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ABSTRACT

The human genome contains millions of candidate cis-regulatory elements (CREs) with
cell-type-specific activities that shape both health and myriad disease states. However, we lack a
functional understanding of the sequence features that control the activity and cell-type-specific
features of these CREs. Here, we used lentivirus-based massively parallel reporter assays
(lentiMPRAs) to test the regulatory activity of over 680,000 sequences, representing a nearly
comprehensive set of all annotated CREs among three cell types (HepG2, K562, and WTC11),
finding 41.7% to be functional. By testing sequences in both orientations, we find promoters to
have significant strand orientation effects. We also observe that their 200 nucleotide cores
function as non-cell-type-specific ‘on switches’ providing similar expression levels to their
associated gene. In contrast, enhancers have weaker orientation effects, but increased
tissue-specific characteristics. Utilizing our lentiMPRA data, we develop sequence-based models
to predict CRE function with high accuracy and delineate regulatory motifs. Testing an
additional lentiMPRA library encompassing 60,000 CREs in all three cell types, we further
identified factors that determine cell-type specificity. Collectively, our work provides an
exhaustive catalog of functional CREs in three widely used cell lines, and showcases how
large-scale functional measurements can be used to dissect regulatory grammar.
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INTRODUCTION

Sequence variation in gene regulatory elements is a major cause of human disease1–3. For
example, the overwhelming majority of genome-wide association studies (GWAS) for common
disease unambiguously implicate noncoding haplotypes that contain distal gene regulatory
elements, such as enhancers, in numerous disorders4–7. However, identifying, characterizing,
and/or predicting the functional effects of nucleotide variation in gene regulatory elements
remains challenging for the following reasons: 1) the lack of a ‘regulatory code’ through which
the molecular consequences of a given noncoding variant might be accurately predicted; 2) the
lack of a comprehensive delineation of the likely millions of regulatory elements in the human
genome; 3) the difficulty of assigning regulatory elements to the genes that they regulate; 4) the
cell-type specificity and/or association of regulatory elements, as well as noncoding variant
effects, with developmentally or homeostatically transient cell states; 5) the minute effect sizes
of many phenotypically relevant variants; and 6) the potential redundancy and/or cooperativity
between regulatory elements.

The emergence of genome-scale biochemical technologies to globally catalog regions of open
chromatin (DNase-seq, ATAC-seq), transcription factor (TF) binding, histone modifications
(ChIP-seq or CUT&RUN) and mRNA expression levels (RNA-seq) has provided a framework to
investigate gene regulatory and transcriptional landscapes in hundreds of cell types8,9. These
efforts have led to the discovery of millions of CREs in the human genome. However, this type
of approach has some inherent limitations: 1) These types of data are descriptive, providing the
potential for a sequence to be a CRE, but not a functional assay or readout to actually test this; 2)
These descriptive data do not tell us which gene(s) are regulated by any given element, the
magnitude of activity (i.e., the level of transcriptional activation conferred by a promoter or
enhancer), nor the impact of genetic variation on that activity (e.g., the effect of a single
nucleotide variant within a predicted enhancer that could underlie a proximally located GWAS
hit or disease association); 3) The resolution of descriptive methods tends to be coarse. For
example, it is unclear how the boundaries of ChIP-seq-defined binding peaks relate to the true
boundaries of the corresponding CRE with respect to its functional activity. Furthermore, such
assays provide little insight into how individual regulatory elements are internally organized to
mediate a specific pattern of expression, and are intrinsically limited by the availability of
specific antibodies. Other assays such as DNase-seq may provide greater resolution, but are
nevertheless fundamentally descriptive. For example, DNase I hypersensitivity will not
distinguish between spurious and functional binding events of a given TF, nor does it inform the
functional identity of a regulatory element (e.g., enhancer vs. promoter), its magnitude of
activity, or the gene(s) that it regulates.

Massively parallel reporter assays (MPRAs) overcome many of these limitations by testing
thousands of sequences/variants for their regulatory activity in a multiplex fashion10. By linking
thousands of sequences to a transcribed sequence-based barcode and measuring their
transcriptional activity via RNA-seq, normalized for its cellular integration by sequencing the
corresponding DNA barcode (via DNA-seq), MPRAs provide a functional and quantitative
measurement for thousands of CRE sequences/variants independent of their location and
epigenetic context. Previous work has utilized self-transcribing active regulatory region
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sequencing (STARR-seq) to test a large number of sequences for regulatory activity in human
cells11–14. This includes, for example, the testing of various TF binding sequences (TFBSs) in 49
bp chunks, 500 bp human genome random fragments, 170 bp synthetic random sequences, and
150 bp synthetic enhancer–promoter combinations in human colon carcinoma cells (GP5d)14.
Another example involved the deployment of whole-genome STARR-seq in human prostate
cancer cells (LNCaP)12. However, these assays utilize transfection to introduce a large number of
sequences, providing an episomal (‘out of genome’) readout, and only work in a limited number
of established cell types that can be robustly transfected and grown in large quantities. To
address these and other limitations of episomal MPRAs, we previously developed a
lentivirus-based MPRA (lentiMPRA) that enables reproducibility and multiplexability, the ability
to carry out these assays in ‘hard to transfect cell lines’, and provides an ‘in genome’ readout
whose results are more strongly correlated with ENCODE annotations and sequence-based
models15. However, this method had been limited in terms of the number of sequences/variants
that could be tested in a single experiment (i.e., up to 14,000)16,17.

Here, we further develop lentiMPRA and confirm the reproducibility and reliability of this
technology to test over 200,000 sequences in a single experiment, which covers the majority of
CREs of any given human cell type18. We utilize our substantially expanded MPRA data in three
major ENCODE cell types, human hepatocytes (HepG2), lymphoblasts (K562), and induced
pluripotent stem cells (iPSCs; WTC11), to examine the relative orientation dependence of
promoters and enhancers. Furthermore, we test 60,000 sequences in all three cell lines. Utilizing
our data, we characterize the activity effect of a core promoter region and train models that can
characterize regulatory activity in both promoters and enhancers. We identify both biochemical
and sequence-based features that are associated with cell-type-specific activity and provide a
catalog of thousands of functional CREs, a unique and nearly comprehensive dataset that
advances our understanding of genotype-to-phenotype associations in gene regulatory sequences.
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RESULTS

Optimization of lentiMPRA technology
To scale up lentiMPRA15,19, we revised our established protocol to add random barcodes to the
assayed sequences during the library amplification step16,17,20. This framework consisted of: i)
ordering an Agilent library of oligonucleotides, ii) adding a minimal promoter and random
barcodes through two sequential PCR steps, and iii) cloning these elements into the pLS-SceI
vector (Extended Data Fig. 1a). Subsequently, element-barcode associations were reconstructed
through sequencing (Extended Data Fig. 1b) and analyzed with MPRAflow20. To evaluate the
robustness of this revised lentiMPRA approach, we designed two pilot libraries (Extended Data
Fig. 2a). The first library encompassed 9,372 elements in HepG2 cells, and consisted of: i) 9,172
putative enhancers, centered at DNase hypersensitivity peaks which did not overlap promoters;
ii) 50 positive and 50 negative controls of synthetically engineered sequences (i.e., engineered to
have multiple binding sites towards known TFs or no known binding sites, respectively)21; and
iii) 50 positive and 50 negative controls of naturally occurring enhancers (i.e., observed to
exhibit high and low enhancer activity, respectively)15. The second library encompassed 7,500
elements in K562 cells, and consisted of: i) 6,394 putative enhancers, centered at DNase
hypersensitivity peaks which did not overlap promoters; ii) 290 positive and 276 negative
controls, identified by coupling CRISPRi to single cell RNA-seq measurements to identify
functional enhancer-gene pairs22; iii) 250 negative controls derived from dinucleotide shuffling
putative enhancers; iv) 50 positive and 200 negative controls of naturally occurring enhancers
(i.e., observed to exhibit high and low enhancer activity, respectively)23; and v) 24 positive and
16 negative manually selected controls in loci of interest such as α-globin, β-globin, GATA1, and
MYC24 (Supplementary Table 1).

These pilot lentiMPRA libraries were used to transduce cells in triplicate, and barcodes were
sequenced at the DNA and RNA levels, following a published protocol from our labs20. Finally,
an activity score for each element was calculated as the log2 of the normalized count of RNA
molecules from all barcodes corresponding to the element, divided by the normalized number of
DNA molecules from all barcodes corresponding to the element (Supplementary Table 2,
Extended Data Fig. 1c). We observed ~50-250 median barcodes per enhancer in each replicate
(Extended Data Fig. 2b), confirming that quantification precision was high due to the presence
of a large number of independent measurements for each element. The final element activity
scores, i.e. log2(RNA/DNA) ratios, were highly concordant across replicates, ranging from a
Pearson correlation of 0.88-0.96 between replicate pairs (Extended Data Fig. 2c-d). Averaging
across the three replicates, we observed that the distribution of element activity scores was
strongly divergent between most positive and negative controls (Extended Data Fig. 2e). An
exception to this trend was observed for controls derived from CRISPRi-based screening
efforts22,24, which were initially chosen for testing based upon their favorable epigenetic context
(e.g., strong H3K27ac activity). In these cases, negative controls (i.e., which displayed no
significant association to a target gene) exhibited only a slightly weaker signal than positive
controls (i.e., which displayed significant association to a target gene), indicating that, in our
reporter assays and outside their epigenetic context, they were still capable of activating
transcription relative to dinucleotide shuffled negative controls (Extended Data Fig. 2e).

