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ABSTRACT 
 
A large number of genomic and imaging datasets are being produced by consortia that seek to characterize 
healthy and disease tissues at single-cell resolution. While much effort has been devoted to capturing 
information related to biospecimen information and experimental procedures, the metadata standards that 
describe data matrices and the analysis workflows that produced them are relatively lacking. Detailed 
metadata schema related to data analysis are needed to facilitate sharing and interoperability across groups 
and to promote data provenance for reproducibility. To address this need, we developed the Matrix and 
Analysis Metadata Standards (MAMS) to serve as a resource for data coordinating centers and tool 
developers. We first curated several simple and complex “use cases” to characterize the types of feature-
observation matrices (FOMs), annotations, and analysis metadata produced in different workflows. Based on 
these use cases, metadata fields were defined to describe the data contained within each matrix including 
those related to processing, modality, and subsets. Suggested terms were created for the majority of fields to 
aid in harmonization of metadata terms across groups. Additional provenance metadata fields were also 
defined to describe the software and workflows that produced each FOM. Finally, we developed a simple list-
like schema that can be used to store MAMS information and implemented in multiple formats. Overall, MAMS 
can be used as a guide to harmonize analysis-related metadata which will ultimately facilitate integration of 
datasets across tools and consortia. MAMS specifications, use cases, and examples can be found at 
https://github.com/single-cell-mams/mams/.  
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INTRODUCTION 
The past two decades have seen a rapid expansion of high throughput genomic and imaging technologies that 
have revolutionized the ability of researchers to capture the molecular and histological characteristics of 
biological samples. For example, assays such as single-cell RNA-seq can capture the states of individual cells 
within heterogeneous and complex tissues. Several major consortia have been funded to utilize single cell 
assays to create cellular atlases of healthy and disease tissues1–7. These groups are generating large datasets 
that contain multi-modal single-cell data collected from longitudinally- and spatially-related biological 
specimens from different organs across different conditions. The majority of datasets are designed to answer a 
specific set of questions within a particular biological or clinical context. Other data centers such as NIH Gene 
Expression Omnibus (GEO) and ArrayExpress/BioStudies databases are focused on systematic storage, 
cataloging, and retrieval of primary data8,9. As more data becomes available, the ability to combine and 
integrate datasets from different settings is becoming increasingly desirable. Three major roadblocks to 
combining and integrating datasets are that 1) the metadata related to clinical, biospecimen, and experimental 
parameters is not captured or harmonized across groups10; 2) the data is stored in a wide variety of file formats 
or programming language-specific libraries, classes, or data structures; and 3) the metadata about the matrix 
and the corresponding analysis that produced or utilized the matrix is not well standardized. While significant 
effort has been dedicated to defining metadata standards for experimental parameters10 and new file formats 
are under active development11, the third area remains largely unaddressed. 
 
While a wide range of experimental protocols and platforms are available to generate molecular and 
histological data, an important commonality across these technologies is that they often produce a matrix of 
features that are measured in a set of observations. These feature and observation matrices (FOMs) are 
foundational for storing raw data from molecular assays (e.g. raw counts) and derived data from downstream 
analytical tools (e.g. normalized matrix, reduced dimensional matrix). A variety of file formats are used to store 
FOMs on file systems in different representations. For example, Tab Separated Value (tsv/txt) files can be 
used to store dense matrices while Market Exchange (.mtx) files can be used to efficiently store sparse 
matrices. Although platform-independent, these formats do not readily capture relationships between matrices 
and annotations for features and observations. Several packages also exist that can capture relationships 
between matrices and annotations include AnnData and MUON in Python12,13, the Seurat object in R14,15, and 
the SingleCellExperiment and related packages in R/Bioconductor16–18. In contrast to the simple flat file 
formats, these objects can capture complex relationships between FOMs as well as annotation data produced 
during the analysis such as quality control (QC metrics) and cluster labels. However, each package may store 
different sets of data or label the same type of data differently. Even if different datasets are stored the same 
format or type of object, harmonization of datasets still may require substantial manual curation before they 
can be combined and integrated.  
 
