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Abstract: Intra-operative specimen mammography is a valuable tool in breast cancer surgery, providing immediate 
assessment of margins for a resected tumor. However, the accuracy of specimen mammography in detecting 
microscopic margin positivity is low. We sought to develop a deep learning-based model to predict the pathologic margin 
status of resected breast tumors using specimen mammography. A dataset of specimen mammography images 
matched with pathology reports describing margin status was collected. Models pre-trained on radiologic images were 
developed and compared with models pre-trained on non-medical images. Model performance was assessed using 
sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). The dataset included 821 
images and 53% had positive margins. For three out of four model architectures tested, models pre-trained on radiologic 
images outperformed domain-agnostic models. The highest performing model, InceptionV3, showed a sensitivity of 
84%, a specificity of 42%, and AUROC of 0.71. These results compare favorably with the published literature on surgeon 
and radiologist interpretation of specimen mammography. With further development, these models could assist 
clinicians with identifying positive margins intra-operatively and decrease the rate of positive margins and re-operation 
in breast-conserving surgery.

Introduction 
 Breast-conserving surgery is the standard of care for early-
stage breast cancer, balancing oncologic resection and cos-
mesis.1 For breast-conserving surgery, obtaining negative 
margins is critical in reducing local recurrence, and re-
ported re-operation rates for positive margins remain high, 
at about 22%.2,3 Margin status is determined post-opera-
tively with surgical pathology, with results days to weeks 
after completion of the surgery. Multiple interventions have 
attempted to identify positive margins intra-operatively, in-
cluding specimen mammography, which involves taking an 
X-ray of the resected tumor using a portable scanner in the 
operating room. 
Specimen mammography is a widely used technique that 
provides immediate feedback on the quality of resection 
and may assist surgeons with identifying suspicious mar-
gins and directing targeted removal of additional tissue.4 
However, specimen mammography can be inaccurate, with 
sensitivity ranging from 20% to 58% and area under the re-
ceiver operating characteristic curve (AUROC) ~0.7.5–8 A 
tool to assist clinicians with interpretation of specimen 
mammography for partial mastectomy would be helpful to 
assist identification of positive margins and reduce the rate 
of re-operation. This tool would be particularly helpful for 
low-volume and low-resource centers which see higher 
rates of positive margins and may have less familiarity with 
interpreting specimen mammography.9 
Deep learning has been extensively applied to screening 
mammography, with a recent systematic review identifying 
82 relevant studies.10 Deep learning also shows promise for 
intra-operative use, with recent applications to the inter-
pretation of laparoscopic video.11–13 However, deep learn-
ing has not yet been applied to intra-operative specimen 
mammography. 

The goal of this study is to develop a model that can accu-
rately predict margin positivity for partial mastectomy 
based on specimen mammography alone. We sought to use 
pre-training specific to radiology through the RadImageNet 
project to improve transfer learning.14 We hypothesized 
that pre-training with a medical image dataset would result 
in a more accurate model that could match previously pub-
lished metrics for human accuracy in predicting margin sta-
tus. 

Methods 
Study design and outcomes 
Prior to data collection, approval from the University of 
North Carolina Institutional Review Board (#20-1820) was 
obtained. Written informed consent was not required be-
cause data was collected retrospectively and risks to patient 
privacy were minimized. Data was collected in two phases. 
First, from 7/2017 to 6/2020, specimen mammograms 
were prospectively collected as part of a single surgeon’s 
quality assurance process. Second, from 8/2020 to 4/2022, 
specimen mammograms from four surgeons were collected 
specifically for this project. Using retrospective chart re-
view, specimen mammograms were matched with pathol-
ogy reports and categorized into positive and negative clas-
ses based on NCCN guidelines.15 For specimens with inva-
sive cancer, a positive margin was defined as “ink on tu-
mor.” For specimens with DCIS, a positive margin was de-
fined as DCIS within 2mm of the margin. For specimens con-
taining both DCIS and invasive cancer, but with DCIS within 
2mm of the margin, we elected to categorize this pathology 
as positive, while acknowledging that, clinically, this result 
is treated as negative. This is because margin positive DCIS 
in this situation is unlikely to appear different compared 
with DCIS alone. In addition, margin assessment was per-
formed on the original specimen, excluding cavity shave 
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margins, as these are not imaged by specimen mammogra-
phy. In the second phase of data collection, additional clini-
cal information was collected including age, race/ethnicity, 
BMI, breast density, tumor type, tumor grade, and tumor 
size. 
  
