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ABSTRACT 27 

Bowel movement frequency (BMF) has been linked to changes in the composition of the human 28 

gut microbiome and to many chronic conditions, like metabolic disorders, neurodegenerative 29 

diseases, chronic kidney disease (CKD), and other intestinal pathologies like irritable bowel 30 

syndrome and inflammatory bowel disease. Lower BMF (constipation) can lead to compromised 31 

intestinal barrier integrity and a switch from saccharolytic to proteolytic fermentation within the 32 

microbiota, giving rise to microbially-derived toxins that may make their way into circulation and 33 

cause damage to organ systems. However, the connections between BMF, gut microbial 34 

metabolism, and the early-stage development and progression of chronic disease remain 35 

underexplored. Here, we examined the phenotypic impact of BMF variation in a cohort of 36 

generally-healthy, community dwelling adults with detailed clinical, lifestyle, and multi-omic data. 37 

We showed significant differences in microbially-derived blood plasma metabolites, gut bacterial 38 

genera, clinical chemistries, and lifestyle factors across BMF groups that have been linked to 39 

inflammation, cardiometabolic health, liver function, and CKD severity and progression. We 40 

found that the higher plasma levels of 3-indoxyl sulfate (3-IS), a microbially-derived metabolite 41 

associated with constipation, was in turn negatively associated with estimated glomerular 42 

filtration rate (eGFR), a measure of kidney function. Causal mediation analysis revealed that the 43 

effect of BMF on eGFR was significantly mediated by 3-IS. Finally, we identify self-reported diet, 44 

lifestyle, and psychological factors associated with BMF variation, which indicate several 45 

common-sense strategies for mitigating constipation and diarrhea. Overall, we suggest that 46 

aberrant BMF is an underappreciated risk factor in the development of chronic diseases, even in 47 

otherwise healthy populations. 48 

 49 

INTRODUCTION 50 

The gut microbiome influences human health in a number of ways, from mediating early life 51 

immune system development 1,2, to determining personalized responses to nutritional 52 
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interventions 3,4 and influencing the central nervous system 5,6. Stool transit time, defined as the 53 

rate at which stool moves through the gastrointestinal tract, is a major determinant of the 54 

composition of the human gut microbiota 7. Transit time is affected by diet, hydration, physical 55 

activity, host mucus production, microbe- and host-derived small molecules (e.g., short chain 56 

fatty acids, bile acids, or neurotransmitters), and peristaltic smooth muscle contractions in the 57 

gastrointestinal tract 8,9. Stool transit time can be partially estimated using the Bristol Stool Scale 58 

10, edible dyes 7, indigestible food components (e.g., corn) 11, or self-reported bowel movement 59 

frequency (BMF) 12,13. Aberrant BMFs, in particular, have been implicated as risk factors in a 60 

number of chronic diseases 14–16.   61 

Abnormally high BMF (e.g., diarrhea, defined as more than three watery stools per day), 62 

has been associated with lower gut microbiome alpha-diversity, inflammation, increased 63 

susceptibility to enteric pathogens, and poorer overall health 12,17–19. Abnormally low BMF (e.g. 64 

constipation, defined as fewer than three hard, dry stools per week), has been associated with 65 

higher gut microbiome alpha-diversity, reduced intestinal barrier integrity, enrichment in 66 

microbially-derived urinary metabolites known to be hepatotoxic or nephrotoxic, and with an 67 

increased risk for several chronic medical conditions, including neurodegenerative disorders 68 

and chronic kidney disease (CKD) 14,20–22. Indeed, constipation is a known risk factor for CKD 69 

severity and end-stage renal disease (ESRD) progression 23,24. In one study, up to 71% of 70 

dialysis patients suffered from constipation 25, while the prevalence of constipation in the 71 

general population was 14.5% in adults under 60 years old and 33.5% in those over 60 26. A 72 

nationwide study of veterans found an incrementally higher risk for renal disease progression in 73 

those who reported increasingly severe constipation 27. However, while it is clear that morbidity 74 

and mortality risk worsen with constipation in those with active CKD, potential connections 75 

between BMF and the development and early-stage kidney disease are not yet established.  76 

Both constipation and CKD associate with declines in gut microbiota-mediated short-77 

chain fatty acid (SCFA) production and a rise in the production of amino acid putrefaction 78 
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byproducts, including several toxic microbe-host co-metabolites, such as 3-indoxyl sulfate (3-79 

IS), p-cresol sulfate (PCS) and phenylacetylglutamine (PAG), which all have been implicated in 80 

CKD progression 28–30. This is consistent with an established microbiota-wide transition from 81 

saccharolytic to proteolytic fermentation in constipated individuals due to the exhaustion of 82 

dietary fiber in stool 14,31. Thus, while the potential relationship between BMF and organ function 83 

in healthy populations is not fully understood, the gut metabolic phenotype associated with 84 

lower BMF suggests a connection. 85 

In this study, we focus on categories of self-reported BMF in a large population of 86 

generally-healthy individuals with a wide range of molecular phenotypic data in order to quantify 87 

the phenotypic impact of BMF on blood plasma metabolites, blood proteins, clinical chemistries, 88 

and gut microbiome composition in a pre-disease context. By exploring the molecular 89 

phenotypic consequences of BMF variation in a generally-healthy cohort, along with BMF-90 

associated demographic, dietary, lifestyle, and psychological factors, we aimed to identify early-91 

stage biomarkers and potential therapeutic targets for the monitoring and prevention of certain 92 

chronic, non-communicable diseases, like CKD.  93 

 94 

RESULTS 95 

A cohort of generally-healthy individuals 96 

3,955 Arivale Scientific Wellness program participants with BMF data were initially considered in 97 

this analysis. Arivale, Inc. (USA), was a consumer scientific wellness company that operated 98 

from 2015 until 2019. Briefly, participants consented to having their health, diet, and lifestyle 99 

surveyed through an extensive questionnaire, along with blood and stool sampling for multi-100 

omic and blood plasma chemistries data generation (Fig. 1). Any respondents that indicated 101 

“true” or affirmatively to any of the following questionnaire features were excluded from the 102 

analysis (i.e., they were not considered “generally-healthy”): taking blood pressure, cholesterol, 103 

or laxative medication or having self or family history of bladder or kidney disease (i.e. kidney 104 
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cancer, bladder infections, polycystic kidney disease or PKD, kidney stones, kidney failure or 105 

kidney disease), inflammatory bowel disease (IBD; both Crohn’s Disease and Ulcerative Colitis), 106 

irritable bowel syndrome (IBS), celiac disease, diverticulosis, gastroesophageal reflux disease 107 

(GERD), or peptic ulcers (i.e., these individuals were not considered ‘generally-healthy’–see 108 

Supplement, Table S1). There were 1,425 participants who met these exclusion criteria and had 109 

necessary covariate data. Across all Arivale participants that had available demographic and 110 

survey information, 82.8% of those individuals identified as “White” (N = 2,562), 8.5% identified 111 

as “Asian” (N = 262), 3.2% identified as “Black or African-American” (N = 98), 0.2% identified as 112 

“American Indian or Alaska Native” (N = 9),  0.65% identified as “Native Hawaiian or other 113 

Pacific Islander” (N = 20), and 4.7% identified as “Other” (N = 144). 93.6% of these individuals 114 

identified as “Non-Hispanic” (N = 2,897) and 6.4% identified as “Hispanic” (N = 198, 55.6% of 115 

which self-identify as “White”).  Respondents were in the United States, predominantly from the 116 

