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ABSTRACT 

Pain is a complex experience involving sensory, emotional, and cognitive aspects, 

and multiple networks manage its processing in the brain. Examining how pain transforms 

into a behavioral response can shed light on the networks’ relationships and facilitate 

interventions to treat chronic pain. However, studies using high spatial and temporal 

resolution methods to investigate the neural encoding of pain and its psychophysical 

correlates have been limited. 

We recorded from intracranial stereo-EEG (sEEG) electrodes implanted in sixteen 

different brain regions of twenty patients who underwent psychophysical pain testing 

consisting of a tonic thermal stimulus to the hand. Broadband high-frequency local field 

potential amplitude (HFA; 70-150 Hz) was isolated to investigate the relationship between 

the ongoing neural activity and the resulting psychophysical pain evaluations. Two 

different generalized linear mixed-effects models (GLME) were employed to assess the 

neural representations underlying binary and graded pain psychophysics. The first model 

examined the relationship between HFA and whether the patient responded "yes" or "no" 

to whether the trial was painful. The second model investigated the relationship between 

HFA and how painful the stimulus was rated on a visual analog scale.  

GLMEs revealed that HFA in the inferior temporal gyrus (ITG), superior frontal 

gyrus (SFG), and superior temporal gyrus (STG) predicted painful responses at stimulus 

onset. An increase in HFA in the orbitofrontal cortex (OFC), SFG, and striatum predicted 

pain responses at stimulus offset. Numerous regions including the anterior cingulate 

cortex, hippocampus, IFG, MTG, OFC, and striatum, predicted the pain rating at stimulus 
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onset. However, only the amygdala and fusiform gyrus predicted increased pain ratings 

at stimulus offset.  

We characterized the spatiotemporal representations of binary and graded painful 

responses during tonic pain stimuli. Our study provides evidence from intracranial 

recordings that the neural encoding of psychophysical pain changes over time during a 

tonic thermal stimulus, with different brain regions being predictive of pain at the 

beginning and end of the stimulus. 

 
Significance Statement 

We investigated the neural encoding of pain psychophysics across 16 brain regions 

during a continuous thermal stimulus in humans. Mixed-effects models were used to 

analyze trends across 20 human subjects. Using intracranial electrodes, we show a 

parametric relationship between behavioral responses and HFA during ongoing pain. We 

found that HFA in cognitive and emotional pain processing regions was closely 

associated with pain evaluation at the stimulus onset, end, or both. The neural encoding 

of subjective pain intensity, measured by a visual analog scale, differed from that of binary 

pain intensity. Perception and psychophysical correlates to pain depend on how patients 

are asked to evaluate it. Our findings provide evidence that HFA can serve as a neural 

marker within specific brain regions of behavioral pain responses, as measured by sEEG. 
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Introduction 

Pain is a complex and multi-faceted experience that encompasses sensory, 

emotional, and cognitive aspects (Tan and Kuner, 2021). The ability to feel pain is a 

crucial defense mechanism managed by several processing networks. Unlike other 

sensory modalities, pain does not appear to have a single primary brain region 

responsible for initial processing, as shown by multiple studies (Kucyi and Davis, 2015; 

Bastuji et al., 2016; Seymour, 2019; Caston et al., 2020). When pain persists without an 

apparent cause, it becomes a chronic condition that can devastate one's quality of life. 

When pain arises without a noxious stimulus, it suggests a disruption in the connection 

between the stimulus and psychophysical correlates. Understanding this interaction could 

offer valuable information for managing chronic pain. 

Much of what is known about pain processing has resulted from studies that induce 

pain in healthy volunteers using brief, millisecond-long stimuli with infrared lasers 

(Markman et al., 2013; Kim et al., 2015; Liu et al., 2015). Such work has revealed pain 

networks comprise of regions such as the somatosensory, insular, and prefrontal cortices 

(Davis et al., 2002; Wager et al., 2013; Asad et al., 2016; Xu et al., 2020; Mancini et al., 

2022). Noninvasive imaging studies inducing tonic pain with thermodes suggest that 

ongoing pain activates similar brain regions as brief experimental stimuli 

(Schreckenberger et al., 2005; Owen et al., 2010; Wasan et al., 2011). However, it’s 

thought that experimental tonic pain also involves the medial prefrontal cortex and related 

projections, such as the anterior cingulate cortex (Marusak et al., 2016), nucleus 

accumbens (Baliki et al., 2010), hippocampus, periaqueductal gray, globus pallidus, and 

subthalamic nucleus (Etkin et al., 2011; Schulz et al., 2015; Ong et al., 2019). The 
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involvement of these regions during experimental tonic pain may indicate a shift from 

sensory to emotional and cognitive encoding-based processes (Tan and Kuner, 2021). 

The spatiotemporal dynamics of these emotional and cognitive encoding-based 

processes are crucial in understanding how pain is shaped.  