5

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.05.531189doi: bioRxiv preprint 

https://paperpile.com/c/Ubngj6/gbl7a+aFk8
https://paperpile.com/c/Ubngj6/5mxo+toQF+nJ80
https://paperpile.com/c/Ubngj6/nJ80
https://paperpile.com/c/Ubngj6/Ih9SC
https://paperpile.com/c/Ubngj6/gbl7a
https://paperpile.com/c/Ubngj6/wTGd
https://paperpile.com/c/Ubngj6/F54N
https://paperpile.com/c/Ubngj6/GnC6
https://paperpile.com/c/Ubngj6/nJ80
https://paperpile.com/c/Ubngj6/wTGd+GnC6
https://doi.org/10.1101/2023.03.05.531189
http://creativecommons.org/licenses/by-nd/4.0/


We next analyzed both lentiMPRA libraries for functional enhancers. For HepG2, we found
2,740 of the 8,960 (30.6%) measured putative enhancers to be more active than negative
synthetic controls21 [5% false discovery rate (FDR)]. For K562, we found 3,703 of 6,315
(58.6%) measured putative enhancers to be more active than shuffled negative controls (5%
FDR). Given the extensive prior work characterizing regulatory elements in the β-globin locus,
and the inclusion of these sequences in our K562 library, we evaluated whether our MPRA
results reproduced the findings of past work for five previously characterized CREs, termed
HS1-5 (Fig. 1a). Consistent with prior work25,26, we observed that HS2 strongly activated
transcription relative to HS1 and HS3-5 (Fig. 1a). In summary, these pilot experiments
confirmed the ability of our revised lentiMPRA protocol to measure regulatory activity with high
precision and reproducibility, and recapitulated known functional features of the β-globin locus.
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Fig. 1: Comprehensive functional validation of CREs in three ENCODE cell types using lentiMPRA. a, UCSC
genome browser tracks annotating, from top to bottom: i) five enhancers (HS1-HS5) of the globin locus tested in the
pilot K562 MPRA library; ii) DNase hypersensitivity signal in K562 cells; iii) base conservation among 100
vertebrate species; iv) gene models in the locus shown; and v) enhancer activity scores from the pilot K562 MPRA
library for each of the five enhancers tested. b, Schematic of lentiMPRA strategy for large-scale libraries. Thousands
of CREs including putative enhancers (i.e., marked by DNase peaks in the respective cell-type) and promoters [i.e.,
centered at the transcriptional start site (TSS) of protein-coding genes] are inserted in a reporter plasmid in both
orientations together with barcodes. The libraries are infected into HepG2, K562, and WTC11 cells using lentivirus,
and the integrated DNA and transcribed RNA barcodes are sequenced to quantify CRE activity. c, Composition of
the HepG2, K562, and WTC11 libraries. Thousands of putative enhancers and promoters, negative controls
(dinucleotide shuffled sequences or elements lacking a signal from prior studies), and positive controls (elements
with reported activity from prior studies) are included in each library21,23,27. Bars are colored according to orientation
tested, with accompanying numbers indicating the number of elements tested in each category. Numbers are colored
according to element type. d, Violin plots of element activity, measured as log2(RNA/DNA) ratios, for CREs,
negative controls, and positive controls for each library.

lentiMPRA CRE characterization in three cell lines
With our pilot libraries showing reproducible and robust results, we next set out to test whether
our revised lentiMPRA approach could assay the majority of CREs of any given human cell
type, i.e. over 200,000 sequences, in a single experiment. Using a similar scheme as before, we
sought to test a combination of all known 19,104 protein-coding gene promoters as well as
putative enhancers in both orientations (Fig. 1b). In HepG2 cells, we identified 66,017 putative
enhancers, and tested all promoters and putative enhancers; in K562 cells, we identified 87,618
putative enhancers, and tested all promoters and putative enhancers; in WTC11 cells, due to their
reduced transduction efficiency, we tested a subset of 7,500 promoters and 30,121 putative
enhancers from the 83,201 identified putative enhancers (Fig. 1c, Methods). To further
interrogate whether open chromatin is required for transcriptional activation, we additionally
tested 14,918 heterochromatic regions in our K562 library, selected from the ±1 megabase region
around the GATA1, MYC, HBE1, LMO2, RBM38, HBA2, and BCL11A loci, all known human
disease associated and erythroid lineage genes. Collectively, incorporating dinucleotide shuffled
negative controls and other positive and negative controls identified in prior studies21,23,27, we
designed and tested a total of 164,307 elements in HepG2 cells, 243,780 elements in K562 cells,
and 75,542 elements in WTC11 cells  (Supplementary Table 3, Fig. 1c).

We observed ~20-50 median barcodes per enhancer in each replicate among all cell types
(Extended Data Fig. 3a). Element activity scores were also strongly concordant across replicate
pairs, with Pearson correlations of about 0.94 for HepG2 cells, 0.76 for K562 cells, and 0.76 for
WTC11 cells (Supplementary Table 4, Extended Data Fig. 3b-d). Averaging across the three
replicates, we also observed strong agreement among element activity scores between CREs
common to both our pilot and large-scale libraries (Pearson r = 0.94 in HepG2 cells and r = 0.81
in K562 cells, Extended Data Fig. 3e). We observed that the distribution of element activity
scores was strongly divergent between positive and negative controls in each cell type, with
promoters and putative enhancers spanning the range in between both extrema (Fig. 1d).
Promoters exhibited, on average, higher activity scores and a bimodal distribution compared to
putative enhancers, which exhibited a right-skewed distribution in all cell types (Fig. 1d). This
bimodal distribution was likely caused by inactive promoters exhibiting little to no activity in the
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MPRA. We next analyzed all libraries to empirically measure the proportion of functional CREs
among each element type and cell type. Using shuffled controls as a background set in each cell
type and both orientations of measured CREs as a foreground set, we found over 50% of all
promoter sequences to have regulatory activity [HepG2: 11,367 of 20,816 (54.6%); K562:
15,362 of 29,376 (52.3%); WTC11: 5,038 of 9,964 (50.6%); 5% FDR]. For enhancers, we found
as many as 42% to be active [HepG2: 50,714 of 118,433 (42.8%); K562: 69,820 of 169,260
(41.3%); WTC11: 11,861 of 45,942 in (25.8%); 5% FDR].

Properties of human promoters and their orientation dependence
Following procedures established in our prior work19, we utilized our substantially expanded
MPRA data to examine the relative orientation dependence of promoters and enhancers. Towards
this goal, we quantified the degree to which CREs exhibited observable orientation dependence.
In all cell types examined, CREs cloned in the same orientation (i.e., forward vs. forward or
reverse vs. reverse) exhibited a correlation of ~0.2 greater among replicate pairs than CREs
cloned in the opposite orientation with respect to the reporter (i.e., forward vs. reverse or reverse
vs. forward) (Fig. 2a). When averaging among replicates in HepG2 (i.e., the cell type with the
greatest technical reproducibility among replicates), we detected a substantial number of CREs
which exhibited greater activity in one orientation relative to the other (Fig. 2b). These findings
suggest that the activity of CREs is largely, but not completely, independent of orientation.

Fig. 2: Orientation-dependent properties of human enhancers and promoters. a, Beeswarm plot of the Pearson
correlation values corresponding to each of the three pairwise comparisons among the three replicates. The
correlations are computed between observed CRE activity values for elements positioned either in the same
[Forward (F) vs. F and Reverse (R) vs. R)] or opposite (F vs. R and R vs. F) orientations. b, Scatter plots of the
average activity score for each CRE in the F vs. R orientation. Regions are colored according to the density of data
from light blue (low density) to yellow (high density). Also indicated are the Pearson (r) and Spearman (rho)
correlation values. c, Boxplots showing the distribution of strand asymmetries for promoters and putative enhancers
for each cell type. Indicated is the median residual value (bar) and 25th and 75th percentiles (box). The difference
between each pair of distributions was evaluated with a one-sided Wilcoxon rank-sum test. d, Upper triangular
heatmap indicates the correlation between the sense (s) and antisense (as) orientations of promoters tested in the
MPRA as well as endogenous gene expression levels measured in transcripts per million (TPM) using RNA-seq.
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The sizes of the circles are proportional to the Pearson correlations. e, Scatter plots of activity scores for
sense-oriented promoters tested in the MPRA and endogenous gene expression levels for HepG2 cells. Expression
levels follow a bimodal distribution.

To further compare the properties of strand asymmetry between promoters and enhancers among
each element type, we analyzed strand asymmetry distributions, defined as the absolute deviation
between activity scores from one orientation to the other. Consistent with prior work28,29, we
observed that promoters displayed greater strand asymmetry effects relative to putative
enhancers in all cell types examined (Fig. 2c), supporting the conclusion that they contain TFBSs
that promote transcription unidirectionally (or at least more unidirectionally than enhancers).