Pacific West, and their ages ranged from 19 to 89 years old. 65.1% were female with a mean ± 117 

s.d. body mass index of 27.15 ± 5.89 (Fig. S1). 1,062 of these individuals had gut microbiome 118 

data, 486 had blood metabolomics data, 823 had proteomics data, 1,425 had clinical 119 

chemistries data, and 1,420 had survey data (derived from questionnaires). Self-reported BMF 120 

values (responses to typical number of bowel movements per week) were grouped into four 121 

categories (Fig. 1), which we labeled as: “constipation” (≤ 2 bowel movements per week), “low-122 

normal” (3-6 bowel movements per week), “high-normal” (1-3 bowel movements per day), and 123 

“diarrhea” (4 or more bowel movements per day). We first looked at potential associations 124 

between BMF and relevant covariates: sex, age, BMI, estimated glomerular filtration rate 125 

(eGFR), low-density lipoprotein blood plasma levels (LDL), C-reactive protein blood plasma 126 

levels (CRP), hemoglobin A1c blood plasma levels (A1C), and the first three principal 127 

components of genetic ancestry (PC1, PC2, and PC3) (N = 1,425; Fig. 2; Table S2). When 128 

BMF was coded as an ordinal dependent variable and regressed using ordered proportional 129 
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odds logistic regression (POLR), only BMI (POLR, FDR-corrected p = 1.82E-3), age (POLR, 130 

FDR-corrected, p = 2.07E-3), sex (POLR, FDR-corrected p = 3.68E-16), and the first three 131 

principal components of genetic ancestry (PC1, PC2, and PC3; POLR, FDR-corrected p < 132 

0.0001) showed significant, independent associations with BMF (Table S2), with females, older 133 

individuals, and individuals with lower BMIs tending to report lower BMFs (Fig. 2). All covariates 134 

listed above were included in downstream regressions, regardless of whether or not they 135 

showed an independent association with BMF. The high-normal BMF group was chosen as the 136 

reference for all downstream regressions throughout the manuscript where BMF was encoded 137 

as a categorical variable. eGFR was also regressed against BMF and the other covariates to 138 

determine which were significant associated with eGFR, and the covariates with significant p-139 

values included sex, age, BMI, LDL, A1C, PC1, PC2, and PC3 (GLM, p < 0.05).  140 

 141 

Gut microbiome structure and composition across BMF categories 142 

We looked at a subcohort of individuals that met our health exclusion criteria with 16S amplicon 143 

sequencing data from stool (N = 1,062). Amplicon sequence variant (ASV) richness (GLM, p = 144 

2.85E-3, linear βBMF = -65.9E-3) and Shannon diversity (GLM, p = 1.07E-3, linear βBMF = -3.25E-145 

1) were negatively associated with BMF, independent of the covariates listed above, and with 146 

BMF encoded as an ordinal variable with a linear coefficient (Fig. 3). Pielou’s evenness, on the 147 

other hand, was positively associated with BMF (GLM, p = 8.5E-3, linear βBMF = 2.6E-3), 148 

independent of covariates (Fig. 3).  149 

Differential abundance analysis of commensal gut bacterial genera across BMF 150 

categories was conducted using beta-binomial regression (CORNCOB 32) with BMF encoded as 151 

a categorical variable with the high-normal group as the reference category. Of the 135 genera 152 

that passed our prevalence filter (i.e., detection across ≥ 30% of individuals), 59 were 153 

significantly associated with BMF (49 of which had genus-level taxonomic annotations; see 154 
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Table S1 for detailed list of β-coefficients and p-values), independent of covariates and 155 

following an FDR correction for multiple tests on the likelihood ratio test (LRT) p-values (FDR-156 

corrected p < 0.05). We z-score normalized the centered log-ratio (CLR) abundances of the 49 157 

annotated genera across all samples and then plotted the average z-score within each BMF bin 158 

for each taxon as a heatmap (Fig. 4). We also provide supplemental boxplots, showing CLR 159 

abundances across BMF categories, of the top 10 most abundant taxa and 10 taxa with the 160 

smallest p-values from the 49 mentioned above (Fig. S2-S3). In order of descending 161 

abundance, the following taxa were significantly enriched in constipated individuals, compared 162 

to the high-normal BMF category (Wald Test, FDR-corrected βBMF p < 0.05): 163 

Ruminiclostridium_9, Ruminococcacaeae_UCG-005, Ruminococcaceae_NK41214_group, 164 

Family_XIII_AD3011_group, Romboutsia, Ruminocaccaeae_UCG-004, UBA1819, 165 

Negativibacillus, DTU089, GCA-900066225, Candidatus_Soleaferrea, Anaerotruncus, 166 

Defluviitaleaeceae_UCG-011, Eisenbergiella, Pygmalobacter, Peptococcus, 167 

Hydrogenoanaerobacterium, Anaerofustis, and DNF00809.  Lachnospiraceae_ND3007_group 168 

and Lachnospiraceae_UCG-004 were significantly depleted in constipated individuals. Several 169 

more were associated with enrichment or depletion in the low-normal BMF category, compared 170 

to the reference category (Fig. 4; See Supplement). There was no significant difference 171 

between the high-normal and diarrhea categories for any of the genera, which could be due to 172 

low sample size in the diarrhea category (i.e., we were likely underpowered to detect those 173 

associations). 174 

 175 

Variation in blood metabolites across BMF categories 176 

Blood metabolite vs. BMF regression analyses were run using a generalized linear modeling 177 

(GLM) framework in LIMMA, with BMF as a categorical independent variable, along with the 178 

same set of covariates mentioned above. Of the metabolites that passed our abundance and 179 

prevalence filters (N = 956, see Method Details), 9 unique metabolites were significantly 180 
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associated with BMF (all 9 showed differential abundance between low-normal and high-normal 181 

categories, which is the comparison we were most powered for), independent of covariates and 182 

following an FDR correction for multiple tests (GLM, FDR-corrected p < 0.05, Fig. 5, Table S2). 183 

The annotated metabolites tended to show a decreasing trend with increasing BMF, while the 184 

unannotated metabolites and 3-IS showed more varied relationships (e.g. monotonic and non-185 

monotonic) with BMF (Fig. 5, S4). PCS, PAG, PCG, and 3-IS were significantly enriched in the 186 

low-normal BMF category, compared to the reference category (Fig. 5, S4). 75 unique 187 

metabolites were significantly associated with eGFR, independent of covariates and following 188 

the same FDR correction for multiple tests (linear regression, FDR-corrected p < 0.05, Fig. 5,  189 

S4; Table S4). Only one of these eGFR-associated metabolites overlapped with any of the 190 

BMF-associated metabolites: 3-IS.  191 

 192 

Blood plasma chemistries across BMF categories 193 

Of the 55 blood plasma chemistries filtered for prevalence (see Method Details), 21 were 194 

significantly associated with diarrhea (e.g., omega-6 fatty acid, homocysteine, total protein, and 195 

bilirubin) and one (omega-6/omega-3 ratio in the blood) was associated with the low-normal 196 

BMF category, relative to the reference category, after adjusting for all covariates and for 197 

multiple testing (Fig. 6; N = 1,425, GLM, FDR-corrected p < 0.05).  198 

 199 

Blood proteomics across BMF categories 200 

None of the 274 blood proteins that passed our prevalence filter (see Method Details) showed 201 

significant associations with BMF after adjusting for all covariates and for multiple testing (N = 202 

823, GLM, FDR-corrected p < 0.05). 203 
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 204 

Self-reported diet, lifestyle, anxiety and depression histories associated with BMF categories 205 

and demographic covariates 206 

99 survey questions (see Supplement; questions with sparse data were filtered out) on health, 207 

diet, and lifestyle were examined from 1,420 generally-healthy individuals from the Arivale 208 

cohort in order to identify covariate-independent associations with BMF. Tests were run using 209 

the “polr” package in R (ordinal regression) 33, including the same set of covariates from the 210 

prior analyses, and with BMF coded as a categorical variable with high-normal BMF as the 211 

reference group (Fig. 7). Response categories for each question ascended ordinally in value or 212 

intensity (i.e., low to high), so that a positive association represented an increase in that 213 

variable. Across the 99 questions, the top results with significant odds ratios related to BMF 214 

categories were displayed relative to high-normal BMF (Fig. 7), colored by the variable category 215 

