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Abstract 
Pretrained language models such as Bidirectional Encoder Representations from Transformers (BERT) 

have achieved state-of-the-art performance in natural language processing (NLP) tasks. Recently, BERT 

has been adapted to the biomedical domain. Despite the effectiveness, these models have hundreds of 

millions of parameters and are computationally expensive when applied to large-scale NLP applications. 

We hypothesized that the number of parameters of the original BERT can be dramatically reduced with 

minor impact on performance. In this study, we present Bioformer, a compact BERT model for biomedical 

text mining. We pretrained two Bioformer models (named Bioformer8L and Bioformer16L) which reduced 

the model size by 60% compared to BERTBase. Bioformer uses a biomedical vocabulary and was pre-trained 

from scratch on PubMed abstracts and PubMed Central full-text articles. We thoroughly evaluated the 

performance of Bioformer as well as existing biomedical BERT models including BioBERT and PubMedBERT 

on 15 benchmark datasets of four different biomedical NLP tasks: named entity recognition, relation 

extraction, question answering and document classification. The results show that with 60% fewer 

parameters, Bioformer16L is only 0.1% less accurate than PubMedBERT while Bioformer8L is 0.9% less 

accurate than PubMedBERT. Both Bioformer16L and Bioformer8L outperformed BioBERTBase-v1.1. In addition, 

Bioformer16L and Bioformer8L are 2-3 fold as fast as PubMedBERT/BioBERTBase-v1.1. Bioformer has been 

successfully deployed to PubTator Central providing gene annotations over 35 million PubMed abstracts 

and 5 million PubMed Central full-text articles. We make Bioformer publicly available via 

https://github.com/WGLab/bioformer, including pre-trained models, datasets, and instructions for 

downstream use. 

 

Introduction 
The volume of published biomedical literature is increasing rapidly over the past few years. For instance, 

PubMed has more than 35 million articles, and this number is growing by five thousand per day. In 

addition, there are 8.7 million freefull-text articles available in PubMed Central (PMC) and preprint servers, 

such as bioRxiv and medRxiv. Such rapid growth challenges knowledge discovery and literature curation. 

Biomedical Natural Language Processing (BioNLP) has been applied to help decrease such burdens. BioNLP 

language models–capturing semantic representations over biomedical literature – are the foundations for 

BioNLP method development and downstream applications. Early BioNLP language models include 

biomedical word embeddings [1, 2], entity embeddings [3, 4], and sentence embeddings [5] have shown 

effectiveness in a range of BioNLP applications such as biomedical named entity recognition, relation 

extraction, and information retrieval [6, 7].  

 

Recently, pretrained transformer language models, such as Bidirectional Encoder Representations from 

Transformers (BERT) [8], have led to impressive performance gains over word/sentence embeddings, 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs). BERT uses the transformer 

architecture [9] and it is pretrained by self-supervised learning. It has been adapted to the biomedical 

domain: pretrained BERT models on biomedical literature or clinical text, such as BioBERT [10], BlueBERT 

[11], PubMedBERT [12] and BioClinicalBERT(https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT)[13], 

have been released to the public. While these BERT models could improve the effectiveness of 

downstream BioNLP studies, they have hundreds of millions of parameters that are computationally 

expensive. For instance, existing studies have shown BioNLP BERT models are 50 times slower than 
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biomedical sentence embeddings for retrieving relevant sentences via biomedical literature [14]. In 

addition, a full BioNLP pipeline usually includes multiple subtasks and therefore requires running BERT 

models multiple times. For example, a pipeline to extract disease-casual genes from biomedical literature 

needs first to identify named entities of genes and diseases. Next, entity normalization needs to be 

performed to link the gene and disease mentions to unique identifiers. After that, a relation extraction 

model is needed to classify gene-disease relations. This pipeline runs BERT models five times if each 

subtask uses its own fine-tuned model, not to mention it may need to be applied to millions of biomedical 

literatures. Therefore, it is the bottleneck for BioNLP studies to apply transformer-related language 

models and deploy them in real-world applications for biomedical researchers and healthcare 

professionals. 