We sought to understand the psychological aspects of painful experiences with 

high spatiotemporal resolution recordings of neuronal population activity in human 

participants and statistical modeling of two types of psychophysical ratings. We 

hypothesized that regions involved in somatosensation and perception would have 

increased gamma activity if the subject later evaluated that stimulus as painful. At the end 

of the stimulus, we hypothesized that high gamma activity would dissipate from regions 

involved at the onset of the trial and instead would develop in regions involved in 

cognitive-emotional processing. Our results revealed that the inferior, middle and superior 

temporal gyrus (ITG, MTG, STG) predicted both binary and numerical psychophysical 

correlates of pain. Other regions, such as the cingulate cortex, orbitofrontal, 

hippocampus, and amygdala, had HFA amplitudes associated with higher numerical 

ratings of pain. We describe the utility of understanding how these regions interact and 

propose future studies of interest.  

 

Methods and Materials 

Patient Selection 

Patients undergoing routine intracranial monitoring with sEEG for localization of epileptic 

foci were screened for inclusion in the study between 2020 and 2022.  A total of 20 

patients (12 female, 8 male) met the inclusion criteria (see below) and were included in 
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the final data analysis. The sample size was determined from an a priori power analysis 

with an assumed effect size (f = 0.625), type I error probability (α= 0.05), and power 

threshold (0.80). The age range of the patient population was 21-66 years (mean 38 ± 10 

years), and all patients had a diagnosis of drug-resistant epilepsy as determined by a 

multidisciplinary conference at our institution. All patients underwent sEEG implantation 

for clinical purposes. Participation in the research study was obtained through informed 

consent under a protocol approved by the University of Utah Institutional Review Board. 

To be eligible for the study, participants must have been 18 years of age or older, able to 

give informed consent, without any nerve damage in their arms or hands, able to 

communicate during the task, and not have any serious medical conditions such as 

bleeding disorders or cancer. Patients were excluded if their seizures interfered with data 

collection.  

 

Psychophysical Pain Task 

Our research group recently developed and fabricated a thermoelectric device 

compatible with intracranial electrodes. The device and integrated software have been 

validated as a psychophysical pain task in healthy human subjects (Caston et al., 2023). 

The task consists of four main events (Figure 1A), which occur in a single trial: 1) The 

participant places their hand on the device for 10 seconds, 2) the participant removes 

their hand from the device, 3) the participant responds to whether the trial was perceived 

as painful, and 4) the participant rates the perceived pain and heat intensity on a scale of 

0-10. Each of these events is time-locked to the ongoing intracranial recording. The start 

and end of each trial are time-locked using a capacitive touch sensor under the device's 
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surface. The patient used their dominant hand unless an intravenous access site was on 

that hand. 

The thermoelectric device also includes built in software that implements a 

psychophysical algorithm to estimate pain thresholds (QUEST Psychtoolbox, (Watson, 

2017)). The algorithm incorporates the participant's responses after each trial. This 

enables adaptation to the most likely pain threshold temperature. Participants completed 

at least 20 trials to allow adequate sampling for signal processing. The full description of 

the psychophysical pain task and its capability is reported elsewhere (Caston et al., 2023). 

 

Electrode Localization 

The study utilized electrodes designed for sEEG. The locations of the electrodes 

were identified using each patient's structural magnetic resonance imaging coregistered 

with postoperative high-resolution computed tomography using the LeGUI software 

package (https://github.com/Rolston-Lab/LeGUI) (Davis et al., 2021). The Brainnetome 

atlas was used within LeGUI to label the anatomical region based on the electrode 

locations (http://atlas.brainnetome.org) (Fan et al., 2016). The electrode labels were then 

converted to regional gyri by only keeping the first part of the alphanumerical atlas label. 

The distinction between the right and left hemispheres was also removed. For example, 

the Brainnetome label "Amyg_L_2_1" was collapsed to "Amyg." Electrode locations were 

not included if they were within white matter or if at least three unique patients did not 

have electrodes in the same region.  

Sixteen total areas were represented by 3 to 20 unique patients (Figure 1B). The 

number of patients and the average number of electrodes representing each brain area 
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is shown in Table 1. The electrodes sampling the 16 brain regions were visualized in 

Montreal Neurological Institute (MNI) space using NeuroMArVL 

(https://github.com/mangstad/neuromarvl . 

 

Data collection and preprocessing  

Neurophysiological data were recorded using a 128-channel data acquisition 

system (NeuroPort, Blackrock Microsystems, Salt Lake City, UT). Recorded data were 

bandpass filtered online at 0.3-250 Hz and sampled at 1 kHz. Reference channels were 

chosen for each patient consisting of a single intracranial depth electrode contact located 

in the white matter without artifact or epileptiform activity. The reference electrode was 

selected after electrode location labeling. An intracranial reference in white matter was 

chosen based on the improved signal quality over a scalp or skin reference.  