Lastly, a major goal of high-quality analysis workflows is to promote reproducibility by storing information 
related to provenance such as software version, function calls, and selected parameters that produced the 
matrix or annotation. However, there is a high degree of variability in which different analytical tools and 
software packages capture this information. Even if the data was produced by a workflow captured in a Docker 
container or versioned in GitHub, this information will often be lost when converting the data between formats 
or transferring between tools. Thus, there is a need to develop metadata standards for FOMs related to 
provenance to ensure this information can be readily captured and maintained throughout the dataset-specific 
analysis and during integration with other datasets. 
 
In order to facilitate sharing and interoperability across groups and technologies as well as to promote 
reproducibility related to data provenance, a detailed metadata schema describing the characteristics of FOMs 
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can be used to serve as a standard for the community. Therefore, we developed the Matrix and Analysis 
Metadata Standards (MAMS) to capture the relevant information about the data matrices and annotations that 
are produced during common and complex analysis workflows for single-cell data. MAMS defines fields that 
describe what type of data is contained within a matrix, relationships between matrices, and provenance 
related to the tool or algorithm that created the matrix. In contrast to the existing standards, MAMS does not 
largely focus on information related to sample preparation including biospecimen and clinical metadata or 
metadata related to experimental protocols. These standards will serve as a roadmap for tool developers and 
data curators to ensure that their systems have the capability to store and retrieve relevant information needed 
for integration. All of the metadata fields are independent of the platform, programming language, and specific 
tool and thus can be used to support efforts to harmonize data across consortia.  
 
RESULTS 
 
Overview of matrix classes 
Several popular libraries and software packages offer convenient interfaces for storing and retrieving data 
matrices and their associated annotations. The majority of these tools employ similar schemas that organize 
different classes of data matrices in an intuitive framework with a common interface (Figure 1). In general, we 
refer to a feature and observation matrix (FOM) as a class of data matrix that contains measurements of 
features across biological entities. Examples of features include genes, genomic regions, peaks, transcripts, 
proteins, antibodies derived tags, signal intensities, cell type counts or morphology categories. Examples of 
observations include cells, cell pools, beads, spots, subcellular regions, and regions of interest (ROIs). 
Measurements for single-cell data may include transcript counts, protein abundances, signal intensities and 
velocity estimates. FOMs that contain raw, normalized, transformed, or standardized biological data are 
commonly referred to as “assays” or “layers”. In the MAMS nomenclature, FOMs can also contain reduced 
dimensional objects such as principal components from PCA or 2-D embedding from tSNE or UMAPs which 
are derived from the original biological data matrices. We note that although the term “matrix” is used in the 
acronym, FOMs may also be data frames which can contain mixed data types (e.g. continuous and categorical 
morphological features), vectors (e.g. a matrix of with 1 dimension), and multidimensional arrays (e.g. a matrix 
with more than 2 dimensions also known as a tensor).  
 