(“Diet/Lifestyle” or “Health/Digestion”). BMI, age, sex, and other covariates were also associated 216 

with many of these questionnaire-derived features, independent of BMF (Fig. 7). In particular, 217 

females tended to eat more vegetables and fruit in a week and had a higher diarrhea frequency. 218 

Males, on the other hand, showed higher weekly snack intake and easier bowel movements 219 

(Fig. 7). Unsurprisingly, constipation (lowest BMF range) was negatively associated with 220 

reported ease of bowel movement and diarrhea was positively associated with self-reported 221 

diarrhea frequency (i.e., these were separate questions on the questionnaire) (Fig. 7). Those 222 

with higher weekly snack intake were more likely to be in the low-normal BMF category, and 223 

those with higher weekly vegetables intake, weekly fruit intake, greater ease of bowel 224 

movements, and those with higher self-reported diarrhea frequency were more likely to be in the 225 

high-normal BMF category (Fig. 7). Higher diarrhea frequency was significantly associated with 226 

having a higher BMI and with being younger relative to the rest of the cohort, while being older 227 

made one more likely to report having greater ease of bowel movement (Fig. 7). Finally, those 228 

with low LDL values (better cholesterol health) were more likely to report higher fruit intake and 229 
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those with low CRP (low inflammation) values were more likely to report higher vegetables 230 

intake (Fig. 7). These findings showcase a variety of common-sense dietary and lifestyle factors 231 

that could be leveraged to manage BMF, cardiometabolic, and immune health. 232 

A subset of participants self-reported their history of depression and anxiety, including: 233 

“self-current”, “self-past”, and “family” history of depression and anxiety (N = 2,096, see 234 

Supplement; 11 questions related to anxiety and 23 related to depression). After logistic 235 

regression, 3 “true or false”-response questions related to history of depression in self and 236 

family history appeared marginally significant (logistic regression, FDR-corrected p < 0.1), with a 237 

self-reported “true” response to a “family history of depression” showing a marginal association 238 

with constipation (logistic regression, FDR-corrected < 0.1), a self-reported “true” response to a 239 

“sibling history of depression” showing a significant association with diarrhea (logistic 240 

regression, FDR-corrected < 0.05), and a self-reported “true” response to “recent ailments; self-241 

history of depression” showing a marginal association with low-normal BMF (logistic regression, 242 

FDR-corrected < 0.1). Similarly, the same approach yielded a single marginal association 243 

between a “true” response to “self past history of anxiety disorder” and low-normal BMF (logistic 244 

regression, FDR-corrected < 0.1). Each of these associations were relative to the high-normal 245 

BMF reference category. 246 

 247 

BMF-associated blood metabolites associated with kidney function in a generally-healthy cohort  248 

Using the nine BMF-associated metabolites (ordered in ascending p-value: PCS, X - 23997, 249 

PAG, X - 11850, PCG, X - 12216, 3-IS, X - 11843, and X - 21310), an analysis was performed 250 

on all of the generally-healthy Arivale participants with paired BMF, eGFR, and blood 251 

metabolomic data (N = 572). Using OLS, eGFR was regressed against BMF (encoded as a 252 

numerical variable between 1, 2, 3, or 4, with 1 being constipation, 2 being low-normal, 3 being 253 

high-normal, and 4 being diarrhea) and the nine BMF-related metabolites, which yielded a 254 

significant overall model (Fig. S8; OLS, R2 = 0.082, p = 2.42E-7). Two of the BMF-associated 255 
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metabolites showed significant beta-coefficients in the model: X - 12216 and 3-IS (Fig. S8; OLS, 256 

βX - 12216 = -1.98, p = 1.20E-2 and β3-IS = -9.69, p = 1.96E-5, respectively). These negative 257 

coefficients indicated that higher baseline levels of these blood metabolites were associated 258 

with lower kidney function.  259 

Finally, given that microbially-derived 3-IS was independently associated with both 260 

eGFR and BMF, we hypothesized that 3-IS may be mediating, in part, the impact of BMF on 261 

eGFR. To test this hypothesis, we ran a causal mediation analysis (using the mediation library 262 

in R 34; see Methods) on the generally-healthy Arivale individuals with BMF, eGFR, and the 263 

blood metabolomics data (N = 572; Fig. 8; S7). BMF categories were merged into a “Low” (low-264 

normal BMF and constipation) and a “High” categories (high-normal BMF and diarrhea 265 

participants) in order to consolidate the BMF categories with very small Ns (i.e., constipation 266 

and diarrhea). The total effect of the overall model did not quite pass our significance threshold 267 

of alpha < 0.05 (total effect, p = 0.064), but we saw a significant average direct effect of BMF on 268 

eGFR (ADE = -4.458, p = 0.012) and a highly significant average causal mediation effect of 269 

BMF via 3-IS on eGFR (ACME = 1.343, p < 2E-16; Fig. 8). A similar analysis was performed on 270 

those respondents that had vegetables intake data, and a marginally significant average direct 271 

effect (ADE, p = 0.058) and total effect (p = 0.062) were observed for an outcome model of 272 

eGFR ~ 3-IS + vegetables intake (merged into a “Low” and “High” category, with “High” being 273 

the control value) + BMF (merged into a “Low” and “High” category) and a mediation model of 3-274 

IS ~ vegetables intake (merged) and BMF (merged). 275 

  276 

DISCUSSION 277 

In this study, we delve into the multi-omic fingerprint of cross-sectional BMF variation in a large, 278 

generally-healthy population (Fig. 1). We find that aberrant BMFs were associated with variation 279 

in the ecological composition of the gut microbiota, plasma metabolite levels, clinical 280 

chemistries, diet, lifestyle, and psychological factors (Figs. 4-7). Overall, we observe an 281 
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enrichment of microbially-derived uremic toxins in blood resulting from protein fermentation in 282 

the guts of individuals with lower BMFs. These toxins have been implicated in disease 283 

progression and mortality in CKD 24,35 and many of the same metabolites have been associated 284 

with other chronic diseases, like neurodegeneration 36,37.  285 

Of the core set of covariates used in our regression analyses, only age, sex, BMI, and 286 

genetic ancestry PCs 1-3 were independently associated with BMF, with females, individuals 287 

with lower BMIs, and younger individuals showing lower average BMFs (Fig. 2). Consistent with 288 

these results, women are known to be at higher risk of constipation and kidney dysfunction 38,39. 289 

In a prior study, individuals with lower BMIs were shown to produce less motilin (i.e., a hormone 290 

involved in gut motility) and were more likely to suffer from constipation 40.  Lower BMFs have 291 

also been linked to inflammation, oxidative stress, and cardiovascular disease risk 41,42. The 292 

associations between BMF and the first three principal components of genetic ancestry indicate 293 

a relationship between host genetics and BMF variation, which is further supported by a prior 294 

GWAS study 43.  295 

Independent of these covariates, several gut bacterial genera enriched in individuals 296 

with lower BMFs (CORNCOB, p < 0.001), such as Christensenellaceae_R-7_group, 297 

Anaerotruncus, Blautia, Family_XIII_AD3011_group (Anaerovoracaceae family), and 298 

Methanobrevibacter, were previously found to be enriched in Parkinson’s disease (PD) patients 299 

who often suffer from chronic constipation 44. Desulfovibrio, which has been shown to be 300 

enriched in several disease states 45, was elevated at lower BMF (Fig. 4). Another set of genera 301 

were depleted in lower BMF categories, such as Bacteroides, Lachnoclostridium, 302 