 

The existing BioNLP transformer models directly apply the BERTBase or BERTLarge architecture with 110-340 

million parameters. To date, there is no BioNLP transformer on improving efficiency. To speed up large-

scale or real-time biomedical text mining tasks, we aim to train a compact model with faster speed while 

maintaining high accuracy. In the general domain, recent studies[15] showed that simply pretraining 

longer and over more data significantly improved the performance. Previous studies [16] also showed 

that given a fixed model size, model depth (number of layers) and width (hidden embedding size) have a 

large effect on performance. Therefore, we hypothesize that a well pretrained compact model with 

optimal model depth and width could achieve faster speed with minimal loss in accuracy.  

 

In this study, we present Bioformer, a compact BERT model for biomedical text mining. Bioformer has two 

variants: Bioformer8L and Bioformer16L with different model depth and width. Bioformer uses a biomedical 

vocabulary and is pretrained from scratch on 33 million PubMed abstracts and 1 million PubMed Central 

(PMC) full-text articles. We compared its efficiency with existing biomedical BERT models such as BioBERT 

and PubMedBERT. We thoroughly evaluated the effectiveness of Bioformer over 15 datasets from four 

primary BioNLP tasks: named entity recognition, relation extraction, question answering and document 

classification. Our results show that with 40% of the parameters, Bioformer16L is only 0.1% less accurate 

than PubMedBERT and its overall performance is even better than BioBERTBase-v1.1. In addition, Bioformer 

models are 2-3-fold as fast as PubMedBERT/BioBERTBase-v1.1. Bioformer has been successfully deployed to 

PubTator Central [17], providing automatic annotations over 35 million PubMed abstracts and 5 million 

PubMed Central full-text articles.  

 

 

Methods 
As shown in Table 1, Existing BioNLP BERT models directly applies BERTBase with the total number of 

parameters of 110M (L = 12, H = 768, A = 12) where L, H, and A stand for the number of layers, the hidden 

embedding size, and the number of attention heads, respectively. We hypothesize that the hundred 

million of parameters in the BERT architecture are not equally effective and some might be redundant. 

Instead, we empirically investigated compact architectures by dramatically reducing the number of layers, 

the hidden embedding size, and the number of attention heads. Specifically, we pretrained two compact 

models detailed in Table 1: Bioformer8L with the total number of parameters of 43M (L = 8, H = 512, A = 8) 

and Bioformer16L (L = 16, H = 1024, A = 6). They have less than 40% of parameters compared to that of the 

original BERTBase. Bioformer8L and Bioformer16L have almost the same number of parameters; in contrast, 

Bioformer16L has more layers and a smaller embedding size (i.e., deeper and thinner). 



 

Vocabulary of Bioformer  
Bioformer uses a cased WordPiece (a subword segmentation algorithm [18]) vocabulary trained from all 

PubMed abstracts (33 million, as of Feb 1, 2021) and one million subsampled PMC full-text articles. We 

subsampled one million PMC full-text articles so that total size of PubMed abstracts and PMC full-text 

articles are approximately the same. In the training process, the vocabulary was initialized with individual 

characters in the corpus; then, the most frequent subwords in the corpus were iteratively added to the 

vocabulary. We trained Bioformer’s vocabulary from the Unicode text of the two resources to mitigate 

the out-of-vocabulary issue and include special symbols (e.g., male and female symbols) in biomedical 

literature.  

 

Pretraining Bioformer 
The pretraining details for Bioformer is summarized in Table 1. The workflow for pretraining Bioformer is 

shown in Figure 1. Bioformer was pretrained from scratch on the same corpus as the vocabulary in 2.1. 

The original BERT model has two pretraining objectives: masked language model (MLM) and next 

sentence prediction (NSP). The MLM objective is for predicting the masked tokens (subwords). The NSP 

objective is to predict whether two input sentences are next to each other in the original text. For the 

MLM objective, we used whole-word masking with a masking rate of 15%. Whole-word masking requires 

that the whole word (i.e., all the subwords) be masked if one of its subwords is chosen 

(https://github.com/google-research/bert). This will force the model to recover the whole word using 

context information instead of recovering a subword, which can be inferred from the unmasked subwords 

of the same word. The random masking process was duplicated 20 times so that each sequence was 

masked in 20 different ways. There are debates on whether the NSP objective could improve the 

performance on downstream tasks[15]. We include it in our pretraining experiment in case the prediction 

of the next sentence is needed by downstream tasks (e.g., for zero-shot learning [19]). Sentence 

segmentation of all training text was performed using SciSpacy [20]. Pretraining of Bioformer was 

performed on a single Cloud TPU device (TPUv2, 8 cores, 8GB memory per core). We pretrained Bioformer 

(both models) for 2 million steps with a batch size of 256. It took about 8.7 days to finish the pretraining 

of Bioformer8L and 11.3 days to finish the pretraining of Bioformer16L.  