Given the enhanced orientation dependence of promoters, we sought to evaluate the relationship
between orientation-specific promoter activity as measured by both the lentiMPRA and
RNA-seq of endogenous genes. Across all pairs of cell types, MPRA measurements from the
same orientation (i.e., sense vs. sense or antisense vs. antisense) displayed greater correlation
than measurements from the opposite orientation (i.e., sense vs. antisense) (Fig. 2d).
Furthermore, when comparing against endogenous expression levels, we observed: i) MPRA
measurements from the matched cell type displayed nearly the same correlations as those from a
different cell type; and ii) for each cell type, MPRA measurements from the sense orientation
displayed greater correlation to endogenous gene expression levels than promoters tested in the
antisense orientation (Fig. 2d). These results indicate that core promoters possess a reproducible
orientation dependence and little cell-type specificity.

Despite relating to a very short promoter definition, the 200 bp core promoters centered at the
transcriptional start site (TSS) and tested with lentiMPRA strongly recapitulated endogenous
gene expression levels (Pearson r ≈ 0.55, Fig. 2e, Extended Data Fig. 4a-b). Due to the
switch-like (i.e., “on/off”) state of promoters, expression values fell into two modes (i.e., a
bimodal distribution), which slightly inflated these correlations. Removing all non-expressed
genes led to a modest reduction in the correlation between MPRA measurements of promoter
activity and endogenous expression levels (Pearson r ≈ 0.43, Extended Data Fig. 4c-f).
Interestingly, in WTC11 cells, we found a larger cohort of transcriptionally active genes whose
promoters were inactive in our MPRA (Extended Data Fig. 4b,f), suggestive of a shift towards
a euchromatic promoter state in this cell line. Overall, motif analysis discovered a set of motifs
enriched in the most highly vs. lowly expressed promoters; these were dominated by CpG-rich
motifs as well as TFBSs for ETV5/7, SP1/2/4, NFYA/B/C, and THAP11/STAT5B (Extended
Data Fig. 4g). While we did not anticipate such short 200 bp promoter fragments to reflect
endogenous expression levels, collectively, these findings are consistent with prior models which
showed that CpG-rich promoters are associated with elevated gene expression; and that core
promoters centered at the TSS possess weak cell-type specificity, are information dense, and
strongly predict gene expression levels30.

Biochemical features predict regulatory activity
We next set out to train regression models that can characterize regulatory activity. Previous
work by our labs trained regression models to characterize enhancer activity15,19, but were limited
in sample size (i.e., ~3,000 sequences) and underlying sampling bias (e.g., requiring elements to
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have a strong H3K27ac signal). Here, we took advantage of our sizable MPRA to
comprehensively test which biochemical signals from the matched cell type explain CRE activity
(i.e., specifically, the subset of promoters and putative enhancers). We generated lasso regression
models for each cell type based upon a set of 1,506 HepG2 biochemical descriptors; 1,206 K562
descriptors; and 277 WTC11/H1-ESC descriptors (Supplementary Table 5). These descriptors
encompass features from DNase hypersensitivity, histone ChIP-seq, and TF ChIP-seq datasets.
We used these biochemical experiments to compute a feature set by extracting signal intensities
from genomic regions corresponding to our elements, and then averaging signals from the
samples for the identical TF or histone mark in order to reduce feature redundancy. This led to a
total of 655 HepG2 features, 447 K562 features, and 122 WTC11/H1-ESC features considered
by the models. We were able to predict enhancer activities with high accuracy (Pearson r ≈ 0.72)
in all three cell types (Fig. 3a) using a 10-fold cross-validation approach on our data. Many of
the top coefficients fit by these models correspond to DNase/ATAC-seq signal as well as
ChIP-seq signal for transcriptional activators (e.g., HNF1A/HNF1B/HNF4A, NFYB/NFYC,
SP1, YY1, and NRF1), coactivators (e.g., EP300 and KDM5A), repressors (REST, SUZ12,
SIN3A, HDAC1/2), chromatin organizers often found in insulators (CTCF and RAD21), and
core transcriptional machinery proteins (POLR2G and TAF1) (Fig. 3b). Despite these findings,
model interpretation was inherently limited by the substantial degree of multicollinearity among
features, as previously observed19. To minimize the chances that other important factors may
have been overlooked by lasso regression, we identified alternative features which were highly
correlated to the top-ranked features of our models (Extended Data Fig. 5). This analysis
revealed a large suite of TFs whose activity was strongly correlated to the top features, and
identified other relevant components of cohesin, including SMC3 and STAG1 (Extended Data
Fig. 5a).

Fig. 3: Prediction of sequence activity based on biochemical features. a, Scatter plot indicating relationship
between model predictions and observed element activity scores for each cell type. Pearson (r) and Spearman (rho)
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correlation values are shown after concatenating the observations for all 10 cross-validation folds of held-out data.
b, The top 30 coefficients derived from lasso regression models trained independently on each cell type.

Sequence-based models predict regulatory activity with higher precision
Given the success of sequence-based models relative to biochemical models31, we next sought to
determine the degree to which a model based on sequence features could predict the data relative
to a model based on biochemical features. Towards this goal, we benchmarked the performance
of two sequence-based models: i) MPRAnn, a convolutional neural network (CNN) trained on
our MPRA data for each of the three cell types (Fig. 4a, Extended Data Fig. 6a); and ii)
EnformerMPRA, which uses the CNN-transformer architecture Enformer32 to generate a feature
set of 5,313 biochemical predictions and then fit a lasso regression to the MPRA data using these
features. Comparing the performance of MPRAnn and EnformerMPRA to our biochemical lasso
regression model on the identical 10 folds of held-out data, we observed that MPRAnn
outperformed the biochemical model, and EnformerMPRA outperformed MPRAnn in each of
the three cell types (Fig. 4b). Combining the folds of data, our best model EnformerMPRA
achieved a performance (Pearson r ≈ 0.84, Fig. 4c) comparable to the technical noise of the
assay itself (i.e., the replication of replicates, Extended Data Fig. 3b-d). Despite its superior
performance, the multicollinearity of the feature set, coupled to the large number of features,
obfuscated a mechanistic understanding of which TFBSs drive EnformerMPRA’s predictions.
We therefore used MPRAnn, which can be easily deployed to generate in silico mutagenesis
(ISM) predictions while circumventing the need to compute an extensive feature set. Generating
ISM predictions on the full set of MPRA data, we used TF-MoDISco-lite33 to identify motifs at
variants with a large predicted effect size. This strategy identified a large suite of housekeeping
TFs predicted to activate transcription in all cell types, including JUN, NRF1, CEBPA/D/G,
USF1, THAP11, and ELF1; additionally, we discovered a motif for REST, a known
transcriptional repressor34, predicted to inhibit transcription in HepG2 and K562 cells (Extended
Data Fig. 6b). The top three TFBSs most frequently associated with transcriptional activation
among all cell types corresponded to KLF5/15, NFYA/NFYC, and FOXI1/FOXJ2; in contrast,
the top cell-type-specific TFBS corresponded to HNF4A/G in HepG2 cells, GATA2/3 in K562
cells, and POU5F1::SOX2 in WTC11 cells (Fig. 4d).

Next, we sought to validate the accuracy of our ISM scores on promoters (F9, LDLR, PKLR) and
an enhancer (SORT1) for which we had previously applied MPRA saturation mutagenesis to
measure the effect sizes of all possible variant effects of these CREs in HepG2 (F9, LDLR,
SORT1) or K562 (PKLR) cells35. Comparing MPRAnn predictions for the SORT1 enhancer to
MPRA data revealed that most of the relevant TFBSs (e.g., HNF4G, USF1, SP5, FOXI1, and
KLF5) could be detected, although the predicted effect sizes were exaggerated for other TFs
(Fig. 4e). Collectively, we observed a correlation of 0.47 for SORT1, 0.58 for PKLR, 0.61 for
LDLR, and 0.59 for F9 between model predictions and observed data (Extended Data Fig. 6c-f),
confirming that MPRAnn, despite being trained on CRE activity, could partially model the
regulatory effects of individual genetic variants.
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Fig. 4: Sequence-based models predict regulatory element activity. a, MPRAnn is a deep convolutional neural
network architecture trained to predict CRE activity from an input sequence of the tested element. b, Violin plots
showing the performances of the trained MPRAnn and EnformerMPRA models on each of the ten cross-validation
folds of held-out data, relative to the corresponding performances from our biochemical lasso regression models. An
improvement relative to another model was evaluated with a one-sided, paired t-test. c, Scatter plot indicating
relationship between EnformerMPRA model predictions and observed element activity scores for each cell type.
Also indicated are the Pearson (r) and Spearman (rho) correlation values after concatenating the observations for all
ten folds of held-out data. d, Set of enriched motifs discovered by TF-MoDISco-lite33; shown on the left are the top
three motifs detected across multiple cell types (i.e., bound by housekeeping TFs) and on the right the top motif
detected for each cell type. See also Extended Data Fig. 6b for a comprehensive list of detected motifs. e,
Saturation mutagenesis data from the SORT1 enhancer35. Shown in the top row is the reference sequence scaled to
the mean effect size among all alternative mutations, annotated by seven out of thirteen significant TFBSs that
match known motifs36. Measured effect sizes of individual variants are displayed in the second row. The bottom row
shows MPRAnn predictions as well as corresponding Pearson (r) and Spearman (rho) correlation values to the
observed data.

lentiMPRA detects factors involved in cell-type-specific activity
While our large-scale MPRAs focused upon element activity within each of several cell types,
they did not directly evaluate the cell-type-specific activity of each element. To address this
limitation, we designed a lentiMPRA library to test a common set of elements in each of the
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three cell types. This joint library consisted of ~19,000 putative enhancers from each of the three
cell lines, sampled uniformly from prior large-scale MPRA experiments to span a wide range of
activity; a subset of promoters exhibiting high expression variance as well as a wide range of
average expression among cell types from our prior large-scale MPRA experiments; dinucleotide
shuffled controls; and a set of positive and negative controls using synthetic elements engineered
to exhibit activity in HepG2 cells21, or natural elements with evidence to exhibit K562-specific
activity23 (Supplementary Table 6, Fig. 5a, Methods). Elements were largely tested in a single
orientation (i.e., sense orientation for promoters and forward orientation for putative enhancers).