A 60 Hz notch filter was applied to remove line noise. Recordings were referenced 

using the common median, which is more robust to large amplitude transient events than 

the common average reference (Rolston et al., 2009). Data were segmented into epochs 

of -250 ms to 1000 ms for the trial start and -1000 to 1000 ms at the trial end to facilitate 

analysis relative to specific trial events, which occurred at 0 ms. These events included: 

1) initiation of stimulus delivery upon participant's hand placement on the device and 2) 

removal of the participant's hand from the device. After removing their hand from the 

device, participants responded via a touchscreen monitor to whether the stimulus was 

painful. Participants subsequently provided a numerical rating of perceived pain intensity 

on a scale of 0-10 (visual analog scale, VAS), which was not time-locked to the 
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intracranial recordings. Both pain evaluation metrics were utilized as response variables 

in mixed-effects modeling.  

Epileptiform discharges/noise spikes were identified as outliers if the epoch 

contained a value that was more than three median absolute deviations from the median. 

Channels were also visually inspected for artifacts after this automated analysis. Signals 

were downsampled to 500 Hz for subsequent analyses.  

sEEG recordings allow evaluation of local neural activation through changes in 

amplitude within the broadband high-gamma frequency range (HFA; 70- 150 Hz) in the 

recorded local field potential (LFP) (Ray and Maunsell, 2011; Buzsáki et al., 2012; Bartoli 

et al., 2019). HFA is highly correlated with both blood-oxygen-level-dependent fMRI and 

population firing rates. It is useful for bridging the gap between human neuroimaging 

results and findings from nonhuman primate electrophysiology studies (Miller, 2010). HFA 

was isolated through bandpass filtering the LFP between 70-150 Hz using a 4th-order 

zero-phase Butterworth filter. The absolute value of the Hilbert transform was applied to 

isolate the amplitude of the HFA component. The signal was smoothed using a moving 

average filter with a 300 ms fixed window. The epochs for each channel were normalized 

against baseline activity, using the mean and standard deviation from -3 to -2 s relative 

to the trial event onset. The time-locked epochs were z-scored using the mean and 

standard deviation to represent the relevant event being modeled.    

 

Experimental Design and Statistical Analyses 

To investigate the relationship between HFA and painful experience, we used 

generalized linear mixed-effects (GLME) models. Trials from all patients were separated 
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by brain region (see Electrodes for brain region labeling). We focused our analyses on 

the first and last seconds when the hand was exposed to the stimulus. We also evaluated 

the second after the hand was removed, right before they registered their binary choice. 

We chose a time window of 500 ms with a 250 ms overlapping sliding window to capture 

the likely physiological HFA of painful stimuli (Bastuji et al., 2016).  

Two different types of GLME models were employed. The first model examined 

the relationship between HFA and whether the patient responded "yes" or "no" to whether 

the trial was painful (binary response). The fixed effect in this model was the mean HFA 

amplitude in one of the 16 brain regions during the 500 ms window, while the random 

effects were trial temperature and patient identity. A binomial distribution was used 

because the response variable was binary. The Wilkinson notation for this model was: 

y~A+(A|B)+(A|C), where A was HFA amplitude for the particular brain region, B was the 

trial temperature on the thermoelectric device, and C was the patient identity. A random 

intercept and slope model was specified to account for variation in the fixed effect across 

subjects and temperature.  

The second model evaluated the relationship between HFA and the numerical pain 

rating on a scale from 0 to 10. As in the first model, the fixed effect was the mean HFA 

amplitude in one of the 16 brain regions during a 500 ms window. As previously, the 

random effects were trial temperature and patient identity. This response variable was a 

numerical pain value between 0 and 10. 

Statistical significance for each model was determined by a permutation test, 

where the model was re-evaluated 1,000 times with patients' responses randomly 

permuted. The 95% range of the pseudo-t-statistics was used to determine the bounds 
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of t-statistics associated with randomness. The true model was considered significant if 

the real t-statistic did not fall within these bounds. For the significantly predictive windows, 

an observed probability, P, was determined by adding the number of pseudo-t-statistics 

greater than the real t-statistic, multiplying by two to account for the two-sided distribution, 

and then dividing by the 1000 total observations. The smallest possible P-value was 

£0.002. Heatmaps of the real t-statistics were generated for each brain region and time 

window to visualize the models that significantly predicted the response variable.  

 

Evaluating model accuracy and predictions 

We evaluated the accuracy of statistical models to predict the relationship between 

high-frequency activity (HFA) and pain response. The accuracy of the models was 

evaluated by comparing the real and predicted (fitted conditional) responses for each 

GLME. The error percentage was calculated as the absolute difference between the real 

and predicted responses that were most likely not painful, divided by the total number of 

trials and multiplied by 100. A lower error percentage indicates a more accurate model. 