 

Evaluation of training and inference speed 
We evaluated the training (for fine-tuning) and inference speed based on a sequence classification task.  

The sequence classification task adds a linear layer on top of the [CLS] token for binary classification. 

Therefore, it has minimal changes to the BERT backbone. We evaluated the speed of four biomedical BERT 

models (BioBERTBase, PubMedBERT, Bioformer8L, Bioformer16L) as well as one compact general domain 

BERT model: DistilBERT. DistilBERT was a distilled version of BERT developed by Hugging Face[15]. It has 

the same hidden embedding size as BERTBase but with fewer number of layers (L=6). We used the 

‘run_glue.py’ script in the Transformers library[21] to perform the benchmark. Training speed was 

assessed on an NVIDIA Tesla P100 GPU with 16GB memory. Inference speed was assessed on an Intel 

Xeon CPU. The max sequence length was set to 512. For training on GPU, the batch size was set to the 

maximal possible value for each model that does not cause out-of-memory error.  
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Evaluation of performance on biomedical NLP tasks 
Overall, we evaluated the performance of five biomedical BERT models: Bioformer8L, Bioformer16L, 

BioBERTBase-v1.1, PubMedBERTAbs (pretrained on PubMed Abstracts only), and PubMedBERTAbsFull 

(pretrained on PubMed Abstracts and PMC full-text articles). To ensure fairness, all the five models were 

evaluated using the same setting. We evaluated the performance on four main biomedical NLP 

applications consisting of 15 datasets: named entity recognition (eight datasets), relation extraction (four 

datasets), question answering (one dataset), and document classification (two datasets). The details of 

the datasets and evaluation metrics are summarized in Table 2. We used consistent preprocessing and 

training approaches as the existing studies summarized below. 

 

Named Entity Recognition (NER)  

Named Entity Recognition identifies named entities mentioned in unstructured text, such as gene and 

disease names. It is commonly formulated as a token classification problem: for a given token in the input 

text, the model needs to determine whether it belongs to a specific entity type. We adopted the same 

preprocessing pipeline for NER applications in the existing studies [10, 12]. The context-ware 

representation of each token from the last layer of a transformer model is used to classify the token’s 

category. 

 

Relation Extraction (RE)  

Relation extraction classifies the relationships between named entities in the given text (e.g., protein-

protein interactions). It can be formulated as a sequence classification problem: given a passage, it 

classifies whether it mentions a specific relation. We followed the preprocessing method used by 

BioBERT[10] where entity names are replaced by pre-defined tags (e.g., gene and disease names are 

replaced (@GENE$ and @DISEASE$, respectively). The representation of the [CLS] token in the last layer 

is used to classify the relations. 

 

Question Answering (QA) 

Question answering is a reading comprehension task that extracts the answer to a question from a given 

text. The Stanford Question Answering Dataset (SQuAD)[22] is a large-scale QA dataset in the general 

domain. BioASQ[23] factoid datasets are a series of QA datasets in the biomedical domain. Given a 

question and a passage containing the answer, the task is to predict the span of the answer. We followed 

the same fine-tuning procedure as the original BERT[8] for QA tasks. The input question and passage are 

presented as a sentence pair where the question is the first sentence and the passage is the second 

sentence. Token-level probabilities for the start/end location of the answer span are computed using a 

single layer. For BioASQ, we used the preprocessed dataset (BioASQ-7b) provided by the developers of 

BioBERT[10] where about 30% unanswerable questions had been removed from the dataset. We used the 

same evaluation metrics from BioASQ: strict accuracy, lenient accuracy and mean reciprocal rank. 

Previous studies[10, 24] showed that pretraining on the SQuAD dataset (fine-tuning on the SQuAD before 

fine-tuning on BioASQ) improved the performance on the BioASQ datasets. Therefore, we showed the 

evaluation results with or without pretraining on SQuAD.  

 



Document Classification (DC)  

Document classification categorizes an input document into one or more categories. In contrast to 

relation extraction which focuses on the relationships between entities often at passage level, document 

classification is often at abstract or full-text level. It has been extensively used for biomedical document 

triage (e.g., classify whether a PubMed article is relevant for manual curation [25] and topic assignment 

(e.g., assign COVID-19-related topics such as Treatment and Diagnosis to a relevant article [26]). Same as 

the relation extraction task, the representation of the [CLS] token in the last layer is used to classify the 

document. 