Beyond the central data matrices, other classes of matrices are used to store identifier (IDs) information, 
annotations, and graphs that are generated during analysis. Annotations and metadata about the features 
(FEA) or observations (OBS) are stored in separate data frames with the same dimensions as the parent FOM. 
Annotations for features can include information about the gene such as IDs, reference genome, genomic 
location, biotype, and variability metrics. Annotations for observations can include sample-level demographics, 
cell-level identifiers (e.g. barcode), quality control metrics (e.g. total number of features detected), or analysis 
output (e.g. cluster labels, trajectory scores). IDs are used to uniquely identify and index observations and 
features within a dataset. The Observation ID (OID) class contains a character vector or combination of 
character vectors used to denote the unique ID of each observation while the Feature ID (FID) class contains a 
vector or combination of character vectors used to denote the unique ID of each feature. Observation 
neighborhood graphs (ONGs) and feature neighborhood graphs (FNGs) are adjacency matrices that can be 
used to store the correlation, similarity, or distance between pairs of observations and features, respectively. In 
the MAMS schema, each class of matrix will have a corresponding set of metadata fields that describe the 
information contained within the matrix. The Record (REC) is a special class for storing information related to 
the provenance of the data analysis tool and command used to create the matrix.  
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Figure 1. Overview of matrix classes included in MAMS. Feature and observation matrices (FOMs) contain biologica
different stages of processing including reduced dimensional representations. Feature annotation matrices (FEA) and Ob
annotation matrices (OBS) store annotations such as additional IDs or labels, quality control metrics, and cluster lab
Observation Neighborhood Graph (ONG) and Feature Neighborhood Graph (FNG) classes store information related to the co
similarity, or distance between pairs of observations or features, respectively. The Observation ID (OID) and Feature ID cla
used to store unique identifiers for individual observations and features, respectively. The Record (REC) class is a special se
for storing information related to data and tool provenance.  

 
 
Curated analysis workflows for single cell data 
In order to ensure that the metadata standards are able to capture complex information and robust to d
real-world scenarios, we first curated the matrices produced by different types of analysis workflows for
cell data using the vignettes from popular tools and packages as a template14,19,20. The simplest workflow
with a matrix of UMI-correct counts produced by a microfluidics device where the observations are d
denoted with a unique barcode, the features are genes, and the measurements are the number of 
transcripts detected for each gene in each cell (Figure 2). This type of matrix is produced by a
sequencing reads to a reference genome, counting the number of reads that map to each gene loci, an
performing a correction for Unique Molecular Indices (UMIs). The next step is to identify and fil
observations of the matrix to remove empty droplets (i.e. droplets without a true cell). The observations
filtered matrix can be filtered again based on other quality control metrics such as total number o
detected, number of features detected, percentage of mitochondrial counts, percentage of ambient R
droplets likely containing multiple cells. After generating a “clean” matrix of observations, the raw cou
generally normalized by correcting for library size (e.g. correcting for the total number of counts) and app
log2 transformation. Next, features are standardized across observations (e.g. z-scoring each gene to 
mean of 0 and a standard deviation of 1) and a subset of highly variable features are chosen for down
analysis. This matrix is used as input into Principal Component Analysis (PCA) to produce a r
dimensional matrix, where the features are now principal components (PCs) instead of individual 
Optionally, a subset of PCs may be selected based on percentage of variability or other statistical m
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Neighborhood and distance graphs are produced between observations using the PCA matrix as input.
distances are used as input into algorithms such as tSNE and UMAP that produce another matrix 
embeddings useful for visualization. The cell graphs can also be used as input into clustering algorithm
as Leiden or K-means or trajectory inference tools. Annotations such as cluster labels and trajectory sco
stored in the corresponding OBS data frame with the same number of observations. A robust a
metadata standard should be able to capture information about the processing of the measurements wi
FOM as well as the features and observations included in each FOM. 
 

 

Figure 2. Matrices produced during a simple analysis workflow for single cell RNA-seq data. Several steps are often p
in analysis workflows for scRNA-seq data generated with high-throughput devices. The observations are filtered to exclud
droplets and poor quality cells. Quality control metrics can be stored in an OBS annotation data frame. Preprocessing of the da
includes steps for normalization and standardization of features (e.g. z-scoring). From the scaled data, a subset of highly
genes are used as input into Principal Component Analysis (PCA). The reduced dimensional space of the PCA is used as inpu
embedding tools such as tSNE and UMAP as well as clustering algorithms such as k-means and Leiden.  