Data processing 
The dataset was divided randomly into training, validation, 
and test sets in a 60/20/20 ratio. A single anterior-posterior 
image was selected for each specimen and resized to 512 x 
512 pixels. The training set underwent standard data aug-
mentation including random flipping (vertically and hori-
zontally), zoom, shifts (horizontal and vertical), 
and rotation.16 

 
Modeling 
We developed models based on architectures 
used by the RadImageNet project, including Res-
Net-50, InceptionV3, Inception-ResNet-v2, and 
DenseNet-121. The RadImageNet models are 
pretrained on 1.35 million annotated medical im-
ages.14 For comparison, we developed models us-
ing the same architectures, pre-trained on 
ImageNet, which largely consists of non-medical 
images. For each model, two additional fully con-
nected layers, followed by dropout layers, and an 
output classification layer were added. A dia-
gram of the model is shown in Figure 1. The num-
ber of fully connected layers, neurons, and drop-
out were held constant to facilitate comparison. 
After the highest performing model and pre-
training dataset were identified, the number of 
fully connected layers, neurons, dropout, and 
learning rate were tuned on the training/valida-
tion sets. 

For all comparisons, transfer learning was completed in two 
phases. First, the base architecture was frozen and the 
model was trained at a higher learning rate. Second, the 
base architecture was unfrozen and trained at a lower 
learning rate. Early stopping was used to avoid overfitting.17 

 
Model Evaluation 
Model performance was assessed using sensitivity, specific-
ity, positive predictive value (PPV), negative predictive 
value (NPV), area under the receiver operating characteris-
tic curve (AUROC), and area under the precision-recall 
curve (AUPRC). For the highest performing model (based on 

 
Figure 1. Diagram of model structure 

 
Figure 2. Flowchart of study design 
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AUROC), evaluation metrics were calculated for categories 
within breast density and race/ethnicity because screening 
mammography has previously been shown to have differ-
ent accuracy within these groups.18,19 In addition, Grad-CAM 
was used to create saliency maps to assess pixel importance 
for 10 randomly selected images from the test set and these 
were visually assessed.20 Figure 2 shows the overall process 
for model development and evaluation. 
Models were implemented us-
ing Python (version 3.8) and 
the scikit-learn and Tensor-
flow/Keras libraries.21,22 For 
characterization of the cohort, 
Chi-squared test was used to 
compare categorical variables 
and T-test to compare contin-
uous variables. Code to repro-
duce this work is available at 
github.com/gomezlab/cvsm. 
 

Results 
Study population characteris-
tics 
A The dataset included 821 
images. Of these, 450 were 
collected in the first, single 

surgeon phase, while 371 were collected in the second, mul-
tiple surgeon phase. 431 (52.5%) images had positive mar-
gins. Representative images for each classification are 
shown in Figure 3. Within the positive classification, 128 
had mixed pathology with both invasive cancer and DCIS 
2mm from the margin. The average age was 60 and most 
patients had IDC (67.1%) or DCIS (20.5%). Non-Hispanic 
White patients comprised 70.1% of the cohort, compared 

Table 1. Demographic and clinical characteristics of patients included in the dataset  
  Margin (-) Margin (+) P-Value 

n   148 223 
 

Age, mean (SD)   59.2 (12.8) 61.6 (13.2) 0.081 

Race/Ethnicity, n (%) Asian 7 (4.7) 5 (2.2) 0.118 

Hispanic 9 (6.1) 20 (9.0) 
 

Non-Hispanic Black 25 (16.9) 42 (18.8) 
 

Non-Hispanic White 104 (70.3) 156 (70.0) 
 

Other/Unknown 3 (2.0) 
  

BMI, mean (SD)   28.9 (6.7) 28.9 (6.4) 1.000 

Density, n (%) A 6 (4.1) 11 (4.9) 0.573 

B 63 (42.6) 107 (48.0) 
 

C 61 (41.2) 76 (34.1) 
 