To visualize the model's accuracy, we made scatterplots of the fitted conditional VAS 

responses versus the real VAS responses for the brain regions.  

Lastly, we evaluated the fixed-effects coefficients for all GLME models that 

predicted either the binary or VAS pain response for at least a one-time window. The 

coefficients were evaluated to understand how the response variable would change given 

a change in the mean z-scored HFA by one unit.  
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Code Accessibility 

Code used for preprocessing and analyses is available upon request.   

 

Results 

We utilized intracranial recordings to analyze changes in HFA associated with thermal 

pain perception across a distributed brain network. GLME models examined the 

relationship between HFA changes and self-reported pain. Results showed significant 

changes in HFA amplitude in multiple brain regions, including the prefrontal cortex, lateral 

temporal cortex, and others, during the time windows surrounding the four trial events of 

the task.  

Relationship between broadband gamma and the binary pain response 

We first evaluated the mean HFA amplitude during the first second the subjects' 

hand was on the device (Figure 2C, "first second"). We found that the mean HFA 

amplitude in the ITG, superior frontal gyrus (SFG), and STG was significantly higher when 

subjects responded that the stimulus was painful (response = "yes"). An example of how 

the z-scored mean HFA for the "yes" responses was different from the "no" responses is 

shown in Figure 2A. In this instance, the mean HFA amplitude in the STG for the "yes" 

responses had a similar shape to the "no" responses. However, the "yes" maximum 

amplitude was greater than the "no" responses at the onset of the stimulus and the no 

response is delayed in time relative to the yes response. 

Subjects held their hand in place on the surface of the thermoelectric device for 10 

seconds before removing it. We assessed which brain regions predicted the binary 

response at the end of the stimulus compared to the start by looking at the average HFA 
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amplitude when subjects took their hand off the device (Figure 2C, "last second"). The 

results showed increased HFA in the orbitofrontal cortex (OFC) predicted "yes" responses 

after hand removal from the device. The SFG and the striatum also predicted this 

response at different time windows. An increase in HFA in the STG predicted "no" 

responses. While the HFA associated with "yes" responses was mostly higher in 

amplitude than "no" responses, it should be noted that visualizing the z-scored mean HFA 

across time, as in Figure 2A/B, does not account for interaction variables, such as 

temperature and patient identification even though the predictive regions did account for 

these variables.  

We calculated an error metric for each brain region to evaluate the accuracy of 

each model’s prediction. The metric was the difference between the actual response and 

the response predicted by the model, with a lower error indicating a more accurate model. 

We only reported the accuracy for the predictive time windows from the analysis in Figure 

2C. The model of the SFG was the most accurate at the start of the stimulus (Figure 3A). 

The STG had a slightly higher error. The STG was less accurate during the first 0 to 500 

ms than the ITG. The STG was the least accurate of all models during the first second of 

the stimulus. The striatum was the least accurate when subjects removed their hand from 

the device but slightly less accurate than the STG. Over time, the accuracy of the STG 

improved, but the error of the striatum increased. The lowest error was found in the SFG, 

while the highest was in the striatum. 

Lastly, we evaluated the relationship between the HFA and the binary response 

variables by looking at the estimated coefficient of the HFA models. This coefficient 

represented how much the response ("yes" or "no") variable changed when the HFA 
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changed by one unit (Figure 4A). The ITG had the largest coefficient in the first 500 ms 

of the stimulus, with a value of 0.12, which means that one unit increase in the HFA would 

result in a 12% increase in the proportion of "yes" responses. The SFG had the next 

biggest coefficient, and the superior temporal gyrus had the smallest coefficient.  

In the last second of the stimulus, the model coefficient for the SFG remained 

stable. However, the coefficient peaked right when the hand was taken off the device. 

The STG coefficient was negative throughout the trial. In contrast, it was slightly positive 

during the first second of the stimulus. The coefficient for the striatum was highest at the 

end of the stimulus and remained slightly higher than the SFG coefficient. During the final 

time window, the OFC had the largest model coefficient. At the trial onset, the highest 

overall coefficient for the mixed-effect model with the binary response variable was from 

the striatum. The second highest was from the SFG from 0:500 ms relative to the end of 

the stimulus. 

 

Relationship between broadband gamma and the numerical rating of pain 

We used mixed-effects models to study the relationship between the z-scored 

mean high-frequency activity (HFA) amplitude and the numerical pain ratings the subjects 

gave in response to the stimulus. The models were similar to the one used to evaluate 

the relationship between HFA and the binary pain response. However, in this case, the 

response variable was the numerical pain score participants assigned to each trial. During 

the first second of the stimulus, when each participant’s hand was on the device, we found 

that several brain areas had a significant relationship between HFA amplitude and the 

subjects' pain rating (Figure 2F). The t-statistic was positive for all the predictive regions, 
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meaning that the z-scored mean HFA amplitudes were associated with increased pain 

ratings on the VAS. 