We observed ~20-50 median barcodes per enhancer in each replicate among all cell types
(Extended Data Fig. 7a). Element activity scores were also strongly concordant across replicate
pairs, with Pearson correlations of 0.98 for HepG2 cells, 0.97 for K562 cells, and 0.96 for
WTC11 cells (Supplementary Table 7, Extended Data Fig. 7b-d). Averaging across the three
replicates, we also observed strong agreement among element activity scores between CREs
common to both our joint and large-scale libraries (Pearson r = 0.90 in HepG2 cells, r = 0.88 in
K562 cells, and r = 0.83 in WTC11 cells Extended Data Fig. 7e). We observed the distribution
of element activity scores to be strongly divergent and modestly cell-type-specific between
positive and negative controls in each cell type (Extended Data Fig. 8). Although promoters and
putative enhancers displayed significant activity in all cell types, the distribution of activities for
putative enhancers derived from the matched cell type was greater than those from unmatched
cell types (Extended Data Fig. 8). To examine cell-type specificity in more detail, we evaluated
the behavior of each element category (i.e., promoters or putative enhancers from each cell type)
in each pair of cell types. Promoters exhibited the strongest correlation among cell-type pairs
(mean Pearson r = 0.82); in contrast, putative enhancers displayed weaker correlations when
comparing the activity scores from the cell type from which the enhancer was derived to those
from a different cell type (Pearson r = 0.32–0.51 for HepG2 enhancers, r = 0.51–0.65 for K562
enhancers, and r = 0.64–0.65 for WTC11 enhancers, Extended Data Fig. 9). Collectively, our
results show that promoters are less cell-type specific, likely due to the presence of TFBSs for
housekeeping TFs which can universally activate them. In contrast, enhancers show stronger
cell-type specificity, in line with their presumed cell-type-specific functions37.

We next sought to more deeply interrogate the cell-type-specific activity of each element.
Towards this goal, we performed a principal components analysis (PCA) using our matrix of
element activity scores in three cell types, and removed the dominant PC, which represented the
“universal” signal of element activity among cell types. An analysis of PC2 and PC3 revealed
that promoters have a slight bias towards expression in WTC11 cells, and both controls as well
as putative enhancers have a stronger bias towards greater expression in the cell type from which
they were derived (Fig. 5b). We next computed an element specificity score, which measures
each element’s deviation from its mean activity across cell types. These scores recapitulated the
expected patterns of enrichment or depletion of element activity for different element categories,
with HepG2 and K562 controls showing strong relative activity in their respective cell types;
putative enhancers showing strong relative activity in their respective cell types; and promoters
and negative controls showing modestly stronger activity in WTC11 cells relative to others (Fig.
5c, Extended Data Fig. 10).

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.05.531189doi: bioRxiv preprint 

https://paperpile.com/c/Ubngj6/Ih9SC
https://paperpile.com/c/Ubngj6/F54N
https://paperpile.com/c/Ubngj6/ojTy
https://doi.org/10.1101/2023.03.05.531189
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 5: Assessment of CRE cell-type-specific activity. a, Composition of the joint library tested in HepG2, K562,
and WTC11 cells. A similar proportion of putative enhancers sampled from each cell type were tested as well as a
smaller number of promoters, negative controls (dinucleotide shuffled sequences or elements lacking a signal from
prior studies), and positive controls (elements with reported activity from prior studies) are included in each
library21,23. b, PCA biplot indicating the second (PC2) and third (PC3) principal components, with a random sample
of up to 1,000 data points sampled from each element category tested. The loading vectors (i.e., corresponding to
each cell type) as well as ellipses fitting the regions of highest density for each element category are also shown. c,
Violin plots showing the distribution of element specificity scores for each element category, alongside information
about which distributions shows a median significantly greater than zero (one-sided Wilcoxon signed-rank test, *p <
0.05). d, Performance of trained MPRAnn and EnformerMPRA models on each of ten cross-validation folds of
held-out data, relative to the corresponding performance of lasso regression models trained on biochemical features.
An improvement relative to another model was evaluated with a two-sided, paired t-test. e, Set of top three motifs
enriched in each cell type discovered by TF-MoDISco-lite33. See Extended Data Fig. 11 for a complete list of
detected motifs.
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We next benchmarked the performance of biochemical and sequence-based models in predicting
our element specificity scores from this lentiMPRA library. Consistent with prior results, a
multi-task version of MPRAnn outperformed the biochemical model, while EnformerMPRA
outperformed both MPRAnn and the biochemical model for each of the three cell types (Pearson
r ≈ 0.81 for EnformerMPRA; Fig. 5d). Using TF-MoDISco-lite33, we identified
cell-type-specific motifs learned by our multi-task MPRAnn, detecting 17 motifs to be associated
with cell-type-specific activation in HepG2 cells, and 9 motifs each in both K562 or WTC11
cells (Extended Data Fig. 11). The top three ranked cell-type-specific TFBSs from each cell
type include HNF4A/G, BATF3/BACH1, and HNF1A/B in HepG2 cells; GATA1::TAL1,
STAT1/4/5A, and EHF/ELF3 in K562 cells; and CTCF, POU5F1::SOX2, and SOX3/4/6 in
WTC11 cells (Fig. 5e). An examination of the gene expression levels of these TFs in our three
cell types revealed that HNF4A/G, HNF1A/B, GATA1, TAL1, STAT5A, SOX2, and SOX3
exhibited strong cell-type-specific expression in the expected cell types; additionally, CTCF
showed modestly enriched expression in WTC11 cells.
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DISCUSSION

MPRA is a high-throughput technology that enables the multiplex testing of thousands of
sequences and variants for their regulatory activity. Here, by modifying our lentiMPRA
protocols, we were able to test over 200,000 sequences in a single experiment, a number that is
in line with the majority of CREs detected via descriptive biochemical gene regulatory element
detection methods for a given cell type. By testing all protein-coding promoters, we find
significant promoter activity bias in terms of strand orientation. We also observed that a 200 bp
core promoter was sufficient to drive regulatory activity that was in line with endogenous gene
expression levels. Testing both biochemical and sequence-based models, we found the
sequence-based models to be superior in predicting element activity. By further testing 60,000
sequences in all three cell types, we found promoters to be more ubiquitous in their activity
compared to enhancers. We also identified TFBSs that appear to convey cell-type-specific
activity on enhancers.

While other large-scale MPRA datasets are available for other cell lines11–14, they are primarily
tested via episomal STARR-seq, require a very large number of cells, only provide an episomal
readout, and tend to use a strong promoter to increase the ability to detect activity12. In contrast,
our lentiMPRAs provide nearly comprehensive functional datasets for these three cell types
tested with an ‘in genome’ readout. The ability to systematically test the majority of CREs in an
unbiased manner for a given cell type allowed us to identify predictive biochemical and
sequence-based features for each cell type with high confidence.