 
 
While the simple workflow contains analysis of a single sample, other scenarios may require more c
workflows with additional types of operations that produce different matrices. We also annotated scenar
include analysis of datasets with multiple modalities (Supplementary Figure 1), datasets with m
samples that require integration or batch correction (Supplementary Figure 2), analysis with a bio
subset of data (Supplementary Figure 3), and analysis with FOMs derived from imaging
(Supplementary Figure 4). Multiple modalities can be measured on individual cells in addition to 
transcript counts. For example, scATAC-seq assays can measure open chromatin profiles and CI
assays can measure epitopes for cell surface proteins. Multimodal workflows may apply similar 
procedures to each data type to normalize data, perform dimensionality reduction, and generate m
specific cluster labels. To perform integrative analysis, matrices from different modalities can be integr
the “matrix” level, reduced dimensional level, or on the graph level21 and a third set of cluster labels 
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derived using the combined dataset. A robust analysis metadata standard should be able to capture 
information about the biological analyte and modality captured with each FOM. 
 
Other single-cell datasets may have observations from multiple donors or multiple regions per donor. Several 
batch correction and integration tools have been developed to remove unwanted variation between different 
samples and project the shared variation into a common low dimensional representation which can be used in 
subsequent graph generation and clustering steps (Supplementary Figure 2). After initial analysis using all 
observations that passed quality control, additional analyses on subsets of biologically may be desired. For 
example, initial clustering with single cell data may be used to define broad cell types such as epithelial, 
stromal, and immune cells. The cells from each broader cell type may be subsetted and re-analyzed using a 
similar workflow to produce novel matrices and annotations (Supplementary Figure 3). A robust analysis 
metadata standard should be able to capture information about the batch corrections and biological subsets. 
 
Lastly, we curated workflows where the underlying data was derived from highly-multiplexed imaging 
technologies, such as cyclic immunofluorescence (CyCIF), CODEX, and MIBI which measure multiple 
biological features on the same tissue slide (Supplementary Figure 4). After preprocessing and 
segmentation, various types of FOMs can be produced that contain observations related to individual cells or 
regions of interest (ROIs), such as cell neighborhoods or functional tissue units, defined by machine learning 
algorithms or curated by human experts. Features can include the signal intensity of specific probes or 
morphological categories such as size and shape. Multidimensional (i.e., > 2 dimensions) FOMs can contain 
pixel-level intensities per coordinate for each channel in each cell. We note that a robust matrix and analysis 
metadata standard does not necessarily apply to upstream file types such as raw images, segmentation 
masks, or sequence alignment and mapping files (SAM/BAM/CRAM). However, having provenance about the 
tool used for the preprocessing as well as a link to the source file for a derived matrix for a derived FOM is 
desirable.  
 
Matrix metadata standards 
For each of the major classes of matrix (FOM, FID, OID, FEA, OBS, FNG, ONG, and REC), we develop 
metadata fields that can be used to describe various aspects of individual matrices (Table 1). Primary fields for 
the FOM class are used to describe the type of biological data being measured (analyte), the sets of features 
and observations that have been included in the matrix (feature_subset, obs_subset), and the type of 
processing that was applied to produce the matrix (processing). An additional modality field can be used to 
denote FOMs containing different data types that require higher levels of integration. In many cases, modality 
will be synonymous with analyte as multimodal workflows seek to cluster cells based on multiple biological 
modalities. However, modality is meant to be a broader term that can capture other types of integration as 
well. For example, researchers may want to integrate the same analyte across different species or across 
datasets generated with different technologies. The processing field is used to describe the type of 
measurement in the FOM from the data analysis perspective. The same biological data may have raw, 
normalized, and standardized forms. This field can also be used to distinguish reduced dimensional objects 
such as PCAs and UMAPs from other upstream matrices. One note is that many tools store the biological data 
matrices and reduced dimensional matrices in separate sections of the data object due to the fact that they are 
used in different parts of the workflow for different purposes and often contain different features. From the 
analysis schema perspective, we found that these types of matrices can share similar sets of metadata fields 
and thus were grouped together into the broader FOM class. The subset fields capture the group of features 
and cells that belong to the matrix. The obs_subset field can be used to capture information about the level of 
filtering that has been applied to the cells or if the cells have been subsetted based on a biological category. 
Many tools will group all matrices with the same set of observations with the same data object and create 
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separate data objects after applying subsetting operations. This field allows matrices across different data 
objects within a dataset to be appropriately annotated. Similarly, the feature_subset field can be used to 
annotate matrices that contain a subset of detected or highly variable features (e.g. highly variable genes or 
the PCs explaining the most variance). Other fields such as data_type and representation capture some 
characteristics of the original storage mode of the matrix. These fields are primarily useful when data is 
converted to simple flat files (e.g. CSV) that do not always have inherent ways of recording this information. 
More advanced tools and storage formats that have the ability to import flat files can take this into account 
when converting the FOM to platform-specific data types and matrix representations.  
 