Lachnospiraceae_ND3007_group, Lachnospiraceae_UCG-004, and Veillonella, which are all 303 

important contributors to SCFA production 46–49. This reduction in SCFA producers is consistent 304 

with the switch away from saccharolytic fermentation towards proteolytic fermentation in the 305 

case of constipation 14. Reduced SCFA production is known to weaken smooth muscle 306 

contractions that drive peristalsis 50–52, acting as a positive feedback on constipation. 307 
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Furthermore, constipation can induce mechanical damage to the gut epithelium 53–55, which may 308 

in turn contribute to higher systemic inflammation and disruptions to epithelial integrity 35,56,57. 309 

This epithelial damage, combined with chronic inflammation, may allow for excess luminal 310 

metabolites to leak into the bloodstream, including toxic protein fermentation byproducts, which 311 

could cause tissue damage throughout the body and exacerbate conditions like CKD 35,58–60.  312 

Consistent with our microbiome results, we found gut microbiome-derived protein 313 

fermentation byproducts, like PCS, PAG, and 3-IS, were enriched in the blood of individuals with 314 

lower BMFs (Fig. 5) 61–63 . PCS has been associated with deteriorating kidney function and with 315 

damage to nephrons as well as cognitive decline and neuroinflammation 64,65. 3-IS has been 316 

associated with vascular disease and mortality in CKD patients 66. PAG has been associated 317 

with CKD progression and mortality 29,30,61,62 . Ultimately, we see an enrichment in microbially-318 

derived uremic toxins in the blood of generally-healthy individuals with lower BMFs.  319 

  Most of the clinical chemistry-BMF associations showed relative enrichment in the 320 

higher-BMF category, and these features tended to reflect hepatic and nephrotic function. For 321 

example, high bilirubin can indicate liver disease from the overactive breakdown of red blood 322 

cells, but interestingly, higher bilirubin levels in serum coincide with a lower risk for CKD 323 

development and progression, which coincides with our observation that the lowest BMF 324 

categories had higher levels of uremic toxins but lower bilirubin levels 67. Other metrics, like 325 

creatinine levels and linoleic acid levels, correlate positively with BMF and negatively with 326 

kidney function 68–70. In fact, most of the laboratory values, such as the mean corpuscular 327 

hemoglobin concentration (MCHC), which measures the concentration of blood cells, can 328 

indicate kidney or liver disease 71. It is interesting to note that biomarkers indicating kidney 329 

disease risk and progression were enriched at lower BMFs and biomarkers indicating liver 330 

disease risk and progression were enriched at higher BMFs in a generally-healthy population, 331 

showing how aberrant BMF in either direction may increase chronic disease risk. 332 
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In addition to demographic factors associated with BMF, the questionnaire results 333 

indicate dietary and lifestyle factors that are known to influence BMF, like fruit and vegetable 334 

intake (i.e., sources of dietary fiber and polyphenols) 39,41. We observed a lower fruit and 335 

vegetable intake and an increased likelihood of snacking in the low-normal BMF category 336 

compared to the high-normal BMF category 26,39. We also found that constipation and diarrhea 337 

were marginally (and in one case, significantly) associated with self-reported measures of 338 

depression and anxiety, which aligns with prior work showing higher prevalence of anxiety and 339 

depression (between 22-33%) on the Hospital Anxiety and Depression Scale (HADS) and the 340 

Mini International Neuropsychiatric Interview (MINI) in patients with chronic constipation 72.  341 

Blood levels of 3-IS were independently associated with both BMF and eGFR, which led 342 

us to the hypothesis that 3-IS may mediate the potential influence of BMF on eGFR. Indeed, we 343 

observed a significant average direct effect of BMF on eGFR (ADE, p = 0.012) and a highly 344 

significant average causal mediation effect for 3-IS (ACME, p < 2E-16; Fig. 8). Together, these 345 

results indicate that aberrant BMF-associated increases in 3-IS are associated with declining 346 

kidney function in a generally-healthy cohort, which is consistent with similar associations that 347 

have been observed between 3-IS and poorer outcomes in CKD patients 66. 348 

Bowel movement abnormalities, such as constipation or diarrhea, have been linked to 349 

diseases ranging from enteric infections 19 to many chronic diseases like CKD, IBD, and 350 

neurodegenerative conditions like Alzheimer’s and PD 36,73,74. Indeed, even in the context of our 351 

generally-healthy cohort, we see the build up of microbially-derived uremic toxins in the blood of 352 

individuals with lower BMFs. Perhaps most concerning was our observation that aberrant BMF-353 

associated microbial metabolite 3-IS was also associated with lower eGFR values. In 354 

conclusion, we suggest that chronic constipation or diarrhea may be underappreciated drivers of 355 

organ damage and chronic disease, even in healthy populations. Our results underscore 356 

common-sense dietary and lifestyle changes, like increasing intake of fruits and vegetables, 357 

which may help to normalize BMF and perhaps reduce BMF-associated chronic disease risk.  358 
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 359 

Study Limitations 360 

There are some important limitations to consider when interpreting the results of this study. The 361 

generally-healthy cohort studied here was overwhelmingly “White”, predominantly female, and 362 

from the West Coast of the U.S.A., which limits the generalizability of our results. In addition, the 363 

diet, lifestyle, and mood data were self-reported and subject to biases and errors, and are not 364 

indicative of clinical diagnoses, although BMF was binned into four coarse-grained categories in 365 

an attempt to mitigate self-reporting bias. In fact, BMF is not quite synonymous with transit time 366 

through the gut, which can be measured through means like the “blue dye method” for transit 367 

time 7 , although BMF still appears to be a useful measure of self-reported bowel habit 368 

differences in this study when binned in such coarse-grained categories. We had limited 369 

representation in the constipation and diarrhea categories, which reflects the “generally-healthy” 370 

nature of this cohort, but this also limited our statistical power for detecting associations in these 371 

groups. The dietary variables that were associated with better BMF outcomes (i.e., increased 372 

dietary fiber intake, in the form of fruits and vegetables) are not devoid of clinical risk and may 373 

not be appropriate for everyone. For example, high-fiber diets can sometimes lead to bloating 374 

and inflammation in IBD patients 75. Additionally, CKD patients are often coached to limit their 375 

intake of fiber-rich foods because they can contain high levels of potassium and phosphorus 76. 376 

However, low-fiber diets may act as a positive feedback on constipation and inflammation. This 377 

highlights the importance of intervening at the prodromal stage, before disease manifests, when 378 

a healthy, plant-based diet is well-tolerated. While we find some evidence for microbially-379 

derived, BMF-associated uremic toxins in blood influencing kidney function in a generally-380 

healthy cohort, more work is needed to establish a link between longer-term BMF management 381 

and chronic disease risk. In addition, for the mediation analysis, we did not see a strong 382 

intervention effect or total model effect, despite seeing a highly significant mediation effect. This 383 

kind of result is expected when the treatment effect and the mediation effect are similar in 384 
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magnitude, when there are opposing effect directions between treatments and mediators, or 385 

when there are other more complicated effects (e.g., non-linear associations) 77. Ultimately, 386 

future intervention trials should be done to assess the potential for managing BMF throughout 387 

the lifespan as a strategy to reduce chronic disease risk. 388 
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FIGURE TITLES AND LEGENDS 413 

 414 

Figure 1. Data collection strategy. Arivale participants were sampled for blood plasma and415 

stool, in addition to filling out extensive diet, health, and lifestyle questionnaires. Clinical416 

chemistries, untargeted metabolomics, and proteomics data were generated from blood plasma417 

samples. Gut microbiome 16S rRNA amplicon sequencing data were generated from stool418 

samples collected using at-home kits. BMF data were extracted from the questionnaire data as419 

self-reported frequencies per week or day. 420 
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 421 

Figure 2. Plotting covariates that showed a significant association with BMF: sex, age,422 