Several regions uniquely predicted VAS response in the first second of the 

stimulus, including the cingulate gyrus, hippocampus, inferior frontal gyrus (IFG), MTG 

(Figure 2D), OFC, and striatum. The SFG and the STG were also predictive in the first 

second of the stimulus. Two cortical areas demonstrated a relationship between the mean 

HFA amplitude and pain ratings at the beginning and right after the stimulus— the IFG 

(Figure 2E) and the STG. However, many of the same brain regions were not involved 

when the stimulus ended. The amygdala was uniquely involved in the relationship 

between HFA and pain rating. Similarly, the fusiform gyrus was involved in three-time 

windows.  

We tested the accuracy of our model by looking at the predicted and actual pain 

ratings on a scatter plot. As the pain stimulus was mild, most of the actual pain ratings 

were between 0 and 4, as shown in Figures 3B and C. When the real pain rating was 

around one, the predicted response was around one. However, when the actual pain 

rating was two, the predicted response seemed lower than two. This relationship suggests 

that the model may be under-predicting the pain score, but it could also be due to the 

limited number of higher real pain ratings.   

To see how the HFA amplitude affects future predictions of pain, we looked at the 

model coefficients for each predictive region (Figure 4B). During the first second of the 

stimulus, the biggest to smallest model coefficients were: the striatum, SFG, 

hippocampus, MTG, OFC, STG, IFG, and the cingulate gyrus. The hippocampus, STG, 

MTG, and cingulate gyrus had increased coefficients in the first second. The coefficient 
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for the SFG decreased over time. Although many regions had low coefficients, none were 

negative, which means increased HFA was always linked to increased VAS ratings. 

We compared the models for the different brain regions after removing the hand 

from the device. The fusiform gyrus had the largest coefficient, with the peak occurring at 

the end of the stimulus. The IFG was the next largest, followed by the amygdala and the 

STG. The peak model coefficient for the IFG was observed at 250 to 750 ms after the 

end of the stimulus.  

 

Discussion  

Mapping neural activity associated with ongoing pain with high spatial and 

temporal resolution is especially valuable and currently limited. Prior studies have used 

laser-based or thermode stimuli paired with noninvasive imaging or 

electroencephalography (EEG). Noninvasive imaging has provided valuable network-

level information on whole-brain activity. However, it is limited in its temporal resolution. 

EEG can measure brain activity with a better temporal resolution but has limited spatial 

resolution of deep cerebral structures. Our approach involved acquiring recordings using 

intracranial stereo-EEG (sEEG) during a psychophysical pain testing paradigm to 

evaluate temporal changes in numerous regions involved in detecting, processing, and 

responding to painful stimuli (Caston et al., 2023). We used generalized mixed effects 

modeling to understand what regions underwent neuronal activations at the beginning of 

the stimulus, how those regions changed at the end, and how these neuronal activations 

were related to how the pain was reported. 
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Traditional models propose that a stimulus produces a percept and triggers a 

behavioral response (Romo, 2013). However, recent research indicates that this linear 

sequence may not apply to pain perception. May et al. argue that behavioral responses 

influence the perception of painful stimuli (May et al., 2017). This suggests that the 

cognitive and emotional aspects of pain processing are not separate from sensory 

perception but are integrated to create the subjective experience of pain. Schulz et al. 

have demonstrated that the subjective intensity of pain differs significantly from objective 

stimulus intensity and brief pain stimuli (Schulz et al., 2015). Chronic pain is a subjective 

experience that persists for extended periods. Therefore, in this study, we focused on the 

neural activity associated with the subjective experience of persistent pain. 

Although there is limited research on temporal lobe abnormalities in chronic pain, 

it is believed that these areas are responsible for assigning emotional value to short-term 

memories associated with painful experiences (Godinho et al., 2006). Specifically, the 

STG plays a role in pain processing by monitoring the discrepancy between pain 

expectation and perception, anticipation, and expression (Budell et al., 2015; Palermo et 

al., 2015; de Pauw et al., 2019). In an fMRI study, Schwedt et al. (Schwedt et al., 2017) 

demonstrated that migraine patients may exhibit atypical connectivity between the MTG 

and a range of subcortical and cortical areas. Patients with chronic musculoskeletal pain 

disorders are similarly affected. For example, pain duration and intensity in patients with 

chronic musculoskeletal pain disorders correlate with decreased gray matter volume in 

the STG and MTG (Gerstner et al., 2011; Coppieters et al., 2016). Interestingly, recent 

evidence has shown that the STG plays a causal role in forming biased pain memories, 

as virtual lesions using transcranial magnetic stimulation reduced biased pain 
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unpleasantness (Houde et al., 2020). The MTG and STG regions might contribute to the 

emotional response of a painful stimulus, leading to dysfunction in patients with chronic 

pain over time. To better understand where the pain changes are occurring within the 

MTG and STG, future analyses should use high resolution methods like sEEG. This is 

especially important since the STG is typically associated with speech and hearing, so a 

more precise approach can provide greater spatial specificity. 