During different steps of an analysis workflow, various operations will create new a FOM from an existing FOM 
or set of FOMs. In the scRNA-seq example, a full raw count matrix containing droplets can be subsetting to 
obtain a filtered raw count matrix containing cells and the raw counts in this matrix can be further normalized 
and log transformed. While the previous metadata fields capture information about the data contained with a 
FOM, additional metadata fields are needed to capture the relationships between different FOMs. In MAMS, 
the parent_id field can be used to link a FOM to one or more parent FOMs and correspond to the arrows in 
the use cases. The parent_relationship field defines terms that include different operations to create novel 
FOMs including transformation, subset, concatenation, reduction, factorization, and aggregation. One 
particular use case where this information can be useful is for efficient management of concatenated or 
subsetted FOMs. Creating new FOMs by subsetting or concatenating existing FOMs can create unnecessary 
copies of existing data and increase storage. However, some data objects are taking advantage of “views” 
which create a virtual view of a subset of the data without copying the original data17. Capturing which matrices 
are direct subsets or concatenations of other ones in the metadata can further support the use of views across 
platforms and reduce the overall size of single cell datasets.  
 
Lastly, metadata fields for the other classes were also defined in MAMS. For the ID class, fields are included to 
denote if an ID is a compound ID separated by a delimiter. The neighborhood graph classes have fields to 
denote the metric used to quantify the relationship between observations or features as well as a field to 
denote whether the quantity is a similarity- or distance-based metric (i.e. whether higher or lower values 
indicate a higher degree of relatedness). The dataset_id field is a broad term used by all classes to denote a 
group of related matrices used at any point during an analysis. Lastly, the record_id is a field used to link 
matrices or annotations to items in REC class. 
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Table 1. Description of fields in MAMS 
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Harmonization of matrix labels using common ontologies 
One challenge when merging and harmonizing datasets processed with different workflows is that the same 
type of FOM may be given different labels. For example, a normalized matrix may be called “data” 
“normcounts”, or given any label by the user running the workflow depending on the tool. For several of the 
metadata fields, we developed a set of harmonized ontologies for commonly generated matrices. Example 
terms for the processing field is shown in Table 2. For processing, “raw” denotes a general term for the 
original measurements derived directly from the source files. The term “counts” denotes raw measurements 
that are integers such as UMI-corrected read counts for mRNA, protein, or ATAC-seq data. The term intensity 
denotes raw measurements that are derived from fluorescent intensities commonly used in imaging-based 
techniques. Other terms such as “normalized”, “lognormalized”, and “scaled” can be used to describe the stage 
of data processing on the original features. The “reduction” term denotes reduced dimensional representations 
used for input into downstream analysis (e.g. PCA) while the “embedding” term is reserved for low dimensional 
representations often used for visualization (e.g. UMAP). The analyte field has terms such as rna, protein, 
chromatin, dna, lipid, metabolite, and morphology to describe the biological feature captured by the 
measurements in the FOM. Terms for the obs_subset field include “full” to denote a FOM that has all original 
observations, “filtered” to denote observations that enough total signal above background. (e.g. true cells in 
droplet-based scRNA-seq), “detected” to denote observations that have minimum levels of detection across 
features, “nonartifact” which can be used as a general term to describe filtering that may occur due other 
quality control metrics, and “clean” to denote an “analysis ready” set of observations. 
 