BMI, and the first three principal components of genetic ancestry (PC1-PC3) (A-F). POLR423 

was used to regress BMF against the covariates (sex, age, BMI, eGFR, LDL, CRP, A1C, plus424 

the first three principal components of genetic ancestry in the cohort, PC1, PC2, PC3). The425 

result was that sex (p = 3.68E-16), BMI (p = 1.82E-3), age (p = 2.075E-3), and PCs1-3 (p <426 

0.00001, respectively) were significantly associated with BMF.  427 
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 428 

Linear Ordinal Coefficient P-Values: 429 

Figure 3. Associations between gut microbiome alpha-diversity and BMF. (A) Richness of 430 

amplicon sequence variants (ASVs) across BMF categories (ordinal BMF variable, Linear 431 

Regression, p = 2.85E-3). (B) Shannon Diversity across BMF categories (ordinal BMF variable, 432 

Linear Regression, p = 1.07E-3). (C) Pielou’s Evenness across BMF categories (ordinal BMF 433 

variable, Linear Regression, p = 8.5E-2). 434 

 435 
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 436 

Figure 4. Heatmap of average z-scored CLR abundances within each BMF category for all437 

annotated genera significantly associated with BMF. 46 significant taxa, in order of438 

decreasing average relative abundance, with their z-scored, CLR-transformed abundances439 

averaged within each BMF category plotted as a heatmap. Covariates included sex, age, BMI,440 

eGFR, LDL, CRP, A1C, and PCs1-3. Asterisks denote the individual FDR-corrected significance441 

threshold for the Wald Test p-value of the βBMF-coefficient for each BMF category, relative to the442 

high-normal reference category. Rows without asterisks showed a significant overall model443 

(FDR p-value <0.05), despite a lack of significance for the individual coefficients. (***): p <444 

0.0001, (**): 0.0001 < p < 0.01, (*): 0.01 < p < 0.05. 445 
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 447 

Figure 5. Heatmap of average z-scored blood plasma metabolites levels within each BMF448 

category for all metabolites significantly associated with BMF. 11 significant blood plasma449 

metabolites, with average z-scores within each BMF category plotted as a heatmap. Significant450 

associations were identified using LIMMA, with FDR-corrected p-values of the ratio test between451 

the main model and the null model. Here, the covariates included sex, age, BMI, eGFR, LDL,452 

CRP, A1C, and PCs1-3. Asterisks denote metabolites with significant βBMF coefficient(s) in the453 

linear regression model after FDR correction. (***): p < 0.0001, (**): 0.0001 < p < 0.01, (*): 0.01454 

< p < 0.05.  455 
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 456 

Figure 6. Heatmap of average z-scored clinical chemistries within each BMF category for457 

all chemistries significantly associated with BMF. 22 BMF-associated chemistries, identified458 

using LIMMA models with FDR-corrected p-values of the ratio test between the main model and459 

the null model, with average z-scores within each BMF category plotted as a heatmap. Here,460 

the covariates included sex, age, BMI, eGFR, LDL, CRP, A1C, and PCs1-3. Asterisks denote461 

FDR-corrected p-value thresholds for metabolites with significant βBMF coefficient(s) in the linear462 

regression model. (***): p < 0.0001, (**): 0.0001 < p < 0.01, (*): 0.01 < p < 0.05. 463 
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 464 

Figure 7. Ordinal regression odds ratio for health, diet, and lifestyle survey data vs BMF465 

and covariates. Variables are colored by category: questions related to diet, exercise, and466 

lifestyle (Diet/Lifestyle), and questions related to current digestive symptoms/function and health467 

history (Health/Digestion). The BMF reference category was “high-normal” BMF (7-21 bowel468 

movements per week). Each tick on the vertical axes represents a directional association in469 

likelihood across the horizontal axis. The center line over the plots at x = 1.0 represents an470 

equal likelihood of reporting an increase in number, intensity, frequency, or agreement471 

(depending on the response variable) between the left side of the arrow on the vertical axis tick472 

and the right side of the arrow on the vertical axis tick. A confidence interval that does not span473 

the center line is significantly associated with the independent variable on the vertical axis tick.474 

(*): FDR-corrected p-value < 0.05.  475 
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 476 

Figure 8. Causal mediation analysis, with BMF as the treatment variable, 3-IS as the477 

mediator variable, and eGFR as the response variable. The average direct effect (ADE) of478 

BMF on eGFR and the average causal mediated effect (ACME) of BMF on eGFR via 3-IS were479 

found to be significant (N = 572; ADE -4.458, p = 0.012; ACME 1.343 p < 2E-16). The total480 

effect and the proportion mediated terms did not pass our significance threshold of alpha=0.05. 481 
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SUPPLEMENTAL FIGURES 482 

Covariates: Mean ± standard deviation, or % across Arivale: 

Sex 65.1% Female 

BMI 27.2 ± 5.89 

Age 46.36 ± 12.96 

eGFR 89.07 ± 20.20 

CRP 2.40 ± 4.76 

LDL 114.17 ± 33.77 

A1C 5.49 ± 0.57 

Highlighted exclusionary criteria: 

Percent with self-reported kidney disease 
3.00% (119 out of 3,955 participants with BMF data 

available withheld from cohort) 

Percent IBS or IBD 
3.23% (128 out of 3,955 participants with BMF data 

available withheld from cohort) 

Exclusionary features (988 out of 3,955 participants with BMF data, or 25% of the initial BMF cohort, 

answered affirmatively to any of these and were excluded from the analyses. The final N of remaining 

participants after merging with covariates was N = 1,425 for the final baseline cohort): 

Self - current history - bladder infection 

Self - current history - kidney disease 

Self - current history - kidney infection 

Self - current history - kidney stones 

Self - current history - bladder/kidney - other 

Self - current history - polycystic kidney disease (PKD) 

Self - current history - urinary incontinence 

Self - current history - kidney cancer 

Self - current history - celiac disease 

Self - current history - colonic Crohn’s disease 

Self - current history - diverticulosis 

Self - current history - gastroesophageal reflux disease (GERD) 

Self - current history - ileal Crohn’s disease 

Self - current history - irritable bowel syndrome (IBS) 

Self - current history - inflammatory bowel disease (IBD) 

Self - current history - ulcerative colitis 

Self - current history - peptic ulcer 

Self - laxatives usage 

Self - anticoagulation or cholesterol drugs usage 

Self - blood pressure drugs usage 

 483 

Figure S1. The modeling covariates and exclusionary criteria. Out of the 3,955 total Arivale 484 

participants that had BMF data, 3.00% self-reported kidney disease (the kidney-related 485 

questions in the exclusionary features) and 3.23% self-reported IBS or IBD. An initial baseline 486 

cohort of 3,132 participants that had health history survey questionnaire data was available. The 487 

participants that answered affirmatively to the exclusionary features were removed from the 488 

analysis, resulting in 25% of the initial cohort with BMF data being filtered down to N = 1,561, 489 

and subsequently, a final baseline cohort of 1,425 individuals after merging for covariates. 490 

 491 
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Figure S2. The top 10 most abundant genera significantly associated with BMF (A-J). 493 

Significant genera from the CORNCOB analysis in order of decreasing CLR-transformed 494 

abundance. The line in each plot denotes significant differences from the reference category 495 

(“High Normal” BMF), and asterisks denote FDR-corrected significance threshold. (***): p < 496 

0.0001, (**): 0.0001 < p < 0.01, (*): 0.01 < p < 0.05. The horizontal axes are annotated as four 497 

BMF categories: “Constipation” (BMF = 1-2✕ per week), “Low Normal” (BMF = 3-6✕ per week), 498 

“High Normal” (BMF = 1-3✕ per day) which is the reference category in regression, and 499 

“Diarrhea” (BMF = 4✕ or more per day). 500 

 501 
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Figure S3. The top 11-20 most abundant genera associated with BMF (K-T). Significant 503 

genera from the CORNCOB analysis in order of decreasing CLR-transformed abundance. The 504 

line in each plot denotes significant differences from the reference category (“High Normal” 505 