 

Hyperparameter tuning and result reporting 

For each task, we selected the max sequence length based on previous studies and the values were listed 

in Table 2. Consistent with the existing studies[12], we select the best batch size among 8, 16, and 32, and 

learning rate among 1e-5, 3e-5, and 5e-5 on the development set. For each combination, we trained the 

model for up to 20 epochs, selected the checkpoint achieving the best performance over the development 

set, and evaluated it on the testing set. To ensure a fair comparison, we used the same preprocessing and 

hyperparameter tuning methods for all the five models. We repeated each fine-tune experiments for five 

times using different random seeds and reported the average performance of the evaluation metrics in 

Table 2. 

 

Results 

Pretraining Bioformer and hyperparameter selection 
Model depth (number of transformer layers, L) and model width (hidden embedding size, H) are key 

hyperparameters that impact the performance. Turc et al.[16] released 24 pretrained miniature BERT 

models in the general domain. To investigate the best model depth and model width for a compact BERT 

model, we examined the effect of model depth and width on performances of downstream tasks. We 

compared decreasing depth versus decreasing width. We benchmarked the performances on general 

domain NER and QA tasks (Figure 2). NER is a relatively simple task and QA is a more complicated task. 

The performance drop for QA is more significant than that for NER. We also observed that the 

performance drop is higher when reducing depth (L) compared to reducing width (H). This suggest that a 

deep-and-narrow model might perform better than a shallow-and-wide model when the model sizes are 

approximately the same. Therefore, we pretrained two Bioformer models with approximately the same 

model size: Bioformer8L and Bioformer16L (hyperparameters shown in Table 1). Compared to a BERTBase 

model, Bioformer8L reduced both model width (from 768 to 512) and depth (from 12 to 8). Bioformer16L 

reduced model width more significantly (from 768 to 384), but increased model depth to 16. We 

hypothesized that Bioformer16L might perform better than Bioformer8 on more complicated task such as 

QA. The procedure for pretraining Bioformer8L and Bioformer16L is described in the method section. 

 

Model structure and speed 
We compared the speed of Bioformer and with BERTBase/BioBERTBase, PubMedBERT and DistilBERT. (Figure 

3). BioBERTBase used a continue pretraining strategy and was initialized with model weights from the 

original BERTBase. Therefore, BioBERTBase and BERTBase have the same speed. PubMedBERT have 



approximately the same structure as BERTBase, except that it has its own vocabulary with a slightly different 

vocabulary size. DistilBERT was a compact BERT model developed by Hugging Face[27]. DistilBERT has the 

same hidden embedding size as BERTBase but with fewer number of layers (L=6). As a result, the model size 

was reduced by 40%. Bioformer8L and Bioformer16L have approximately the same model size (43M and 

42M, Figure 3C), but Bioformer16L is a deeper model with smaller hidden embedding size. We 

benchmarked the training and inference speed of these models on sequence classification task which 

added a single linear layer on top of the [CLS] token. The max sequence length was 512. The benchmarking 

results are shown in Figure 3. PubMedBERT and BioBERTBase has approximately the same speed. 

Bioformer16L is twice as fast as BioBERTBase for training and the inference speed is 2.2-fold of BioBERTBase. 

The training and inference speeds of Bioformer8L are 2.8-fold and 3.0-fold of BioBERTBase, respectively. The 

speed of Bioformer16L and DistilBERT are approximately the same while Bioformer8L is faster than 

Bioformer16L and DistilBERT. 

 

Performance on downstream biomedical NLP tasks 
Table 3 shows the performance on four downstream biomedical NLP tasks: named entity recognition, 

relation extraction, question answering and document classification. Overall, with only 40% of the 

parameters of the original BERTBase, Bioformer16L and Bioformer8L retain high accuracy across the 15 

datasets of the four tasks. PubMedBERTAbs achieved the highest overall average performance score among 

all models, followed by Bioformer16L. Bioformer16L retains 99.92% (82.71/82.77) performance score of 

PubMedBERTAbs and its average performance is better than PubMedBERTAbs, BioBERTBase-v1.1 and 

Bioformer8L. The overall performance of Bioformer8L is a little higher than BioBERTBase-v1.1 (average score 

82.07 versus 82.02). Bioformer16L has better performance than Bioformer8L in most (12 out of 15) datasets, 

which is consistent with the finding that depth is more important than width (Figure 2 and also reported 

by previous studies [16, 28]). We also observed that Bioformer16L performed best in the QA task, 

outperformed Bioformer8L and other models by a large margin. 