The majority of fields also have corresponding description fields used to describe the selected term. We have 
also supplied descriptions for the suggested ontologies (see Table 2 for an example with 
processing_description). While some ontological terms are suggested in MAMS, any text can be supplied to 
allow the metadata fields to adapt to future scenarios. Thus, researchers have the flexibility to use and define 
custom terms and descriptions that do not fit the current set of suggested ontologies. Using a set of predefined 
ontologies with flexibility to add new terms will promote harmonization across platforms and technologies while 
having the flexibility to adapt to novel analysis workflows. 
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Table 2. Suggested categories for the processing and processing_description field with example

 
 
Provenance related metadata for of analysis of matrices 
The FAIR Data Principles (Findable, Accessible, Interoperable, and Reusable) are a set of guiding princ
support the reusability of data22. A major component of reproducibility is that the data should have info
related to provenance including how it was generated, preprocessed, and analyzed. A major goal o
groups has been to develop metadata standards related to the demographics of the donor or patient 
disease relevant phenotypes as well as information about the technologies and protocols used to crea
from biological specimens. However, once the raw data has been generated, the degree to which the de
the software and methods that create new FOMs and annotations is variable and limited across groups
data processing centers will have a central workflow for processing which can be accessed via a rep
Some information about the software and analysis parameters may also be listed in the publication. Ho
this information is not standardized and might not be stored along with the FOMs in the file format being
 
The record_package_name describes the name of the package, tool, or software that ran the algor
produce the matrix, annotation, or graph. The record_package_version denotes the version of the pa
tool, or software that ran the algorithm to produce the matrix, annotation, or graph
record_function_name describes the name of the function or mathematical operation used to produ
matrix, annotation, or graph. The record_function_parameters is a list containing key-value pairs des
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the primary parameters and their values used in the function call. Finally, the record_workflow_link
used to denote a public link to a repository containing the workflow that ran the tool. For example, 
workflow scripts encoded in CWL, WDL, Nextflow, Snakemake are often stored in a public repository s
GitHub or DockerHub23–25. In summary, these fields can be used to record provenance information
matrices or individual annotations and will aide in reproducibility of single-cell data  
 
Implementation of MAMS in a portable format 
In order to facilitate the adoption of MAMS, we developed a simple list-like structure that can be used to
MAMS metadata fields for matrices in a dataset. This structure can be stored in configuration file forma
as JSON and YAML and can record information about the dataset even if the FOMs are stored across d
data objects or file formats. Each class of matrix has an entry within the list for each dataset and each m
denoted with a unique ID. The MAMS fields are then categorized as key-value pairs under each ind
matrix. Several additional fields are implemented within this format to describe the location of each ma
potential relationship between matrices. The filepath field is used to describe the path to the file or data
containing the matrix which can point to a flat file, HDF5 object, or other programming language 
storage format (e.g. rds file format for R). The accessor field is used to denote the command to retrie
matrix from a data object. An additional set of linking fields (oid, fid, obs, fea) can be used to capt
relationships between FOMs and annotation or IDs matrices. Using these linking fields allow p
relationships between FOMs and other matrix classes to be maintained independently of file path or m
location within a data object. This format can serve as an intermediate standard to store MAMS info
even if the underlying data object does not have the capability to store this type of metadata. 
 