In our study, HFA at the onset of the stimulus in the ITG, SFG, and STG were 

significantly higher when participants responded that the stimulus was painful (“yes”). All 

three GLME models for these regions had a relatively low error. Since the ITG, STG, and 

MTG were predictive in both response types, we hypothesize that the temporal gyrus may 

represent more experiential aspects of pain.  

At the end of the trial, increased STG HFA was associated with an increase in “no” 

responses, opposite to the trial start. We suggest that this change may reflect behavioral 

learning of the tonic stimulus or indicate a decrease in the neural processing demand, 

completion of the task, or the disengagement of attention from the task (Madhavan et al., 

2015; Fu et al., 2018). Alternatively, it could also indicate inhibition or suppression of the 

brain region's activity by other regions in the brain. All the coefficients for the predictive 

VAS models were positive, meaning that increased HFA was always linked to increased 

VAS ratings. An increase in HFA in more than one brain region near the same time 

suggests synchronized neural activity between these regions. The synchronized activity 

may indicate that these regions are involved in the same cognitive task or communicating. 

It would be valuable to study the connectivity of ongoing pain to understand the 

relationship between these neural features.  
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Other prefrontal cortical regions predicted both responses at the beginning and 

end of the stimuli. Prior groups have established the involvement of prefrontal cortices 

(e.g., IFG, MFG, SFG) in pain's affective and cognitive dimensions (Salomons et al., 

2007; Etkin et al., 2011; Kucyi and Davis, 2015; Bastuji et al., 2016). Recent studies also 

suggest that the medial prefrontal cortex encodes the subjective perception of ongoing 

pain and that gamma oscillations in this region encode subjection pain perception 

(Hashmi et al., 2013; Schulz et al., 2015). Time-frequency analyses in patients with 

chronic back pain revealed that ongoing pain intensity is reflected in prefrontal gamma 

oscillations (May et al., 2019). A recent study using EEG and a tonic pain stimulus in 

healthy patients observed a widespread increase of gamma power correlated with 

subjective pain intensity (Peng et al., 2014). Another study supported this finding, which 

found that gamma oscillations selectively encoded the subjective perception of tonic pain 

in the medial prefrontal cortex (Schulz et al., 2015). It is currently unclear whether the 

narrowband gamma activity occurs in the same regions or if the gamma responses are a 

true reflection of the neuronal populations in the medial PFC. 

We show that the SFG and IFG encoded subjective perception at the beginning 

and end of the tonic stimulus. The prefrontal cortex receives ascending, nociceptive input 

and controls top-down pain (de Freitas et al., 2014; Ong et al., 2019; Kummer et al., 

2020). Based on these regions exhibiting HFA at the start and end of the stimuli 

associated with the psychophysical correlates, we may have also seen this phenomenon. 

However, causal evidence of this mechanism in humans experiencing tonic pain is still 

needed. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.531576doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531576
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 20 

More brain regions exhibited HFA activity parametrically related to the VAS 

response. At the beginning of the trial, HFA in the cingulate gyrus, hippocampus, 

orbitofrontal cortex, and striatum showed significant relationships with increased VAS 

ratings. By the end of the trial, HFA in the fusiform gyrus and amygdala were also 

associated with increased VAS ratings. While all these regions have previously shown 

involvement in pain processing, no one has shown a parametric relationship between 

behavioral responses and HFA during ongoing pain in these brain regions using 

intracranial electrodes. These findings suggest that the perception and psychophysical 

pain correlates depend on how patients are asked to evaluate it. The different brain 

regions involved in the VAS predictions highlight the importance of recognizing that brain 

dynamics can shift by changing just one aspect of the stimulus-perception-behavior 

relationship.  

In this study, we utilized sEEG to study the spatiotemporal dynamics of tonic pain 

processing. While sEEG has great spatial and temporal benefits, several limitations exist. 

Electrode placement was determined based on the clinical hypothesis about the seizure 

onset zone, and there are innate differences in the sampled locations between patients. 

We combined electrode laterality and broadened specific electrode labels to obtain 

adequate statistical power for group-level analyses. Future analyses may use our findings 

to study the described regions with higher resolution. We also did our best to limit 

experimentation with patients receiving pain medication within 4 hours, despite pain 

medication being commonly indicated for patients with sEEG. Additionally, pain sensitivity 

may differ from one patient to another (at baseline and after surgical electrode 

placement), and sEEG is associated with lower pain medication use than other 
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intracranial recording techniques (Scoville et al., 2021). To account for this, we used a 

maximum-likelihood adaptive procedure within the psychophysical testing paradigm to 

optimize the stimulus intensity for each patient. We also accounted for potential 

differences in stimulus intensity perception in our GLME models by including temperature 

as a random effect related to the HFA slope. Lastly, we observed the binary response 

model for the SFG and STG, and the VAS response model for the hippocampus, MTG, 

OFC, SFG, and STG were predictive starting at -250 ms relative to the stimulus onset. 