Our large-scale lentiMPRAs allowed us to comprehensively test all known 19,104
protein-coding gene promoters in both orientations in two cell lines (HepG2 and K562) and
7,500 in a third cell line (WTC11). In addition to observing significant promoter activity bias in
terms of strand orientation in line with previous work28,29, this allowed us to extensively
characterize the sequence-based information needed to generate these ‘on/off’ switches. We
found that 200 bp blocks centered at the TSS of protein-coding genes have sufficient sequence
data to provide this switch and are sufficient to drive expression in a similar manner to their
associated gene. Dissection of the sequence content in these active core promoters versus
inactive cores found them to be enriched for CpG rich motifs that are known to have ubiquitous
function30 (Extended Data Fig. 4g). They also include the SP (SP1/2/4) family of TFs that are
known to interact with the transcription initiation complex, epigenetic regulatory and many other
TFs to provide ubiquitous promoter activity38 and the ETV (ETV5/7) family which is known to
be enriched in ubiquitously expressed promoters39. We also observed an enrichment for the NF-Y
(NFYA/B/C) family that is known to interact with the CCAAT box, usually located –89 bp and
–50 bp from the TSS in TATA-containing and TATA-less eukaryotic promoters, respectively40.
Of note, our lentiMPRA design tested promoters along with a minimal promoter that is 32 bp
long which could affect promoter activity. However, this approach enabled us to test en masse
hundreds of thousands of enhancers along with thousands of promoters and compare them in the
same assay. Our results were similar to previous reports28,29, showing orientation biases for
promoters, and identified an enrichment for motifs that are known to provide ubiquitous
promoter expression, further supporting that the addition of these 32 bp to our assayed promoters
likely did not affect our findings.
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Our large-scale and unbiased testing of hundreds of thousands of sequences for enhancer activity
in three different cell lines in two different orientations (along with testing 60,000 sequences in
all three cell lines) led to the following key findings: 1) enhancer activity is largely, but not
completely, independent of orientation, in line with part of the original definition of enhancers41

and repressors. 2) enhancers have more inherent cell-type specificity than promoters; 3) cell-type
specificity is driven by a small number of cell-type-specific TFBSs in each cell line. Of note, due
to oligonucleotide synthesis constraints, while we were able to test hundreds of thousands of
sequences in a cost-effective way, our assayed sequences were only 200 bp long, which only
allowed us to test the central sequences around their DNase peak. This likely led to the
enrichment observed for active sequences around open chromatin and could also limit our ability
to detect cell-type-specific motifs. Furthermore, previous work by our labs19 showed that
sequence length can have a major effect on regulatory activity in MPRA.

In line with previous work15,19,42, we show that sequence-based models provide superior ability to
predict functional sequences from MPRA. Due to the large-scale nature of these lentiMPRAs,
our results however provide stronger support for this observation. EnformerMPRA could not
detect the features driving these predictions, due to the multicollinearity of the feature set.
However, MPRAnn, while achieving slightly lower prediction scores, allowed us to tease out
many motifs that are important for these predictions. These include universal TFBSs along with
cell-type-specific motifs, which in combination allow for strong regulatory activity. Interestingly,
one of the main TFs that were found to be enriched in both our promoters and enhancers in all
three cell types are the “stripe” TFs KLF5/15. “Stripe” TFs are thought to provide
co-accessibility and increase residence time for other transcription-associated factors in
promoters and enhancers43 and were also found to be enriched in active regulatory elements in a
recent large-scale lentiMPRA carried out in primary developing neurons and cerebral
organoids44, in line with their generalizable function.

In summary, our work provides a nearly comprehensive catalog of functional regulatory
elements in three established cell lines that are widely used in biological research: HepG2, K562,
and iPSCs. These datasets will be extremely beneficial for developing machine learning-based
tools that predict regulatory activity. They will also improve our understanding of the gene
regulatory code and decode how variants within these sequences can lead to specific phenotypes.
Our data could also be beneficial for future large-scale MPRAs that mutate specific motifs in
known regulatory elements or use synthetic motifs to decode regulatory logic. In addition, it
could be utilized to build tissue-specific regulatory elements that are designed to provide
regulatory activity at various levels, similar to dimmer switches, or cell-type-specific regulatory
elements that could be utilized for therapeutic delivery.
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METHODS

Design of Agilent oligonucleotide library
HepG2 pilot library. For the HepG2 pilot library, we collected two replicates of DNase I
hypersensitivity data derived from HepG2 cells (ENCODE narrowPeak BED files:
ENCFF505SRS and ENCFF268DTI, hg19 human genome build)45. For each replicate, we
collapsed overlapping peaks using bedtools merge (parameters “-o collapse -c 2,3,7”). Then, we
identified peaks that intersected between the two replicates, merged these peaks, and removed
the subset of merged peaks that overlap promoters (defined as regions ±2,500nt around any
annotated transcriptional start site). The resulting distribution of peak sizes was such that 97% of
peaks were ≤ 200 bp in length. We therefore centered the designed oligos at each merged DNase
peak, consistent with the known region of maximal regulatory activity23, and added ±100 bp to
either side. This procedure resulted in a set of 66,017 CREs. For this pilot library, we sought to
evaluate CREs which overlapped a wide range of putative TF binding sites. We therefore
intersected these putative enhancers with wgEncodeRegTfbsClusteredWithCellsV3.bed.gz46 in
order to count the number of putative HepG2 TF binding sites intersecting these CREs. We
uniformly and randomly sampled ~1,834 CREs with 0-1, 1-5, 5-10, 10-20, and >20 TF binding
sites for a total of 9,172 elements. Including 50 positive and 50 negative controls from each of
two prior studies15,21 resulted in a total of 9,372 elements. These 171 bp controls from prior work
were linked downstream of a 29nt random sequence
GGTGCTCGATTTAATTTCGCCGACGTGAT to match the 200 bp sequence length of CREs.
For the final oligo library, each element was linked to the 5′ adaptor AGGACCGGATCAACT
and 3′ adaptor CATTGCGTGAACCGA, designing two 230 bp oligos per element to minimize
the impact of oligo synthesis errors.

K562 pilot library. An analogous procedure was followed for the K562 pilot library as in the
“HepG2 pilot library” section, with the following modifications: i) ENCODE narrowPeak BED
files ENCFF027HKR and ENCFF154JCN (hg38 human genome build)45 were used; ii) merging
these peaks resulted in 34,367 putative enhancers; iii) after intersecting the peaks with K562 TF
binding sites, we sampled ~1,278 enhancers from each TF binding site bin to test a total of 6,394
CREs; iii) additional negative controls were chosen by dinucleotide shuffling the enhancer set;
iv) positive and negative controls were chosen from CRISPRi screens22,24, a prior MPRA23, and
select loci of interest such as α-globin and β-globin; v) a total of 7,500 elements were tested; and
vi) controls were already 200 bp in length, requiring no addition of a random sequence.

HepG2 large-scale library. Following the procedures outlined for the “HepG2 pilot library”
section, we tested all 66,017 previously identified CREs in both orientations. For human
protein-coding gene promoters, we extracted the average signal across cell types in Transcripts
Per Million (TPM) for each CAGE peak listed in
hg19.cage_peak_phase1and2combined_tpm_ann.osc.txt.gz from the FANTOM5 consortium47,48.
The first exons of all protein-coding gene transcripts were collected from Ensembl v83 (hg38
genome build)49, transformed into hg19 coordinates using liftOver50, and then intersected with
the CAGE peaks to identify a single promoter per gene corresponding to the promoter with the
maximal average TPM. To select the final 200 bp oligo for testing, we identified the center of the
promoter DNase peak based upon the HepG2 DNase peaks merged across replicates (described
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in the “HepG2 pilot library” section). In the scenario in which no DNase peak overlapped the
promoter, we centered upon the midpoint of the CAGE peak. In the scenario in which neither a
DNase nor CAGE peak existed, we centered upon the TSS defined by the Ensembl annotation.
This resulted in a total of 19,104 protein coding gene promoters, of which 6,181 were centered
on a DNase peak, 9,735 were centered on a CAGE peak, and 3,188 were centered on a Ensembl
TSS definition. The oligo tested included the ±100 bp window around this central position in the
sense orientation with respect to the gene. A random subset of 12,411 promoters were also tested
in the antisense orientation. We tested 102 positive and 102 negative controls from a prior study21

as well as 175 dinucleotide shuffled negative controls in both orientations. This resulted in a
library consisting of 164,307 elements, for which we ordered one 230 bp oligo per element.

K562 large-scale library. To acquire a set of DNase peaks for testing, we used the “optimal
peak” calls derived from processing ENCODE experiment ID: ENCSR000EOY through the
ENCODE DCC Irreproducible Discovery Rate (IDR) pipeline, available at
https://github.com/ENCODE-DCC/atac-seq-pipeline (generously provided to us by A. Kundaje).
Removing DNase peaks overlapping human promoters resulted in 87,618 putative enhancers
tested in both orientations. The promoters tested were identical to those described in the “HepG2
large-scale library”, except that it included all 19,104 promoters tested in both orientations. We
tested 50 positive and 200 negative controls from a prior MPRA study23 as well as 250
dinucleotide shuffled negative controls. Finally, 14,918 tiles not overlapping DNase peaks, and
subsampled from the ±1 Megabase region around the following 7 genetic loci: GATA1, MYC,
HBE1, LMO2, RBM38, HBA2, and BCL11A, were chosen using our representative subset
selection approach (i.e., described below) and tested in both orientations. This resulted in a
library consisting of 243,780 elements, for which we ordered one 230 bp oligo per element.

WTC11 large-scale library. To acquire a set of DNase peaks for testing, we used the peak calls
derived from applying the hotspot2 pipeline (https://github.com/Altius/hotspot2) at FDR = 0.05
to ENCODE experiment ID: ENCSR785ZUI (generously provided to us by R.Sandstrom)51. This
resulted in two independent replicates, which were merged into a unified set using the procedures
described in the “HepG2 pilot library” section. Removing DNase peaks overlapping human
promoters resulted in 83,201 putative enhancers. Together with the 19,104 promoters described
in the “HepG2 large-scale library”, these elements were subsampled to select 30,121 putative
enhancers and 7,500 promoters using our representative subset selection approach described
below, and tested in both orientations. We also tested 100 positive and 100 negative controls
from a prior study27 as well as 100 dinucleotide shuffled negative controls. This resulted in a
library consisting of 75,542 CREs, for which we ordered one 230 bp oligo per element.