 

Of note, Bioformer8L participated the BioCreative VII LitCovid multi-label topic classification challenge and 

achieved the overall best performance among all teams [29]. The details of the challenge are described 

elsewhere [29, 30]. In this study, we showed the performance of the five models on the BioCreative VII 

LitCovid challenge development set in Table 3 (as a document classification task). The performance scores 

in Table 3 are different from the BioCreative VII LitCovid challenge paper[30] because Table 3 shows the 

average scores of five random runs while the BioCreative VII LitCovid challenge paper presented the score 

of the submitted run. Bioformer16L did not participate this challenge because Bioformer16L was pretrained 

after the challenge was closed. We added the performance score of Bioformer16L in Table 3.  

 

Incorporating Bioformer into PubTator for annotating genes at the full PubMed 

and PMC scale 
We further demonstrate a real-world application by incorporating Bioformer into PubTator. PubTator [17] 
– a web-based biomedical text mining platform publicly available for over a decade – provides high-quality 
automatic entity annotations and prioritizes target entities or relevant articles for downstream research. 
PubTator provides six types of biomedical concepts (genes, chemicals, diseases, species, variants, and cell 
lines) for the entire PubMed and PMC articles (to date, there are 35+ million PubMed abstracts and 5 
million+ PMC full texts). 



Previously, PubTator employed the conditional random fields (CRF) for recognizing genes[17]. This 
approach took about 100 hours to annotate genes over the entire PubMed and PMC articles in the 
production environment consisting of a computer cluster of 300 CPUs. Given the advances in transformers, 
we implemented NER models using the existing BioNLP transformers as the backbone and examined the 
efficiency in the PubTator production environment. It took more than 350 hours for the existing BioNLP 
transformers to annotate genes. As PubTator annotates seven types of named entities, it is not practical 
to extend the annotations to all the seven types at the full PubMed and PMC scale. 
 
We used Bioformer8L instead. Under the same resources, the processing time significantly reduced to 150 
hours, whereas the accuracy difference is within 1% [31]. The processing time is competitive with that of 
the previous CRF method. This demonstrates a successful use case of incorporating Bioformer into 
PubTator and bringing dramatic efficiency to large-scale data processing. 
 

 

Discussion 
 

In this study, we introduced Bioformer, a compact pretrained language model for biomedical text mining. 

Bioformer has two variants (Bioformer8L and Bioformer16L) with approximately the same model size but 

different model widths and depths. We evaluated the effectiveness of Bioformer on 15 datasets of four 

biomedical NLP tasks. With 40% of the parameters, both variants retain more than 99% performance score 

of PubMedBERT, the current state-of-the-art model. The efficiency evaluation results showed that 

Bioformer16L and Bioformer8L and are 2X and 3X as fast as PubMedBERT, respectively. Bioformer has been 

deployed to PubTator Central, providing automatic annotations over 35 million PubMed abstracts and 5 

million PubMed Central full-text articles.  

 

The effectiveness evaluation results do not suggest significant difference for the five models in terms of 

accuracy. In contrast, the efficiency evaluation results show that Bioformer significantly improved the 

training and inference speed by 2-3 folds. These collectively suggest that Bioformer can be employed in 

applications where speed is critical (e.g. large-scale data analysis or real-time applications) while 

maintaining high accuracy. Bioformer reduced the model size by 60% which indicates that it can be fit into 

devices with smaller memory, or be trained with larger batch size given a fixed GPU/TPU memory. Recent 

studies suggest that pretraining with larger batch size may improve the performance and the state-of-the-

art models such as RoBERTa, XLNet, and PubMedBERT were pretrained with a batch size of 8192 [12, 15, 

31].  

 

In addition, we also comparatively analyzed Bioformer8L and Bioformer16L and found a trade-off between 

effectiveness and efficiency. Recall that both models have a very similar number of parameters but 

different architectures. Bioformer8L has eight transformer layers and the hidden embedding size is 512. 