This could be explained by the small degree of error associated with the trial start 

recorded by the capacitive touch sensor. The patient may have their hand on the device 

but hasn’t applied enough pressure to trigger the recorded start time even though the 

stimulus is on.  

Our study sheds light on the spatiotemporal dynamics of neural activity associated 

with psychophysical pain evaluation. Our findings indicate that depending on the 

psychometric variable in question, different brain regions may be involved in processing 

pain. These regions may exhibit distinct patterns of activity based on the reference frame 

(beginning or end of the stimulus). Additional research examining the temporal dynamics 

during the evolution of pain will enhance our comprehension of how the relationship 

between these regions changes as pain becomes a conscious perception. 
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Table 1. Brain regions sampled across twenty patients 

region of interest unique 
patients 

unique 
electrode 
contacts 

mean electrodes per 
patient ± standard 

deviation 

Amy, amygdala 11 44 4.0 ± 2.3 

CG, cingulate cortex 20 51 2.6 ± 1.7 

FuG, fusiform gyrus 9 16 1.8 ± 0.8 

Hipp, hippocampus 18 115 6.4 ± 4.3 

IFG, inferior frontal gyrus 
(ventrolateral prefrontal cortext) 17 94 5.5 ± 3.5 

INS, insular cortex 12 30 2.5 ± 2.1 

ITG, inferior temporal gyrus 6 19 3.2 ± 1.6 

MFG, middle frontal gyrus 
(dorsolateral prefrontal cortex) 17 116 6.8 ± 3.8 

MTG, middle temporal gyrus 19 140 7.4 ± 3.7 

OFC, orbitofrontal cortex 18 190 10.6 ± 8.1 

PrG, precentral gyrus 3 15 5.0 ± 1.0 

SFG, superior frontal gyrus 13 32 2.5 ± 1.6 

STG, superior temporal gyrus 11 36 3.3 ± 3.8 

Str, striatum 10 41 4.1 ± 2.4 

Tha, thalamus 5 19 3.8 ± 1.1 

pSTS, posterior superior 
temporal sulcus 3 9 3.0 ± 2.6 
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Figure 1. Psychophysical task paradigm and intracranial recording locations 
1A: Pain stimuli of varying intensity were applied to the hand's palmar surface in patients with 
intracranial electrodes. The intensity of the stimulus was adjusted in each trial. One trial 
constituted having the hand on the stimulus for 10 seconds (top left). The patient removed their 
hand from the device (top right). After removing their hand, the patient responded to the question, 
"Was that painful?" on the touchscreen monitor (bottom left). After answering "yes" or "no," the 
patient filled out how painful, hot, or cold the stimulus felt on a scale of 0-10 (bottom right). After 
submitting their answers, the stimulus was adjusted, and the sequence was repeated.  
 
1B: A wide array of neural structures were sampled. Electrode locations for all 20 patients are 
shown according to the coordinates in MNI space. We analyzed electrodes within a known gray 
matter location of the Brainnetome Atlas. The electrode location also had at least three unique 
patients representing it within the GLME models. Electrode locations were colored according to 
the region of interest. While this figure shows electrode locations as right and left, we did not 
distinguish lateralization within the analysis.  
 
Figure 2: Relationship between HFA and the psychophysical evaluation of pain 
2A: The mean "yes" and "no" z-scored mean HFA during the first second of the trial within the 
superior temporal gyrus showed differential activity. The predictive time window from the heatmap 
is shaded in grey.  
 
2B: At the end of the trial, there is still a time window where the HFA is predictive of the proportion 
of "yes" responses. However, the signal is different in shape and amplitude than at the onset of 
the stimulus.  
 
2C: Heatmap coloring represents the real t-statistics for each brain region and overlapping sliding 
window for the binary response. Each row in the heatmap represents one of the sixteen brain 
regions analyzed. Each column represents one of the overlapping 500 ms windows that were 
analyzed. If the real t-statistic was significant (see Statistical Analysis), we outlined the region with 
a black box. The dotted vertical lines represent the onset and end of the trial. The SFG was 
predictive at the onset of the trial when the hand was initially on the device (-250:250 ms, 
P=0.006). The STG was also significant at the beginning of the stimulus until 750 ms (-250:-250 
ms, P=0.006; 0-500 ms, P=0.02; 250-750 ms, P=0.004). The ITG was significant from 0:500 ms 
(P=0.034). When the hand was taken off, HFA increased in the OFC 500 to 1000 ms after hand 
removal from the device (P=0.034). The SFG (0:500 ms, P=0.004) and the striatum (-250:500 
ms, P=0.028; 0:500 ms, P=0.016) also predicted this response but at different time windows. An 
increase in HFA in the STG was predictive of "no" responses (-250:250 ms, P=0.04; 0:500 ms, 
P=0.02; 500:1000 ms, P=0.05). 
 