Joint library tested in HepG2, K562, and WTC11 cells. Given the measured putative enhancers
from the forward orientations in each of the HepG2, K562, and WTC11 large-scale libraries, we
binned each set of CREs into ten equally sized bins spanning the range of measured
log2(RNA/DNA) values in the selected cell type. We randomly sampled an approximately equal
number from each bin, resulting in 19,000 HepG2, 18,958 K562, and 18,946 WTC11 putative
enhancers. A similar procedure was followed with sense-oriented promoters, except that the ten
bins were established based upon the mean log2(RNA/DNA) across all three cell types (i.e.,
instead of performing the procedure independently in each cell type as before), and the top 1,000
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promoters exhibiting the greatest variance across three cell lines were also selected for testing.
This resulted in the selection of 2,396 out of 19,104 promoters. We also tested 181 positive and
169 negative HepG2 controls from a prior study21, 50 positive K562 controls from a prior
study23, and 300 dinucleotide shuffled negative controls. This resulted in a library consisting of
60,000 CREs, for which we ordered one 230 bp oligo per element.

Representative subset selection. Given the limited number of testable elements in the large-scale
K562 and WTC11 libraries, we designed a subset selection procedure to more optimally sample
a non-redundant subset of elements associated with diverse biochemical features. For K562 cells,
we used ground sets of non-overlapping 200 bp windows uniformly covering each of 7 genetic
loci; for WTC11 cells, we used ground sets of 83,201 putative enhancers and 19,104 promoters.
To perform representative subset selection with these ground sets, we utilized an objective
function called facility location. This submodular set function can be optimized using a greedy
algorithm, and yields a subset of elements that covers the epigenetic diversity of the ground set52.
The facility location function is given as:

where V is the ground set, A is a subset of V with k elements and φ is a nonnegative similarity
function. Optimization of the facility function was performed using python package apricot
(https://github.com/jmschrei/apricot/). For this study, we set k = 2,231 for each of the 7 loci in
K562 cells, k = 30,121 for WTC11 putative enhancers, and k = 7,500 for promoters in WTC11.
From the 7 loci, we then filtered out the tiles that overlapped DNase peaks as they had already
been tested, and then subsampled to ~2,131 tiles per locus to retrieve 14,918 tiles among all loci.

To assess the pairwise similarity of each element, we utilized hundreds of ENCODE histone and
TF ChIP-seq experiments derived from K562 and WTC11/H1-ESCs (Supplementary Table 5).
For each 200 bp tile in the ground set, we computed the mean signal for each ChIP-seq dataset,
resulting in a vector of biochemical measurements for each 200 bp tile. We used the Pearson
correlation coefficient as a similarity function given these ChIP-seq features.

Generation of MPRA libraries
The MPRA libraries were generated as previously described20. In brief, the Agilent oligo pool
was amplified by 5-cycle PCR using forward primer (pLSmP-enh-f, Supplementary Table 8)
and reverse primer (minP-enh-r, Supplementary Table 8) that adds a minimal promoter and
spacer sequences downstream of the CRE. The amplified fragments were purified with 0.8x
AMPure XP (Beckman coulter), and amplified for 15 additional cycles using the forward primer
(pLSmP-enh-f) and reverse primer (pLSmP-bc-primer-r, Supplementary Table 8) to add 15 bp
random sequence that serves as a barcode. The amplified fragments were then inserted into
SbfI/AgeI site of the pLS-SceI vector (Addgene, 137725) using NEBuilder HiFi DNA Assembly
mix (NEB), followed by transformation into 10-beta competent cells (NEB, C3020) using the
Gemini X2 machine (BTX). Colonies were allowed to grow up overnight on Carbenicillin plates
and midiprepped (Qiagen, 12945). For HepG2 and K562 pilot libraries, we collected
approximately 1 million and 1.3 million colonies, so that on average 50 and 100 barcodes were
associated with each CRS, respectively. For HepG2, K562 and WTC11 large-scale libraries, we
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collected approximately 8M, 12M, and 3M colonies aiming to associate approximately 50, 50,
and 40 barcodes per CRS, respectively. For the joint library, we collected approximately 3.3M
colonies aiming to associate approximately 55 barcodes per CRS. To determine the sequences of
the random barcodes and their association to each CRS, the CRS-mP-barcodes fragment was
amplified from each plasmid library using primers that contain flowcell adapters
(P7-pLSmP-ass-gfp and P5-pLSmP-ass-i17, Supplementary Table 8). The fragment was then
sequenced with a NextSeq mid-output 300 cycle kit using custom primers (Read 1,
pLSmP-ass-seq-R1; Index read, pLSmP-ass-seq-ind1; Read 2, pLSmP-ass-seq-R2,
Supplementary Table 8).

Cell culture, lentivirus packaging, and titration
HEK293T (ATCC, CRL-3216), HepG2 (ATCC, HB-8065) and K562 (ATCC, CCL-243) cell
culture were performed as previously described15. WTC11 human iPSCs (RRID:CVCL_Y803)
were cultured in mTeSR plus medium (Stemcell technologies, Catalog # 100-0276) and passaged
using ReLeSR (Stemcell technologies, Catalog # 100-0484), according to the manufacturer’s
instructions. WTC11 cells were used for the MPRA experiments at passage 43-49. Lentivirus
packaging and titration were performed as previously described with modifications20. Briefly,
50,000 cells/cm2 HEK293T cells were seeded in T175 flasks and cultured for 48 hours. The cells
were co-transfected with 7.5 μg/flask of plasmid libraries, 2.5 μg/flask of pMD2.G (Addgene
12259), and 5 μg/flask of psPAX2 (Addgene 12260) using EndoFectin Lenti transfection reagent
(GeneCopoeia) according to the manufacturer’s instructions. After 8 hours, cell culture media
was refreshed and ViralBoost reagent (Alstem) was added. The transfected cells were cultured
for 2 days and lentivirus were harvested and concentrated using the Lenti-X concentrator
(Takara) according to the manufacturer’s protocol. To measure DNA titer for the lentiviral
libraries in HepG2, K562, or WTC11, cells were seeded at 1x105 cells/well in 24-well plates and
incubated for 24 hours. Serial volume (0, 2, 4, 8, 16, 32 μL) of the lentivirus was added along
with polybrene at the final concentration of 8 μg/ml. The infected cells were cultured for three
days and then washed with PBS three times. Genomic DNA was extracted using the Wizard SV
genomic DNA purification kit (Promega). Multiplicity of infection (MOI) was measured as
relative amount of viral DNA (WPRE region, forward; 5′-TACGCTGCTTTAATGCCTTTG-3′,
reverse; 5′-GGGCCACAACTCCTCATAAAG-3′) over that of genomic DNA (intronic region of
LIPC gene, forward; 5′-TCCTCCGGAGTTATTCTTGGCA-3′, reverse;
5′-CCCCCCATCTGATCTGTTTCAC-3′) by qPCR using SsoFast EvaGreen Supermix
(BioRad), according to the manufacturer's protocol.

Lentiviral infections and DNA/RNA barcode sequencing
For the HepG2 and K562 pilot libraries, 2.4M HepG2 or 10M K562 cells per replicate were
seeded in 10cm dishes or T75 flasks, respectively, and incubated for 24 hours. The HepG2 and
K562 cells were infected with the lentiviral libraries along with 8 μg/ml polybrene, with an
estimated MOI of 50 or 10, respectively. For the large-scale HepG2 library, 15M HepG2 cells
per replicate were seeded in three 15cm dishes (5M per dish), incubated for 24 hours, and
infected with the library along with 8 μg/ml polybrene, with an estimated MOI of 50. For the
large-scale K562 library, 85M K562 cells per replicate were seeded in three T225 flasks (28.3M
per flask), incubated for 24 hours, and infected with the library along with 8 μg/ml polybrene,
with an estimated MOI of 10. For the large-scale WTC11 library, 38.4M WTC11 cells per
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replicate were seeded in four 10cm dishes (9.6M per dish), incubated for 24 hours, and infected
with the library along with 8 μg/ml polybrene, with an estimated MOI of 10. For the joint library,
5M HepG2, 28M K562, and 38.4M WTC11 cells were infected with the estimated MOI of 50,
10, and 10, respectively. For each experiment, three independent infections were performed to
obtain three biological replicates. After three days of culture, genomic DNA and total RNA were
extracted from the infected cells using AllPrep DNA/RNA mini kit (Qiagen), and sequencing
library preparations were performed as previously described20. The libraries were then sequenced
with a NextSeq high-output 75 cycle kit using custom primers (Read 1, pLSmP-5bc-seq-R1;
Index1 (UMI read), pLSmP-UMI-seq; Index2, pLSmP-5bc-seq-R2; Read 2, pLSmP-bc-seq;
Supplementary Table 8)20.