D 18 (12.2) 29 (13.0) 
 

Tumor Grade, n (%) 0.0 11 (7.4) 18 (8.1) 0.034 

1.0 34 (23.0) 50 (22.4) 
 

2.0 51 (34.5) 105 (47.1) 
 

3.0 52 (35.1) 50 (22.4) 
 

Tumor Size, mean (SD)   7.4 (3.3) 7.6 (3.1) 0.610 

Tumor Type, n (%) DCIS 30 (20.3) 46 (20.6) 0.588 

EPC  4 (2.7) 3 (1.3) 
 

IDC 96 (64.9) 153 (68.6) 
 

ILC 13 (8.8) 18 (8.1) 
 

LCIS 5 (3.4) 3 (1.3) 
 

DCIS – Ductal carcinoma in situ, EPC – Encapsulated papillary carcinoma, IDC – Invasive ductal carcinoma, ILC – 
invasive lobular carcinoma, LCIS – lobular carcinoma in situ 
 

 
Figure 3. Example specimen mammograms by margin status class 
 

Negative Positive 
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with 18.1% Non-Hispanic Black and 7.8% Hispanic. Most 
patients had a breast density of B (45.8%) or C (36.9%). Pa-
tients with positive margins were slightly older and more 
likely to have a tumor grade of 2 (Table 1). After splitting 
into training, validation, a nd testing groups, 492 images 
were used for training, 165 for validation, and 164 for test-
ing. 
We first compared the performance of models pre-trained 
on RadImageNet, compared with models pre-trained on 
ImageNet. Overall, RadImageNet models showed higher ac-
curacy compared with ImageNet models with AUROC 0.63 - 
0.71 vs. 0.46 - 0.68, respectively. All architectures showed 
higher performance with RadImageNet pre-training except 
for DenseNet121. For this model, performance between the 
two pre-training regimens was similar at 0.66 for 
RadImageNet compared with 0.68 for ImageNet. The high-
est performing model was InceptionV3 with RadImageNet 
pre-training. Receiver operating characteristic curves and 
precision-recall curves are shown for all models in Figure 4. 
Based on this analysis, we performed hyperparameter tun-
ing on InceptionV3 with RadImageNet pre-training. After 
hyperparameter tuning, this model showed an AUROC of 
0.72, AUPRC of 0.70, sensitivity of 84%, specificity of 42%, 

positive predictive value of 62%, and negative predictive 
value of 70%. In subset analysis, we found that model per-
formance was worse for patients with dense breast tissue 
(Category D) compared with less dense tissue (Categories 
A-C) (Table 2). For race/ethnicity, model performance was 
worse for White Non-Hispanic patients compared with non-
White patients, although this appeared to be partly driven 
by breast density, with 14% of Non-Hispanic White patients 
having Category D density, compared with 9% of non-White 
patients (Table 3). 
To better understand what image features contributed the 
most to model decision-making, we assessed where the at-
tention of the model was focused. Pixel importance analysis 
using Grad-CAM showed that, in most cases, the Incep-
tionV3 model trained on specimen mammography images 
had attention focused on relevant parts of the image, such 
as localization wires, biopsy clips, and areas of tumor, while 
the InceptionV3 model trained on natural images did not 
(Figure 5).  

Discussion 
This project developed a prototype deep learning model 
which assesses the margin status of specimen 
mammograms. Pre-training with radiology images was 

found to improve model predictions 
compared with natural images. With an 
internal test set, model accuracy compared 
favorably with human interpretation, with 
a sensitivity of 84%, a specificity of 42%, 
and AUROC of 0.71. 
Despite advances in intra-operative margin 
assessment, the rate of positive margins 
after partial mastectomy remains high.3 
Specimen mammography is a widely used 
method that benefits from its availability 
within the operating room and its ability to 
provide immediate feedback. However, the 
diagnostic accuracy of specimen 

Table 2. Model accuracy metrics by breast tissue density category 
Density  AUROC AUPRC Sensi-

tivity 
Speci-
ficity 

PPV NPV 

A 0.758 0.877 0.909 0.333 0.714 0.667 

B 0.665 0.752 0.944 0.175 0.66 0.647 

C 0.741 0.766 0.961 0.213 0.603 0.812 

D 0.54 0.619 0.897 0.222 0.65 0.571 

AUROC – area under the receiver operating characteristic curve, 
AUPRC – area under the precision-recall curves, PPV – positive pre-
dictive value, NPV – negative predictive value 
 