BMF), and asterisks denote FDR-corrected significance threshold. (***): p < 0.0001, (**): 0.0001 506 

< p < 0.01, (*): 0.01 < p < 0.05. The horizontal axes are annotated as four BMF categories: 507 

“Constipation” (BMF = 1-2✕ per week), “Low Normal” (BMF = 3-6✕ per week), “High Normal” 508 

(BMF = 1-3✕ per day) which is the reference category in regression, and “Diarrhea” (BMF = 4✕ 509 

or more per day).  510 
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511 

Figure S4. Significant BMF-associated plasma metabolites boxplots (A-I). Significant512 

plasma metabolites from the LIMMA analysis. The horizontal axes are annotated as four BMF513 

categories: “Constipation” (BMF = 1-2✕ per week), “Low Normal” (BMF = 3-6✕ per week), “High514 

Normal” (BMF = 1-3✕ per day) which is the reference category in regression, and “Diarrhea”515 

(BMF = 4✕ or more per day). Red significant comparison lines across each plot denote516 

significant differences from the reference category (“High Normal” BMF), and asterisks denote517 

FDR-corrected significance threshold. (***): p < 0.0001, (**): 0.0001 < p < 0.01, (*): 0.01 < p <518 

0.05.   519 
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Figure S5. Significant BMF-associated clinical chemistries boxplots (A-I). Significant 521 

clinical chemistries from the LIMMA analysis. The horizontal axes are annotated as four BMF 522 

categories: “Constipation” (BMF = 1-2✕ per week), “Low Normal” (BMF = 3-6✕ per week), “High 523 

Normal” (BMF = 1-3✕ per day) which is the reference category in regression, and “Diarrhea” 524 

(BMF = 4✕ or more per day). Red significant comparison lines across each plot denote 525 

significant differences from the reference category (“High Normal” BMF), and asterisks denote 526 

FDR-corrected significance threshold. (***): p < 0.0001, (**): 0.0001 < p < 0.01, (*): 0.01 < p < 527 

0.05.  528 
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Figure S6. The remaining significant BMF-associated clinical chemistries boxplots (J-U). 530 

The remaining significant clinical chemistries from the LIMMA analysis. The horizontal axes are 531 

annotated as four BMF categories: “Constipation” (BMF = 1-2✕ per week), “Low Normal” (BMF 532 

= 3-6✕ per week), “High Normal” (BMF = 1-3✕ per day) which is the reference category in 533 

regression, and “Diarrhea” (BMF = 4✕ or more per day). Red significant comparison lines 534 

across each plot denote significant differences from the reference category (“High Normal” 535 

BMF), and asterisks denote FDR-corrected significance threshold. (***): p < 0.0001, (**): 0.0001 536 

< p < 0.01, (*): 0.01 < p < 0.05.   537 
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Figure S7. Flow Chart for Cohort Selection of Baseline Population. Individuals with the full 540 

complement of covariate data (sex, age, BMI, and CRP, LDL, A1C, and PCs1-3) were further 541 

filtered for having available baseline data for each of the following: surveys, microbiome profiles, 542 

proteomics, clinical chemistries (e.g. complete blood count, or CBC; and comprehensive 543 

metabolic panel, or CMP) and metabolomics. The “generally-healthy” exclusion criteria were 544 

then imposed (38.5% excluded; see Method Details), along with sparsity or non-missingness 545 

minimums for the features in the ‘omics data (≥ 30% prevalence for gut microbiome data, 546 

metabolomics and clinical chemistries; ≥ 50% prevalence for proteomics; and ≥ 90% prevalence 547 

and ≥ 10% affirmative for binary responses in the survey questions). These filters resulted in the 548 

final sub-cohort numbers shown on the right side of the figure in blue outlines. Additionally, the 549 

eGFR and BMF data frames were merged with the metabolomics data frame and filtered by the 550 

“generally-healthy” exclusionary criteria to achieve 572 participants with the data for the 9 BMF-551 

associated metabolites eGFR regression and mediation analysis.  552 
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 553 

Figure S8. OLS regression resulting from eGFR ~ BMF-associated metabolites + BMF.554 

The p-value for the overall generalized-linear model (eGFR ~ BMF-related metabolites) was555 

significant (N = 572, p = 2.42E-7, R2 = 0.082) and so were the p-values of the individual β-556 

coefficients for 3-IS (β3-IS = -9.69, p = 1.96E-5), BMF (denoted “bowel”; βBMF = -3.99, p = 7.88E-557 

3), and X - 12216 (βX - 12216 = -1.98, p = 1.20E-2).  558 

F. 

as 

-

-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2024. ; https://doi.org/10.1101/2023.03.04.531100doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.04.531100
http://creativecommons.org/licenses/by/4.0/


 

STAR METHODS 559 

Resource Availability 560 

Lead Contact 561 

Additional requests and information regarding resources, experimental materials, reagents, and 562 

assay vendors should be directed to and will be fulfilled by the lead contact, Sean Gibbons 563 

(sgibbons@isbscience.org).  564 

 565 

Materials Availability 566 

This study did not generate new unique reagents. 567 

 568 

Data and Code Availability 569 

● Code used to analyze 16S rRNA gene amplicon sequencing data can be found at 570 

https://github.com/gibbons-lab/mbtools. Code used to run the statistical analyses 571 

described in this paper is available at https://github.com/jajohnso29/Generally-Healthy-572 

Cohort-BMF.  573 

● Qualified researchers can access the full Arivale deidentified dataset, including all raw 574 

data, supporting the findings in this study for research purposes through signing a Data 575 

Use Agreement (DUA). Inquiries to access the data can be made at data-576 

access@isbscience.org and will be responded to within 7 business days. 577 

 578 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 579 

Institutional review board approval for the study 580 

The procedures for this study were reviewed and approved by the Western Institutional Review 581 

Board, under the institutional review board study number 20170658 for the Institute for Systems 582 

Biology and 1178906 for Arivale, Inc. 583 

 584 
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Generally-healthy cohort 585 

All study participants were subscribers in the  Arivale Scientific Wellness program (2015-2019) 586 

and provided informed consent for the use of their anonymized, de-identified data for research 587 

purposes. Participants were community-dwelling, residents of Washington State and California 588 

(which are slightly leaner and healthier than other parts of the USA), over the age of 19, non-589 

pregnant, but were not screened for the presence or absence of any particular disease. 590 

Participants provided detailed questionnaire data that included self-reported information about 591 

medical conditions and medications, along with blood and stool samples that were used to 592 

generate blood plasma metabolomics, proteomics, chemistries, and gut microbiome data (Fig 1 593 

and Table S1). 594 

Only baseline time point samples were used for each participant for the baseline ‘omics 595 

analyses. A 30% prevalence filter was implemented across the gut microbiome, blood plasma 596 

metabolomics, proteomics, chemistries, and ordinal questionnaire data analyses. This meant 597 

that each final feature in the data could contain no more than 70% missing data from the final 598 

cohort of samples in order to be retained for downstream analysis. For microbiome analyses, a 599 

filtered subcohort of 1,062 individuals with ASV-level taxa counts, BMF, sex, age, eGFR, BMI, 600 

LDL, CRP, A1C, and genetic ancestry data were selected. This filtering resulted in a total of 135 601 

genera. For the metabolomics analysis, a cohort of 486 participants with BMF, sex, age, eGFR, 602 

BMI, CRP, LDL, A1C, PC1, PC2, and PC3, and blood metabolomics data were selected. 956 603 

metabolites were retained for downstream analyses. 274 blood proteins that met the prevalence 604 