MPRA processing pipeline
Associating barcodes to designed elements. For each of the barcode association libraries, we
generated Fastq files with bcl2fastq v2.20 (parameters “--no-lane-splitting
--create-fastq-for-index-reads --use-bases-mask Y*,I*,I*,Y*”), splitting the sequencing data into
paired-end index files delineating the barcodes (i.e., I1 and I2) and paired-end read files
delineating the corresponding element linked to the barcode (i.e., R1 and R2). These files were
used to associated barcodes to elements using the association utility of MPRAflow 1.020 (run as:
nextflow run association.nf --fastq-insert "R1.fastq.gz" --fastq-insertPE "R2.fastq.gz" --fastq-bc
"I1.fastq.gz" --fastq-bcPE "I2.fastq.gz" --aligner "bt2_strand" --design "designed_sequences.fa").
Here, “designed_sequences.fa” was a FASTA file incorporating all of the element sequences that
had been ordered from the corresponding Agilent library, and ‘bt2_strand’ was used to map
elements in a strand-aware fashion to accommodate the existence of elements tested in both
orientations. The final output of this utility was a “filtered_coords_to_barcodes.pickle” file
mapping barcodes to elements.

Replicates, normalization, and RNA/DNA activity scores. For each of the indexed DNA and
RNA libraries, we demultiplexed the sequencing run and generated Fastq files with bcl2fastq
v2.20 (parameters “--barcode-mismatches 2 --sample-sheet SampleSheet.csv --use-bases-mask
Y*,Y*,I*,Y* --no-lane-splitting --minimum-trimmed-read-length 0 --mask-short-adapter-reads
0”), where “SampleSheet.csv” cataloged the correspondence between the index sequence and
DNA or RNA replicate sample of origin. In several instances, the “--barcode-mismatches 2”
resulted in an index assignment clash, requiring us to instead use “--barcode-mismatches 1”.
These commands split the sequencing data into paired-end read files delineating the barcodes
(i.e., R1 and R3) and a file indicating the unique molecular index (UMI) (i.e., R2) for each DNA
or RNA replicate sample. We compiled a table of these files to indicate the 3 RNA and 3 DNA
files for each of the three replicates in the file “experiment.csv”. Finally, we used the count
utility of MPRAflow 1.020 (run as: nextflow run count.nf --e "experiment.csv" --design
"designed_sequences.fa" --association "filtered_coords_to_barcodes.pickle") to compute activity
scores for each element and replicate as log2(RNA/DNA). Elements with which were measured
with fewer than 10 independent barcodes were removed to reduce the impact of measurement
noise in downstream analysis. To combine the data from all three replicates, the distribution of
activity values was normalized to the median activity value within each replicate, and then the
activity values were averaged across the three replicates.
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Regression modeling
Biochemical model features. We extracted all TF ChIP-seq, histone ChIP-seq, DNase-seq, and
ATAC-seq bigWig files available for HepG2, K562, and WTC11 cells for the hg38 human
genome assembly under “released” ENCODE status46. To account for the lack of WTC11 data
available, we also collected all such datasets for H1-ESCs for inclusion in the predictive model.
This resulted in 1,506 bigWig files for HepG2 cells; 1,206 files for K562 cells; and 277 files for
WTC11/H1-ESCs (Supplementary Table 5). For each candidate element aside from controls,
we computed the mean bigWig signal extracted from the corresponding region of the human
genome using bigWigAverageOverBed50. All data was right-skewed, and was therefore
log-transformed (i.e., after adding a pseudocount of 0.1) to approximate a normal distribution.
Finally, for each cell type, multiple replicates corresponding to the same “Experiment target”
(Supplementary Table 5) were averaged to compute the consensus signal for each target in each
cell type. This led to a total of 655 HepG2 features, 447 K562 features, and 122 WTC11/H1-ESC
features considered by the models.

EnformerMPRA model features. For the large-scale libraries, Enformer32 was used to predict
element activity in both orientations (i.e., including adaptors in a fixed orientation to simulate the
MPRA experiment), and the resulting 5,313 human predictions for each of the two orientations
were averaged. For the joint library, Enformer was used to predict element activity in only the
forward/sense orientation, and the resulting 5,313 human predictions were carried forward as
features. As Enformer requires an input sequence length of 196,608 bp, all elements were
extended with “N” padding on both cis and trans direction while keeping the element sequence
centered.

Data pre-processing and model training. For each of the three large-scale libraries, the
log2(RNA/DNA) scores for each element were averaged among both orientations in which the
element was tested, and then randomly assigned to one of ten cross-validation folds. All
predictive features (i.e., biochemical features from the matched cell type, or all Enformer
features) were z-score normalized to scale the features similarly. This enabled a direct
comparison of coefficients among features derived from the resulting linear models. As
described before15,19,31, for each regression task we optimized the λ regularization hyperparameter
using 10-fold cross-validation, and then used the optimal value for λ to train ten lasso regression
models, each on 9 of the 10 folds of data, to evaluate the performance of each model on the
held-out fold. To evaluate the most relevant features selected, we trained a lasso regression
model on the full dataset and visualized the 30 coefficients with the greatest magnitude. A
similar strategy was used for data from the joint library tested in all three cell types, ensuring that
the same element measured in different cell types was always assigned to the same fold.

Training MPRAnn. To derive sequence-based features we trained a simple convolutional neural
network (CNN), implemented in tensorflow v2.6.2, with a total of 4 convolutional and 3 dense
layers on the large-scale libraries. The complete model architecture is provided (Extended Data
Fig. 6a). As input we used the 230 bp sequences including the adapters, one-hot encoded them
and fit the mean log2(RNA/DNA) values from forward and reverse stands. We augmented the
batches using the reverse complement of the 200 bp target sequence, while keeping the two 15
bp adapters fixed. To fit the model, we used a learning rate of 0.001, an early stopping criterion
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with patience of 10 on 100 epochs, and the Adam optimizer with a mean square error loss
function. To make the results directly comparable to the lasso regression model, we trained
MPRAnn using 10-fold cross-validation on the identical 10 folds of data as before. For each of
the 10 folds, 9 models were trained using each of the remaining folds as a validation set. The
final prediction was made on the held-out test set by averaging the predictions across the nine
models. For training the joint library, we generated predictions for each of the cell types
simultaneously using a multi-task framework. Here, no augmentation was performed because
only forward sequences were tested in the MPRA. A snakemake pipeline implementing model
training and prediction is available at https://github.com/visze/sequence_cnn_models.

Interpreting motifs identified by MPRAnn. As a step towards motif interpretation, in silico
mutagenesis (ISM) scores were generated for all possible single nucleotide variants on each 200
bp sequence. Here, ISM scores were generated for sequences in each of the 10 CV test set folds,
averaging predictions across the 9 corresponding models from the remaining training/validation
sets. The average reference sequence prediction was then compared with that of the alternative
sequence31. We then interrogated our ISM scores to identify the most pertinent motifs associated
with changes in variant activity using TF-MoDISco-lite v2.0.4
(https://github.com/jmschrei/tfmodisco-lite), a more efficient version of TF-MoDISco33. The
TF-MoDISco-lite algorithm was used with default settings and similar seqlet patterns were
matched against JASPAR 2022 CORE vertebrate non-redundant database53 using Tomtom36.

In-silico mutagenesis scores on saturation mutagenesis MPRA elements. All variant effects of
F9, LDLR, PKLR, and SORT1 elements of the saturation mutagenesis MPRA35 were downloaded
(https://kircherlab.bihealth.org/satMutMPRA) because they matched one of the three cell types
(HepG2, K562, and WTC11) tested. Next, 1 bp deletions were removed from these datasets. ISM
scores for all elements were then generated with MPRAnn using GRCh38 coordinates. Because
most of the elements are longer than 200 bp element, the regions were tiled in 200 bp windows
from the beginning with a step size of 150 bp, resulting in an overlap of 50 bp between
neighboring windows. The predictions were averaged on overlapping windows. The missing 30
bp input of MPRAnn was achieved by adding the 15 bp adapter to both sides. Prediction and
saturation mutagenesis data was compared on all variants with a minimum barcode support of 10
in the experiments.