Figure 3. Example of MAMS list format. As the ability to implement and store matrix and analysis related metadata is variab
software platforms and data objects, we created a simple list-like structure to capture relevant MAMS fields for each ma
structure can be stored in configuration file formats like JSON and YAML or in general metadata or unstructured slots wi
objects. Each dataset will have its own entry within the list and each class of matrix has an entry within the list for each datas
matrix is denoted with a unique ID and MAMS fields are denoted with key-value pairs under each matrix. The additional fields 
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within this implementation including filepath and accessor can be used to point to matrices stored in any flat file format or within a data 
object.  
 

DISCUSSION 
Metadata related to analysis and provenance of FOMs is important for the reanalysis and reproducibility of 
single-cell data but has been inconsistently curated and captured across software platforms and data 
coordinating centers. In order to facilitate the harmonization of metadata standards related to data analysis 
across groups, we created MAMS with input from multiple consortia and software development groups. Many 
different combinations of tools and parameters can be applied during an analysis workflow to produce different 
numbers and types of matrices. By curating analysis “use cases” from several existing workflows involving 
multiple data types and analysis goals, we have characterized several core principles that can be used to 
annotate data matrices. The ability of MAMS to capture these principles will allow for the curation of matrices 
generated from diverse settings and support future complex workflows. 
 
One of the major challenges when integrating matrices from different datasets is to determine which matrices 
should be selected and merged. Having fully annotated matrices with MAMS fields can aid in making this 
process more systematic. For example, having fields to clearly denote analyte and modality can ensure that 
matrices capturing similar biological measurements will be appropriately merged. Various integrative efforts 
may want to use different data matrices depending on the goals of the analysis. Reprocessing efforts will likely 
want to start with the matrices containing the most raw and unfiltered form of the data while other efforts 
seeking to answer targeted biological questions may just want to merge the filtered and normalized matrices 
for each dataset. Overall, better metadata standards such as MAMS are becoming increasingly important with 
the goal of re-analysis and integration across datasets.  
 
Different workflows and tools may not save every matrix produced during an entire workflow. For example, 
PCA matrix may be calculated from a matrix of highly variable scaled genes that is not permanently stored 
within the workflow. The goal of MAMS is not to require that every matrix produced by an analysis workflow 
should be stored in a file or data object or maintained in a repository. Rather the goal of MAMS is to ensure 
that every matrix stored within a data object or file format can be properly annotated with metadata fields and 
relevant provenance records. 
 
In general, the metadata fields defined by MAMS are not dependent on specific formats or data storage 
standards and can be implemented in any existing software that organizes matrices under a common API.  
However, updating existing software packages can take substantial time and effort. Therefore, we developed a 
platform-agnostic list-like structure to store MAMS fields that can be stored in YAML or JSON formats. This file 
can serve as a “dataset configuration” file which can be used in conjunction with any underlying storage 
formats. Currently, the curation of these attributes is not automated in most analysis workflows and software 
packages. Future efforts will be needed to implement these standards across platforms and relieve 
downstream users of the task of manual curation. Overall, the successful implementation of these data 
analysis metadata standards will facilitate harmonization and integration of datasets stored across different 
platforms or repositories and produce single-cell data that more closely aligns with FAIR standards.  
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METHODS 
We assembled a working group consisting of members from various data curation centers, software platforms, 
academic and industrial institutions. The working group met monthly over the course of a year to discuss 
various aspects of data curation and file formats. “Use cases” for analysis of single-cell data were derived from 
Seurat14,15,26, Scanpy19, and Bioconductor example workflows16. Imaging-based workflows were based on a 
workflow from MCMICRO27. Metadata fields were defined based on matrices and provenance fields produced 
by these workflows or based on use cases from the experience of the working group members. Multi-modal 
PBMC data was accessed from https://www.10xgenomics.com/resources/datasets/pbm-cs-of-a-healthy-donor-
5-gene-expression-and-cell-surface-protein-1-standard-3-0-0. MAMS documentation, use cases, and example 
files can be found at https://github.com/single-cell-data/mams/. 
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SUPPLEMENTARY FIGURES 
 

