from “All” groups (i.e., the UK Biobank [UKB] and Adolescent Brain Cognitive Development [ABCD] groups), the UKB
group and the ABCD group, for a range of clustering model order (k = 2–5). (a) Bivariate histograms. Density peaks for the two-dimensional
projections of the windowed correlations are consistently localized across the groups and model orders, thus verifying the rationality of the
detected clustering patterns. (b) KL-divergence maps. The KL-divergence metric highlights the differences in metric distributions/densities in the
joint histograms. KL-divergence is the highest for state one across all clustering model orders, underscoring S1 as the most contrastive pattern.
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3.6 | Dominant adult state pattern (S1) indicates
an inverted U-shaped association with age

Studying the association of age with the dynamic FC metrics can

reflect gradual strengthening (e.g., positive correlation) or decline

(e.g., negative correlation) in the brain state patterns with aging. To

study that pattern in adults, we used the hard clustering (fractional

occupancy rates and the mean dwell times) and the fuzzy clustering

(regression betas) summary measures of the trFNC brain state pat-

terns for the UKB subjects and evaluated the association of age with

these three metrics using Pearson's correlation. We repeated this pro-

cedure for a range of clustering model orders (k = 2–5) for all metrics

and plotted Pearson's correlation of the clustering metrics with age in

Figure 9a.

We tested the statistical significance of these associations at two

significance levels—(1) uncorrected α¼ :05 (marked as *) and (2) Bon-

ferroni-corrected for multiple comparisons (marked as ** for

α¼ :05=m, where m = 42 tests, comparing three metrics in
P5

2
n =14

states). We found a significant negative correlation between the hard

clustering metrics and regression beta coefficients for the adult group

in the dominant adult state pattern (S1) for the optimal model order

(k = 4). The reported effect was consistent for higher clustering model

orders k = 3–5. This observation suggests that although this unique

(S1) pattern strengthened from adolescence into adulthood, the fre-

quency dropped beyond a certain period in adulthood. Additionally,

the dynamic metrics for the S3 pattern present the highest correlation

with age across these clustering model orders (k = 3–5).

Polynomial curve fitting (in a least-squares sense) for the state

frequency versus age association for the most contrastive brain pat-

tern revealed a positively skewed inverted U-shaped relationship

(Figure 9b). However, this result needs to be interpreted with caution,

given the uncertainty of the polynomial relationship assumption and

the missing samples in the functional estimation. This limitation can

be addressed by incorporating additional data sets to fill the age gap

(especially younger adults) or using adequately sampled lifespan stud-

ies to determine and corroborate the theorized time-resolved brain

state trajectories.

4 | DISCUSSION

Studying the resting state FNC changes across the human lifespan can

inform us how the underlying functional architecture and interrela-

tionships develop or diminish over time. Motivated by that, we lever-

aged the two largest accessible adolescent (ABCD) and adult (UKB)

brain data sets to understand the functional interrelationships in the

resting state and evaluate group differences in the trFNC patterns

and the associated state summary measures, reproducing them using

external replication data sets (adolescent: Dev-CoG and adult: HCP).

We detected a robust contrastive pattern (S1) in one of the brain-

state patterns that presented a highly modular distinction between

the two groups, characterized themes of elevated FC within the audi-

tory, visual, and motor subdomains, and exhibited a consistent antic-

orrelation with all other domains in adult brains.

The detected S1 pattern was significantly weaker in the adoles-

cent brains, thus underscoring the idea of strengthened functional

integration in the motor-visual interdomain networks as people

mature. Of note, there is additional evidence from previous work that

the static FC for the motor-visual networks is reduced in youth (Jolles

et al., 2011) and that time-resolved FC is not elevated for these net-

works in any of the adolescent brain states (L�opez-Vicente

et al., 2021). These previous results, together with our results, provide

a cohesive view into the possible modularization, integration, and

strengthening of the sensorimotor (Zuo et al., 2010) and visual

resting-state brain connections beyond childhood, signaling a change

in the broader organization of the brain's functional architecture.

Remarkably, the clustering metrics for this pattern are also negatively

correlated with age in adults, suggesting an inverted-U-shaped life-

span pattern. We speculate that this negative correlation of the S1

pattern in adults may be interlinked to the redistribution of the

restricted cognitive resources due to the systematic decline in the

global brain processing capacity due to brain aging.

Group analyses of the brain state patterns most resembling the

static FC pattern (S2 and S4) indicate that the occupancy of these pat-

terns was significantly higher for adolescents compared to adults. This

is in parallel with the observation of the negative association between

age and dwell times reported by Faghiri et al. (2018) for the Pediatric

Imaging, Neurocognition, and Genetics (PING) data set and Rashid

et al. (2018) for the Generation R data set (White et al., 2013). As

such, these strong positive effects imply that the developmental

changes may also bring along a departure from the canonical static FC

pattern to accommodate more efficient and modularized utilization of

the vast brain interconnections. Our results also suggest that the esti-

mated trFNC state profiles and summary measures are robust, as

these are highly comparable within each group across different clus-

tering model orders and replicate in the discovery and replication

data sets.