Calculation of element specificity scores (ESSs). To compute ESSs using activity scores from the
joint library, log2(RNA/DNA) values from each cell line were first z-score transformed. Then an
ESS for each element was computed by subtracting the element’s score in each cell type by the
mean element score across cell types. A full table of ESSs is provided (Supplementary Table
7).
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EXTENDED DATA FIGURES

Extended Data Fig. 1: A next-generation lentiviral massively parallel reporter assay (lentiMPRA) strategy to
measure the transcriptional regulatory activity of >6,000-240,000 enhancers simultaneously. a, Designed 230nt
oligos corresponding to thousands of CREs are synthesized on an Agilent array. The 1st round of PCR adds on a
minimal promoter, while the 2nd round of PCR adds random barcodes to these sequences. The library is then cloned
into a pLS-SceI vector harboring an EGFP reporter to generate the final element library. b, The element-barcode
fragments within the library are amplified by PCR and sequenced using an Illumina NextSeq instrument. This
enables the reconstruction of which barcodes correspond to which enhancers. c, The enhancer library is packaged
into lentiviruses and transduced into HepG2, K562, or WTC11 cells in a series of three replicates. Cells are grown in
cultured medium for three days prior to the harvesting of RNA and DNA. Each RNA and DNA sample from each
replicate is extracted, and barcodes are sequenced on an Illumina NextSeq instrument. Finally, DNA and
RNA-derived barcodes are counted to compute a normalized activity score for each element in each replicate.
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Extended Data Fig. 2: Design and quality control characteristics of two pilot MPRA libraries. a, Composition
of the HepG2 and K562 pilot libraries. Thousands of putative enhancers, negative controls (dinucleotide shuffled
sequences or elements lacking a signal from prior studies), and positive controls (elements with reported activity
from prior studies) are included in each library15,21–24. To maintain consistency with Fig. 1b, bars are colored
according to orientation tested, with accompanying numbers indicating the number of elements tested in the
category. Numbers are colored according to element type. b, Shown are histograms indicating the number of
observed barcodes per element, for each of the three replicates and two pilot MPRA libraries. Shown with a vertical
red line is the median number of barcodes per element. c-d, Shown are scatter plots displaying the relationship
between observed DNA counts (blue), RNA counts (green), and RNA/DNA ratios (red) for all pairwise comparisons
among replicates, for both the (c) HepG2 and (d) K562 pilot MPRA libraries. Also indicated is the Pearson (r) and
Spearman (rho) correlation values. Candidate enhancers supported by fewer than 10 barcodes were filtered out prior
to this analysis to reduce the impact of technical noise. e, Violin plots of element activity [measured as
log2(RNA/DNA)] for putative enhancers, negative controls, and positive controls for each library.
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Extended Data Fig. 3: Quality control characteristics of the three large-scale MPRA libraries. a, Shown are
histograms indicating the number of observed barcodes per element, for each of the three replicates and three
large-scale MPRA libraries. Shown with a vertical red line is the median number of barcodes per element. b-d,
Shown are scatter plots displaying the relationship between observed DNA counts (blue), RNA counts (green), and
RNA/DNA ratios (red) for all pairwise comparisons among replicates, for the (b) HepG2, (c) K562, and (d) WTC11
large-scale MPRA libraries. Candidate elements supported by fewer than 10 barcodes were filtered out prior to this
analysis to reduce the impact of technical noise. e, Scatter plots displaying the relationships between activity scores
for the subset of elements common to both the pilot and large-scale libraries tested in HepG2 and K562 cells. Also
indicated is the Pearson (r) and Spearman (rho) correlation values.
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Extended Data Fig. 4: Properties of promoter activity in three cell types. a-b, Scatter plots of activity scores for
sense-oriented promoters tested in the MPRA and endogenous gene expression levels for (a) K562 and (b) WTC11
cells. Expression levels follow a bimodal distribution. Also indicated are the Pearson (r) and Spearman (rho)
correlation values. c, Upper triangular heatmap indicating the correlation between the sense (s) and antisense (as)
orientations of promoters tested in the MPRA as well as endogenous gene expression levels measured in transcripts
per million (TPM) using RNA-seq, filtered for the set of genes with detectable expression (i.e., >0 TPM). The sizes
of the circles are proportional to the Pearson correlations. d-f, Scatter plots of activity scores for sense-oriented
promoters tested in the MPRA and endogenous gene expression levels for (d) HepG2, (e) K562, and (f) WTC11
cells, filtered for the set of genes with detectable expression (i.e., >0 TPM). g, Set of motifs enriched in the top
1,000 most active vs. bottom 1,000 least active promoters (i.e., as measured by large-scale MPRAs). Motifs were
discovered by STREME54 for each of the three cell types evaluated, and annotated by Tomtom36 (i.e., other than the
set of CpG-rich motifs).
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Extended Data Fig. 5: Alternative biochemical features that could explain element activity in large-scale
MPRA libraries. a-c, Pearson correlation matrix between the top 30 features from Fig. 3b, shown as rows, and
other features sharing a Pearson correlation either ≤ –0.8 or ≥ 0.8, shown as columns, for (a) HepG2, (b) K562, and
(c) WTC11 cells. Hierarchical clustering was used to group features exhibiting similar correlation patterns.
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Extended Data Fig. 6: Architecture, interpretation, and performance of MPRAnn. a, Complete architecture of
the MPRAnn model. Indicated for each layer is the layer name and dimensionality of the input and output matrices.
b, Set of enriched motifs discovered by TF-MoDISco-lite33 for each of the three cell types evaluated. TFBSs
associated with transcriptional inhibition (e.g., REST) are oriented upside down. TFBSs detected in at least two cell
types (i.e., likely bound to housekeeping TFs) are shown in bold. c-f, Scatter plots showing the correlation between
predicted genetic variant effects by MPRAnn and observed variant effects, as detected in a saturation mutagenesis
MPRA experiment testing the (c) SORT1 enhancer, (d) PKLR promoter, (e) LDLR promoter, and (f) F9 promoter35.
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Extended Data Fig. 7: Quality control characteristics of the joint MPRA library. a, Histograms indicating the
number of observed barcodes per element, for each of the three replicates and three cell types tested using the joint
MPRA library. Shown with a vertical red line is the median number of barcodes per element. b-d, Scatter plots
displaying the relationship between observed DNA counts (blue), RNA counts (green), and RNA/DNA ratios (red)
for all pairwise comparisons among replicates, for the joint MPRA library tested in (b) HepG2, (c) K562, and (d)
WTC11 cells. Candidate elements supported by fewer than 10 barcodes were filtered out prior to this analysis to
reduce the impact of technical noise. e, Scatter plots displaying the relationships between activity scores for the
subset of elements common to both the joint and large-scale MPRA libraries tested in HepG2, K562, and WTC11
cells. Also indicated are the Pearson (r) and Spearman (rho) correlation values.

39

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.05.531189doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.05.531189
http://creativecommons.org/licenses/by-nd/4.0/


Extended Data Fig. 8: Violin plots of element activity [measured as log2(RNA/DNA)] in each of the three cell
types for different element categories represented in the joint MPRA library shown in Fig. 5a. The difference
between each pair of distributions tested was evaluated with a one-sided Wilcoxon rank-sum test, adjusted with a
Bonferroni correction to account for the total number of hypothesis tests.
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Extended Data Fig. 9: Comparison of promoter and enhancer activities from a joint MPRA library tested in
three cell types. Scatter matrix displaying scatter plots corresponding to each of the three pairs of possible
inter-cell-type comparisons (lower diagonal elements), for each of four element categories: i) protein-coding gene
promoters, ii) putative enhancers selected from HepG2 cells, iii) putative enhancers selected from K562 cells, and
iv) putative enhancers selected from WTC11 cells. Shown on the diagonal is a histogram of element activity scores
[measured as log2(RNA/DNA)]. Also shown are Pearson correlation values among each pair of comparisons, with
the size of the text proportional to the magnitude of the correlation coefficient (upper diagonal elements).
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Extended Data Fig. 10: Comparison of element specificity scores derived from a joint MPRA library tested in
three cell types. Heatmap of element specificity scores (i.e., computed as the deviation of an element’s activity from
its mean activity in all cell types). The heatmap shown on the right is a zoomed version of the heatmap on the left
for elements other than putative enhancers. Elements are colored according to their category in the key provided.
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Extended Data Fig. 11: Interpretation of cell-type-specific motifs detected by MPRAnn. Set of enriched
cell-type-specific motifs discovered by TF-MoDISco-lite33 for each of the three cell types evaluated on the joint
MPRA library.
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SUPPLEMENTAL TABLES

Supplementary Table 1. Genomic coordinates, element categorization, and sequences for
designed elements for the two pilot lentiMPRA assays from HepG2 and K562 cells.

Supplementary Table 2. Activity scores computed for each element for the two pilot
lentiMPRA assays. Also provided are averaged activity scores across replicates as well as
individual scores for each replicate alongside normalized DNA counts, normalized RNA counts,
and the number of barcodes per element.

Supplementary Table 3. Genomic coordinates, element categorization, and sequences for
designed elements for the three large-scale lentiMPRA assays.

Supplementary Table 4. Activity scores computed for each element for the three large-scale
lentiMPRA assays. Also provided are averaged activity scores across replicates as well as
individual scores for each replicate alongside normalized DNA counts, normalized RNA counts,
and the number of barcodes per element. Activity scores for each orientation, for the subset of
elements tested in both orientations, are also listed.

Supplementary Table 5. Summary of ENCODE samples compiled to compute biochemical
features, with detailed metadata corresponding to the data source of origin, sample accession
IDs, and additional factor-specific information. Also provided are pre-computed tables of the
features used to train the biochemical lasso regression model.

Supplementary Table 6. Genomic coordinates, element categorization, and sequences for
designed elements for the joint lentiMPRA library tested in three cell types.

Supplementary Table 7. Activity scores, and corresponding element specificity scores, for each
element of the joint lentiMPRA library tested in each of the three cell types. Also provided are
averaged activity scores across replicates as well as individual scores for each replicate alongside
normalized DNA counts, normalized RNA counts, and the number of barcodes per element.
Sheets summarizing the activity of each element across cell types as well as the derived element
specificity scores are also included.

Supplementary Table 8. Primers used in this study.
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