(≥ 50%) filter in the cohort of 823 individuals were retained for downstream analyses. A ≥ 30% 605 

prevalence filter was applied to yield 1,425 samples with blood plasma clinical laboratory 606 

chemistries data, resulting in 55 features retained for downstream analyses. Similarly, for 607 

ordinal regression of the questionnaire data (e.g. diet, lifestyle, and stress/pain/health factors,) 608 

using the respective R package, polr 33, we collated all the responses and filtered out questions 609 
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that contained more than 10% “NAs” (≥ 90% prevalence; and for binary variables in 610 

downstream depression/anxiety analyses: ≥ 10% affirmative or “True” responses). We also 611 

excluded binary response variables for the general survey questionnaire analysis (separate 612 

from the anxiety/depression analysis, which leveraged binary response features), which are 613 

incompatible with ordinal regression, resulting in 138 variables across 1,420 participants, in 614 

addition to having paired data on age, sex, eGFR, BMI, BMF, CRP, LDL, A1C, PC1, PC2, and 615 

PC3. The final features considered needed to retain at least 2 non-missing factors (or 616 

categories) and contain at least 10 responses per category, which resulted in 99 features. BMF 617 

data was captured from responses to a survey question on how many bowel movements an 618 

individual has per week, on average. The available responses to this question were: (1) Twice 619 

per week or less; (2) 3-6 times per week; (3) 1-3 times daily; or (4) 4 or more times daily. While 620 

the normal range of BMF encompasses both the second and third responses to this question 621 

(i.e., between three times a week and three times a day) 78, we chose to define 1-3 times per 622 

day (high-normal) as the reference group for the purposes of regression. 623 

Finally, we imposed disease-related exclusion criteria, in order to generate a “generally-624 

healthy” sub-cohort. These include any participants who reported affirmative or “true” to a 625 

history of taking cholesterol, laxative, or blood pressure medication, as well as those who 626 

reported a self- or family- history presence of the following diseases: bladder or kidney disease, 627 

inflammatory bowel disease (IBD), celiac disease, diverticulosis, gastroesophageal reflux 628 

disease (GERD), irritable bowel syndrome (IBS), or peptic ulcers (See Fig. S1 in Supplement). 629 

988 (25%) out of the initial 3,955 Arivale individuals with BMF data were excluded by these 630 

filters. 631 

 632 
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METHOD DETAILS 633 

Gut Microbiome Data 634 

Fecal samples from Arivale participants were collected (described in Diener et al 12 and detailed 635 

here) from proprietary at-home kits developed by two microbiome vendors (DNA Genotek and 636 

Second Genome). Using the KingFisher Flex instrument, the MoBio PowerMag Soil DNA 637 

isolation kit (QIAGEN) enabled the isolation of stool DNA from 250 ml of homogenized human 638 

feces, after performing an additional glass bead-beating step. Qubit measurement and 639 

spectrophotometry were also performed using an A260/A280 absorbance ratio.  640 

16S amplicon sequencing was run on a MiSeq (Illumina, USA) with either paired-end 641 

300-bp protocol (DNA Genotek) or paired-end 250-bp protocol (SecondGenome). The FASTQ 642 

files were provided by the Illumina Basespace platform after the phiX reads were removed with 643 

basecalling. Length cutoffs of 250-bp for the forward reads and 230-bp for the reverse reads 644 

were employed. Any reads with more than 2 expected errors or ambiguous base calls under the 645 

Illumina error model were eliminated. Over 97% of the reads passed these filters, resulting in 646 

approximately 200,000 reads per sample. 647 

 Final truncated and filtered reads were then used to infer amplicon sequence variants 648 

(ASVs) with DADA2 79. Each sequencing run separately resulted in its own error profiles.  The 649 

final ASVs and counts were then joined, with chimeras removed using DADA2’s  “consensus” 650 

strategy. After this step, ~16% of reads were removed. Taxonomic assignment of ASVs was 651 

then achieved using the naive Bayes classifier in DADA2 with the SILVA database (version 128) 652 

80. 653 

Nearly 90% of the ASVs were classified down to the genus level, which was the 654 

taxonomic level chosen for this analysis. 3,694 samples across 609 taxa were available from 655 

these methods, which were then filtered down to 135 taxa after using a 30% prevalence filter 656 

(no more than 70% of data was permitted to be missing per filtered taxa). Samples were 657 

rarefied to an even depth of 13,703 reads prior to calculating alpha-diversity metrics (using the 658 
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“rarefy_even_depth( )” function in the phyloseq R package 81; rng seed = 111). ASV richness 659 

(Observed ASVs), Shannon Diversity, and Pielou’s evenness were calculated. Merging with 660 

covariate data resulted in 1,062 samples with 135 taxa for downstream analyses. 661 

Olink Proteomics  662 

Blood plasma proteomic data were generated by Olink Biosciences using the ProSeek 663 

Cardiovascular II, Cardiovascular III, and Inflammation arrays. The proteins were filtered down 664 

to 274 proteins and 823 samples, retaining proteins with ≥ 50% prevalence across samples and 665 

samples with the full set of covariate data. Post-filtering, NAN values were assumed to be below 666 

detection and imputed to be the median across samples for that particular protein. The values 667 

used for the proteomics analysis were from protein readings previously batch-corrected and 668 

normalized based on the overlapping reference samples within the batch plates (i.e., a set of 669 

Arivale plasma samples that are run with each batch). The corrected values were also scale-670 

shifted to the reference sample and the original delivered data (using the seventh run as a 671 

baseline). Olink’s Proximity Extension Assay (PEA), a 2-antibody-barcode technology, is used 672 

to tag protein biomarkers with a proximity probe (which binds specifically to the target protein 673 

biomarker) and an extension probe (which carries a unique DNA barcode sequence) as 674 

described by Illumina in conjunction with Olink 82–84. Once both probes bind to each other due to 675 

a protein-protein interaction or by proximity, they trigger the activation of the extension probe, 676 

beginning the hybridization of the probe with a detection bead’s complementary DNA sequence. 677 

Each bead contains an individual identifier, which allows target proteins to be decoded 678 

according to a barcode. These methods are also described further in Zubair et al 85.  679 

 680 

Metabolon Metabolomics 681 

Metabolon obtained metabolomics data on the previously mentioned plasma samples using 682 

preparation, quality control, and collection methods described in previous studies 86. During 683 
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sample processing, the plasma samples were thawed and proteins were removed using 684 

methanol extraction. Samples were then divided into 5 fractions including a backup fraction. 685 

Organic solvents were removed using TurboVap and measurements were then performed using 686 

high-performance liquid chromatography (HPLC) and high-resolution mass-spectrometry (MS). 687 

Four separate measurements were performed using different fractions combinations: positive-688 

ion and negative-ion modes optimized for both hydrophobic and hydrophilic compounds. Batch 689 

correction was performed using quality control samples (i.e., a set of Arivale plasma samples 690 

that were run with each batch) and abundance data were normalized to these quality control 691 

samples. Metabolites were annotated according to 3 standards: Tier 1, matching to an internal 692 

standard; Tier 2, matching to a published MS spectrum; or Tier 3, matching to a known chemical 693 

formula. Unknown metabolites were unannotated and labeled with an “X - “ label followed by a 694 

unique identifier 87. 956 total metabolites showed at least 70% prevalence across 486 samples. 695 

In this analysis, missing values were imputed to be the median of the non-missing samples for 696 

each metabolite, and final downstream metabolites were log-transformed and merged with the 697 

full set of covariates. 698 

 For the multi-linear regression and causal mediation analysis, those with paired eGFR, 699 

BMF-associated metabolomics results, and BMF were filtered using the “generally-healthy” 700 

exclusionary criteria and the previously mentioned prevalence filtering for metabolomics. The 701 

remaining individuals (Fig. 8,S7; N = 572) were processed in a multi-linear regression (OLS) 702 

with eGFR ~ BMF (encoded as a value between 1 and 4 with 4 being diarrhea or the highest 703 