 
Figure 4. Receiver operating characteristic and precision-recall curves for models predicting margin status 
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mammography is highly variable and relatively low, with 
reported sensitivity ranging from 20-58%.5–8 A 2017 meta-
analysis of 9 studies showed a pooled sensitivity of 53% 
(95% CI 45 – 61%) with a pooled specificity of 84% (95% 
CI 77 - 89%).23 AUROC is similarly variable, but low, ranging 
from 0.60 to 0.73.23–27 The current models’ accuracy metrics 
are higher than many of the results published in the 
literature, demonstrating the potential of this approach. 
Another interesting finding from our study was that our 
model showed lower accuracy in predicting margin status 
among patients with the highest breast density (Category 
D). This is expected, given similar findings for screening 
mammography, but has not been previously reported for 
specimen mammography.19 In contrast to previous studies 
applying artificial intelligence (AI) to mammography, our 
models show higher accuracy among non-White patients 
compared with White patients.18 This could be because non-
White patients are well-represented within our dataset and 
because of the higher percentage of Category D breast 
density among White patients. 
More generally, the overall performance of the current 
models mirror other recent advances in computer vision 
classification of mammograms, which show improved 
accuracy when radiologists are assisted by AI.28–30 AI has 
also recently been successfully applied to laparoscopic 
video, demonstrating its potential to assist with real-time, 
intra-operative decision-making.31–33 AI-assisted 
interpretation of specimen mammography may function 
similarly. It will be particularly useful for low-volume or 
low-resource centers which lack access to dedicated breast 
surgeons, radiologists, or pathologists and see higher rates 

of positive margins.9 AI-assisted clinical 
decision-support has the potential to 
improve equity in surgical outcomes for 
patients treated at these institutions.34 
However, further development of the 
current models is needed, including 
collection of a larger, multi-institutional 
training set and mammogram-specific 
transfer learning. 
This project has several limitations. The 
accuracy and generalizability of the model 
is most significantly limited by the size and 
single-institution nature of the dataset. A 

larger, multi-institutional dataset would likely result in a 
more accurate and robust model and verify its external 
validity. Second, the rate of positive margins is higher than 
previously reported.3 However, this is expected given our 
exclusion of cavity shave margins and focus on DCIS 
margins in mixed IDC/DCIS pathology. Third, the model 
does not identify which margin may be involved. Use of 
model attention techniques to automatically localize image 
features associated with a positive margin is possible and 
represents a target for future research.35,36 Newer imaging 
techniques, such as 3D tomosynthesis or optical coherence 
tomography may also be more accurate compared with 
specimen mammography and result in improved models.37–

39 However, the current approach has the advantage of 
using widely available systems rather than new hardware, 
which may be costly. Finally, we did not assess radiologist 
or surgeon accuracy for margin classification on our 
dataset, although this is likely to be similar to previous 
literature. 
 

Conclusions 
In conclusion, we developed a prototype model that can 
predict the pathologic margin status of partial mastectomy 
specimens based on intra-operative specimen 
mammography. The model’s predictions compare highly 
favorably with human interpretation. Optimized and 
externally validated versions of this model could assist 
surgeons with identifying positive margins intra-
operatively and ultimately reduce the need for re-operation 
in breast-conserving surgery without requiring additional 
imaging hardware. 

  

Table 2. Model accuracy metrics by breast tissue density category 
Density  AUROC AUPRC Sensi-

tivity 
Speci-
ficity 

PPV NPV 

A 0.758 0.877 0.909 0.333 0.714 0.667 

B 0.665 0.752 0.944 0.175 0.66 0.647 

C 0.741 0.766 0.961 0.213 0.603 0.812 

D 0.54 0.619 0.897 0.222 0.65 0.571 

AUROC – area under the receiver operating characteristic curve, 
AUPRC – area under the precision-recall curves, PPV – positive pre-
dictive value, NPV – negative predictive value 
 

Figure 5. Analysis of pixel importance using Grad-CAM for trained and untrained 
InceptionV3 models 
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