Supplementary Figure 1. Multi-modal single cell RNA-seq and CITE-seq analysis workflow. 
technologies can produce multi-modal data by capturing different biological analytes on the same 
observations. This workflow demonstrates FOMs and annotations for single cells that are produced 
profiling of RNA and protein expression using CITE-seq. A separate data matrix is generated for each m
(box color) and will undergo filtering for empty drops and poor-quality cells. Although the same set of c
retained for analysis in this illustration, different sets of filtering criteria may be applied to each m
independently. Log normalization, scaling, dimensionality reduction, 2-D embedding, and clustering 
performed in parallel for each modality. Further analysis can be performed using a nearest neighbo
generated by combining the individual neighbor graphs from each modality. A new 2-D embedding and
cluster labels can be generated with both underlying modalities. The “modality” field can be a list to den
combination of analytes that were used in the generation of the FOM. Feature annotation and ID class
not shown.  
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Supplementary Figure 2. Multi-sample single-cell analysis workflow with batch correction. In
datasets, data will be generated for multiple samples and jointly analyzed. This workflow demonstrate
matrices from four samples with different numbers of observations. Empty droplets are identified and re
from each sample individually followed by removal of poor quality cells or artifacts such as doublets/mu
Filtered matrices from all samples are then concatenated to produce a combined cell matrix. Note t
order of filtering may be different in various workflows (e.g. filtering of poor quality cells may occu
concatenation). The combined matrix of all samples can be analyzed using standard workflo
normalization, scaling, dimensionality reduction, 2-D embedding, and clustering. In some circums
technical differences between samples could produce unwanted clustering. Integration and batch co
methods can be applied at different steps depending on the algorithm or statistical method. In this exam
batch correction algorithm is applied to the log normalized data to produce a new matrix which can be 
subsequent steps. Other variations of this workflow may include using a batch correction or integration 
that works on the reduced dimensional matrices to produce a new reduced dimensional object whi
subsequently be used to generate a graph.  
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Supplementary Figure 3. Single-cell RNA-seq workflow with additional analysis of biological su
During the analysis of real-world datasets, subsets of data are obtained for additional downstream anal
this example, a matrix of scRNA-seq data is taken through the standard analysis workflow including f
normalization, scaling, dimensionality reduction, and clustering. While this workflow may identify the ma
types present in the dataset, further clustering of individual cell types may reveal additional heterogene
normalized matrix is subsetted using cell type labels derived from clustering. The obs_subset field can b
to denote biological subsets of observations such as T-cell, epithelial cell, etc. Each subsetted norm
matrix will undergo a similar workflow of scaling, dimensionality reduction, 2-D embedding, and cluste
identify subpopulations within each major cell type. Feature annotation and ID classes are not shown. 
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Supplementary Figure 4. Imaging-based analysis workflow that produces FOMs. Several imaging
technologies can examine tissue slides to quantify molecular and cellular features in 2-D or 3-D space.
analysis methods (e.g., segmentation) or manual curation by an expert can be used to identify Reg
Interest (ROIs) such as cell neighborhoods on each slide. Spatial technologies yield two flavors of FOM
2-dimensional FOMs can be derived that quantify the intensity levels of each marker in each cell or ROI.
raw intensity matrices can be augmented by additional morphological characteristics, such as cell si
shape, as well as spatial motifs within ROIs. The 2D FOMs can be filtered, normalized and used in clu
and embedding workflows in a similar fashion to single-cell sequencing FOMs. Second, a 4-D FOM 
generated that stores the pixel-level intensities along the x- and y-coordinates in each cell or ROI fo
channel/marker. This type of FOM can be analyzed with algorithms that work directly on pixel-level dat
as variational autoencoders, to produce a reduced dimensional matrix which can be used in clusteri
embedding workflows. Feature annotation and ID classes are not shown. 
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