BMF) + the obtained metabolomics values for the 9 BMF-associated metabolites (Fig. S7-S8). 704 

The other multi-omics covariates (sex, age, BMI, CRP, LDL, A1C, and PC1-PC3) were not 705 

considered for the subsequent mediation analysis (Fig. 8; N = 562), which was performed using 706 

a mediation model with the mediate( ) function from the mediation package in R 88. Using this 707 

modeling function, the outcome model was specified as eGFR ~ 3-IS + BMF (where BMF was 708 

encoded as a binary categorical variable, with “Low” including those with low-normal BMF and 709 
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constipation, and “High” containing those with high-normal BMF and diarrhea. “Low” was the 710 

control value for BMF and “High” was the treatment value) and the mediation model was 711 

assumed to be 3-IS ~ BMF. ACME and ADE values were obtained from the model and reported 712 

using the diagram in Fig. 8. A GLM was also performed between eGFR ~ BMF, 3-IS ~ BMF, 713 

and eGFR ~ 3-IS to obtain the β-coefficients and p-values for the relationships between the 714 

mediated variables (Fig. 8). Ultimately, we also performed a similar mediation analysis as 715 

before, but with the outcome model including eGFR ~ 3-IS + BMF + vegetables intake and  a 716 

mediation model containing 3-IS regressed against BMF + vegetables intake. This modeling 717 

strategy was applied to those with questionnaire survey data (N = 571) on vegetable eating 718 

habits (respondents claiming to eat 1 or less vegetables per day were in the “Low” treatment 719 

group, while those eating more vegetables than that daily were in the “High” control group) for 720 

the participants that self-responded to the inquiry of daily vegetable eating habits, implying a 721 

relationship between dieting factors and BMF on eGFR values through the proxy of 3-IS. 722 

 723 

Blood Plasma Chemistries 724 

LabCorp and Quest phlebotomists collected blood from Arivale participants using methods 725 

described previously by Wilmanski et al and others 12. Individuals were asked to abstain from 726 

alcohol, vigorous exercise, monosodium glutamate and aspartame at least 24 hours prior to 727 

drawing of the blood, as well as fasting at least 12 hours beforehand. Blood samples were 728 

collected for clinical chemistries, metabolomics and proteomics at the same time, and within 21 729 

days of stool sampling. BMI was calculated from weight and height using the following formula  730 

��� �  
������ �	�


������� ��

�
. 4,881 samples and 68 laboratory values were filtered down using the same 731 

prevalence filtering as the metabolomics data. 1,425 samples and 55 chemistries were retained. 732 

The final 55 features were log-transformed, with missing samples imputed to be the median 733 

value of the non-missing samples. These features were merged with the full set of covariates. 734 
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eGFR was calculated based on the CKD Epidemiology Collaboration (CKD-EPI) creatinine 735 

Equation, as recommended by the current guidelines of the National Kidney Foundation 89: 736 

eGFRcr = 142 ✕ min(Scr/κ, 1)α ✕ max(Scr/κ, 1)-1.200 ✕ 0.9938Age ✕ 1.012 [if female], where Scr = 737 

standardized serum creatinine in mg/dL, κ = 0.7 (female) or 0.9 (male), and α = -0.241 (female) 738 

or -0.302 (male). 739 

  740 

Questionnaire Data  741 

3,482 self-reported questionnaire features were retrieved across 5,764 Arivale participants. 742 

After health and prevalence filtration, 138 downstream features remained, which were 743 

subsequently filtered down again to 99 final features by removing factored features with fewer 744 

than 10 responses per level and keeping features with at least 2 non-missing levels to the 745 

factor. Category responses were organized and numbered to be ordinally ascending in 746 

magnitude or intensity, with relatively even-spaced differences in magnitude between categories 747 

wherever possible (i.e. for a factored feature with levels from 1,…,n, the level labeled “1” 748 

represented responses such as “Strongly Disagree”, “Never”, “None”, or the lowest 749 

frequency/intensity, and the level labeled “n” represented responses such as “Strongly Agree”, 750 

“Always”, or the greatest frequency or intensity). These features were merged with the full set of 751 

covariate data. 752 

 753 

Depression and Anxiety Health History Data 754 

We used logistic regression to scrutinize associations between 23 (anxiety) and 35 (depression) 755 

independent binary (“true” or “false”) self-reported questions based on “self-current”, “self-past”, 756 

and “family” histories of depression or anxiety, with depression or anxiety encoded as a binary 757 

dependent variable, and BMF encoded as a categorical independent variable, and with the 758 

standard set of covariates. 759 
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 760 

QUANTIFICATION AND STATISTICAL ANALYSIS 761 

Statistical Analyses 762 

The response variables were either: centered log ratio-transformed bacterial genus data, log-763 

transformed plasma metabolomics data, batch-corrected plasma proteomics data, log-764 

transformed plasma chemistries data, or ordinal response variables from questionnaire data, 765 

depending on the analysis. For the blood proteomics, plasma chemistries, and metabolite 766 

associations, generalized linear regression models were run using the LIMMA package in R 90. 767 

BMF was encoded as a categorical variable (or in the case of analyzing alpha-diversity, it was 768 

also computed as an ordinal variable with a linear model coefficient) with categories: 1 = 769 

constipation (1-2 bowel movements per week), 2 = low-normal (3-6 bowel movements per 770 

week), 3 = high-normal (1-3 bowel movements per day), and 4 = diarrhea (4 or more  bowel 771 

movements per day). To begin characterizing the main variables in the cohorts: BMF and 772 

eGFR, a POLR regression (N = 1,425) was performed on BMF (encoded as an ordinal variable 773 

with categories “Constipation”, “Low Normal”, “High Normal”, and “Diarrhea” BMF in ascending 774 

order of magnitude) ~ eGFR + other covariates (sex, age, BMI, CRP, LDL, A1C, PC1, PC2, and 775 

PC3). Similarly, a GLM (N = 1,425) was computed for eGFR ~ BMF (also encoded ordinally) + 776 

other covariates (sex, age, BMI, CRP, LDL, A1C, PC1, PC2, and PC3). These were used to 777 

determine the significant covariates affecting each subsequent analysis (Fig. 2). Next, in each 778 

baseline regression, the following covariates were all included: sex, age, BMI, eGFR, CRP, 779 

LDL, A1C, PC1, PC2, and PC3. Gut bacterial genus-level counts were modeled with a beta-780 

binomial distribution using the CORNCOB package in R 32. For the questionnaire data (ordinal 781 

response categories across diet, exercise, stress, pain, and other lifestyle factors), polr in R was 782 

used for the ordinal regression analysis (POLR). For the anxiety and depression data, which 783 

were binary in response (“True” or “False”; Non-responders to each feature were not considered 784 

and features were filtered to have at least 5 non-missing responses for each binary outcome), 785 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2024. ; https://doi.org/10.1101/2023.03.04.531100doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.04.531100
http://creativecommons.org/licenses/by/4.0/


 

logistic regression was performed using the “glm(family = “binomial”)” function in R. All 786 

questionnaire and anxiety/depression response modeling results were FDR-corrected for 787 

significance. Finally, for the Arivale cohort, the initial time point or baseline value for eGFR was 788 

obtained alongside the initial or earliest time point sample for the BMF-related metabolites. 789 

eGFR was regressed against the BMF-associated metabolites in an OLS-based linear 790 

regression to determine visible effects of these metabolites on our available samples. Finally, a 791 

mediation analysis was run using the mediate( ) function in the mediation library available for R 792 

34 on the individuals who met the “generally-healthy” exclusion criteria with paired eGFR, BMF, 793 

and 3-IS data. BMF was the treatment variable, 3-IS was the mediator, and eGFR was the 794 

response variable. ACME, ADE, total effect and proportion mediated were determined with 795 

nonparametric bootstrap confidence intervals. 796 

 797 
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