2D: The lower and upper third of the VAS ratings for all trials in the MTG were determined. The 
VAS values in the lower-third were classified as "low VAS." The VAS ratings between one-third 
and two-thirds were classified as "moderate VAS," and all ratings greater than the upper third 
were considered "high VAS." The corresponding z-scored mean HFA for the three VAS categories 
demonstrates the HFA resulting in specific VAS responses. The high VAS scores have the largest 
HFA amplitude.  
 
2E: Similar to Fig. 2D, but for the IFG. The mean HFA for all three groups seems relatively similar 
until 250 ms, where the HFA associated with the moderate VAS remains bigger, but the high VAS 
and low VAS values taper off.  
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2F: Heatmap coloring represents the GLME model results for determining whether HFA predicted 
the VAS response. Several unique regions in the first second of the stimulus included the 
cingulate gyrus (0:500 ms, P=0.044; 500:1000 ms, P=0.03), hippocampus (-250:250 ms, 
P=0.048; 0:500 ms, P=0.0240), IFG (500:1000 ms, P=0.032), MTG (-250:250 ms, P=0.006; 0:500 
ms, P£0.002), OFC (-250:250 ms, P=0.044), and striatum (0:500 ms, P=0.028). The SFG (-
250:250 ms, P=0.02; 500:1000 ms, P=0.016) and the STG (-250:250 ms, P£0.002; 0:500 ms, 
P£0.002) were predictive in both models. Two areas demonstrated a relationship at the beginning 
and right after the stimulus— the IFG (250:750 ms, P=0.008; 500:100 ms, P=0.006) and the STG 
500:1000 ms (P=0.022). The amygdala was involved in the time window of -250:250 ms 
(P=0.024), and the fusiform gyrus was involved in three-time windows (-750:-250 ms, P=0.024; -
500:0 ms, P=0.014; -250:250 ms, P£0.002).  
 
Figure 3: Assessing goodness-of-fit and fitted conditional responses of predictive GLME 
models 
3A: The absolute difference between the real and fitted conditional responses gave another metric 
for evaluating how well the model represented the binary responses. The SFG had the lowest 
error at the onset of the stimulus and the end of the stimulus.  
 
3B: The fitted conditional responses versus the real VAS responses for the MTG during the 0:500 
ms window show a proportional relationship. Not many real VAS responses were greater than 
five.  
 
3C: The fitted conditional responses versus the real VAS responses for the IFG during the 
250:750 ms window show a proportional relationship. 
 
Figure 4: Model coefficient estimates predict change in psychophysical pain evaluation 
given HFA 
4A: The estimates for each time window and predictive brain region are shown. The square 
markers represent the time window that was predictive from the heatmaps in Fig. 2C. The STG 
had the smallest coefficient of 0.02, which means that a small increase in the HFA would lead to 
a 2% increase in the proportion of "yes" responses. The SFG had a slightly larger coefficient of 
0.04 at the beginning of the trial (-250:250 ms). The coefficient for the STG increased slightly to 
0.03. The largest coefficient was observed in the ITG from 0:500 ms (0.12). At the end of the 
stimulus, the SFG coefficient peaked right when the hand was taken off the device (0.19, 0:500 
ms). The STG coefficient was negative throughout the trial, although slightly positive during the 
first second of the stimulus. The coefficient for the striatum was highest when the hand was 
removed from the device (0.31). It remained slightly higher than the coefficient for the SFG during 
this time. During the final time window, the OFC had the largest model coefficient at 0.16. The 
highest overall coefficient for the mixed-effect model with the binary response variable was from 
the striatum at -250:250 ms relative to the end of the stimulus (0.31). The second highest was 
from the SFG from 0:500 ms relative to the end of the stimulus (0.19). 
 
4B: Model coefficients when VAS was the response variable were relatively similar between 0 
and 0.1 during the onset. However, the striatum coefficient was much larger. During the first 
second of the stimulus, the biggest to smallest model coefficients were: striatum (0.25), SFG 
(0.15), hippocampus (0.087), MTG (0.061), OFC (0.054), STG (0.052), IFG (0.04), and the 
cingulate gyrus (0.035). The hippocampus, STG, MTG, and cingulate gyrus had increased 
coefficients in the first second. The coefficient for the SFG decreased over time. Although many 
regions had low coefficients (0.1), none were negative, which means increased HFA is linked to 
increased pain ratings. The fusiform gyrus had the largest coefficient of 0.21, with the peak 
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occurring at the end of the stimulus. The IFG had a coefficient of 0.11, followed by the amygdala 
with 0.095 and the STG with 0.043. The peak model coefficient for the IFG was observed at 250 
to 750 ms after the end of the stimulus.  
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