We also performed an exploratory comparative analysis evaluat-

ing the relationship of age to the studied dynamic metrics. Interest-

ingly, the occupancy rates (suggested via the frequency, mean dwell

times, and regression betas metrics) in adults increased most consis-

tently with age for the S3 pattern. The S3 brain state pattern varied

from the unique S1 adult pattern in reduced correlation strengths

from the visual domain to the auditory and subcortical brain domains.

Additionally, the strong anticorrelated patterns observed in the S1

pattern faded for the S3 pattern for brain connections from the sub-

cortical and cognitive control domains to the auditory, somatomotor,

and visual domains. Likewise, we found a more neutral pattern in S3

compared to strong anticorrelations observed in S1 for the visual to

default-mode and cerebellum inter-domain connectivity. The S3 pat-

tern always exhibited positive correlations with age for adolescents,

but we note to interpret this observation with caution given little vari-

ability in age for the adolescent group.

Our study inherits generic limitations of the fMRI data, including

an indirect link to neural activity, measurement noise (e.g., head move-

ment, cardiac, respiratory, etc.), and limited spatiotemporal resolution.

However, we used a rigorous fMRI data preprocessing pipeline and

QC checks based on years of experience to diminish the influence of
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F IGURE 9 Association of dynamic metrics with age in pooled clustering. (a) We computed the fractional occupancy rates (frequency), the
mean dwell times, and regression beta metrics for UK Biobank subjects for a range of clustering model orders (k = 2–5). This figure plots the
Pearson's correlation of age with the considered three clustering metrics for all trFNC brains state patterns (S1: State 1, S2: State 2, S3: State
3, S4: State 4, and S5: State 5). The statistical significance of these associations is tested at two significance levels - marked as * for α = .05 and **
for α = .05/m (Bonferroni correction for multiple comparisons, where m = 42 tests, comparing three metrics in

P5
2n¼14 states). The dominant

adult state pattern (S1) presented a statistically significant negative association with age in adults across model orders k = 3–5. (b) Polynomial
curve fitting for the optimal model order (k = 4) indicates an overall positively skewed inverted U-shaped association with age for the most
contrastive brain pattern.
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measurement noise. Head motion can confound the interpretation of

resting-state fMRI (Power et al., 2012; Satterthwaite et al., 2012), and

adolescents can certainly show greater movement levels. To minimize

the effect of head motion, we used only the low-motion subjects that

passed our thorough QC check, additionally regressing out the head

motion parameters from the windowed correlations. Yet, this does

not safeguard our analyses from other known measurement con-

founds such as physiological noise, etc., which is an even more com-

plex topic, warranting further research in this direction. While the

group ICA technique is relatively effective at eliminating physiological

noise, faster data sampling and physiological noise regression can help

assess their contribution to the dynamic brain connectivity measure-

ments. Nonetheless, we do not presume any systematic effects lead-

ing to the highlighted group differences, especially given the

reproducible effects with out-of-sample replication data sets.

Here, we postulate the breakthroughs suggested by this article

convergently indicate that the brain's FC patterns evolve systemati-

cally during adolescence, and these changes reflect the brain's intrinsic

maturation process. While the included data sets yield rich insight into

the time-resolved FC differences in adults and adolescents, the

extraction of more generalizable and normative age trajectories is par-

tially hampered by the noninclusion of specific age groups such as

infants, young children, and early middle-aged adults. Future work

may therefore incorporate other data sets that fill these age gaps and

also expand current lifespan studies to further corroborate the theo-

rized time-resolved brain state trajectories.

Other topics to study include examining linkages of the time-

resolved states and summary measures with anatomical measures and

clinical assessments in both groups and studying gender effects in

such analyses. It is also of great significance to detect aging effects in

time-resolved FC in brain disorders and diseases and compare those

patterns to the normative population, as various psychiatric illnesses

typically emerge during the developmental phase of life. Lastly, there

may be protective modifiable (e.g., physical activity, social interactions,

calorific restrictions, etc.), nonprotective modifiable (e.g., smoking,

alcohol, drug abuse, etc.), and nonmodifiable (e.g., sex, APOE status,

etc.) factors that control aging-related alterations in the functional

connectome in adulthood (Jockwitz & Caspers, 2021) that must be

examined with longitudinal research designs of lifespan studies.

5 | CONCLUSION

Our findings suggest substantial and consistent evidence for accentu-

ated temporal dynamics in a unique adult-brain-specific dynamic con-

nectivity pattern showing elevated FC between the auditory, visual,

and motor subdomains and a consistent anticorrelation with all other

domains. The reproducible nature of our investigation provides sup-

porting evidence for our interpretation of this pattern as a reflection

of the human brain's evolving FNC and maturation process. We also

note consistent group differences in other brain state patterns and

associated summary measures. Overall, this article suggests that

trFNC analysis holds great promise and can be a critical resource in

identifying developmental changes in the human brain. Further inves-

tigation associating the examined dynamic measures with the anatom-

ical and clinical assessments will augment the breadth of our findings.

We conclude that future work in this direction has great potential to

conceptualize and discover biomarkers crucial to understanding devel-

opmental aberrations and aging effects in spontaneous FC

fluctuations.
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