Bioformer16L has 16 transformer layers and the hidden embedding size is 384. The effectiveness evaluation 

shows that Bioformer16L consistently had better performance than Bioformer8L on most (12/15) datasets, 

which suggests that deeper and thinner transformer models may have higher accuracy. As a trade-off, 

Bioformer16L is less efficient than Bioformer8L, despite that Bioformer8L has a little more number of 

parameters (43M versus 42M). The reason might be that Bioformer8L has a larger hidden embedding size 

and large dense matrix multiplications can be well parallelized. Bioformer16L has more layers and matrix 



multiplications in different layers cannot start simultaneously. The calculations of the next layer need the 

results from the previous layer.  

 

Bioformer8L retains 99.6% F1 score of Bioformer16L in NER tasks. Considering the speed advantage, we 

suggest using Bioformer8L for NER tasks if accuracy is not critical. However, Bioformer8L only retains 95.6% 

of the average performance score of Bioformer16L in question-answering tasks. Therefore, we suggest 

using Bioformer16L for question-answering tasks considering its significant advantage. For relation 

extraction tasks, Bioformer8L retains 98.4% of the average performance score of Bioformer16L, users can 

choose the model based on their preference on speed/accuracy. We hope that Bioformer is a compelling 

option for large-scale text mining or real-time NLP applications.  
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Data and Code Availability 
Pretrained model weights of Bioformer8L and Bioformer16L are publicly available on HuggingFace 

(https://huggingface.co/bioformers/bioformer-8L, https://huggingface.co/bioformers/bioformer-16L). 

The code and instructions for downstream use are available on GitHub 

(https://github.com/WGLab/bioformer).  
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Figures 
 

 

Figure 1. Workflow for pretraining Bioformer. We first trained a WordPiece vocabulary using all PubMed 

abstracts (33 million, as of Feb 1, 2021) and one million subsampled PMC full-text articles. The PMC full-

text articles were subsampled to one million such that the total size of PubMed abstracts and PMC full-

text articles are approximately the same. Bioformer models were pretrained from scratch using the same 

text for training the vocabulary. Same as the original BERT model, there were two pretraining objectives: 

masked language modeling (MLM) and next sentence prediction (NSP). For the MLM objective, we used 

whole-word masking with a masking rate of 15%. The random masking process was duplicated 20 times 

so that each sequence was randomly masked in 20 different ways. Sentence segmentation of all training 

text was performed using SciSpacy [20]. Pretraining of Bioformer was performed on a single Cloud TPU 

device (TPUv2, 8 cores, 8GB memory per core) with a max sequence length of 512 and a batch size of 256.  

 



 

Figure 2. Effect of model width (hidden embedding size, H) and depth (number of transformer layers, L) 

on performances of downstream tasks. Two model compression methods were assessed: decreasing 

depth (keep width) or decreasing width (keep depth). We benchmarked the performances on NER (A) and 

question answering (B). The performance drop is higher when reducing depth (L) compared to reducing 

width (H). On the other words, a deep-and-narrow model performs better than a shallow-and-wide model 

when the model sizes are approximately the same. The compressed models used in this figure were 

general domain BERT models released by a previous study [16]. The datasets for benchmarking NER and 

QA performance are CoNLL2003 and SQuAD1.1, respectively. 

  



 

 
Figure 3. Comparison of hyperparameters and speed. Hidden embedding sizes, numbers of layers and 

numbers of parameters of five BERT models are shown in (A), (B) and (C). Relative speedup (with respect 

to BioBERTBase/BERTBase) is shown in (D). Training and inference speed are calculated based on a 

sequence classification task which adds a single linear layer on top of the [CLS] token of the BERT model. 

Training speed was assessed on an NVIDIA Tesla P100 GPU. Inference speed was assessed on an Intel 

Xeon CPU. 

  



Tables 
 

Table 1. Comparison of Bioformer and other biomedical BERT models. 

 Bioformer8L Bioformer16L BioBERTBase-v1.1 PubMedBERT 

Number of parameters 43M 42M 110M 110M 
Number of layers 8 16 12 12 
Hidden embedding size 512 384 768 768 
Number of attention heads 8 6 12 12 
Vocabulary size 32,768 32,768 28,996 30,522 
Max input sequence length 512 1,024 512 512 
Pretraining strategy From scratch From scratch Continue pretraining From scratch 
Batch size 256 256 192 8,192 
Pre-trained steps 2M 2M 1M 0.62M 

Pretraining device 
1 TPUv2 
(8 cores) 

1 TPUv2 
(8 cores) 

8 V100 GPUs 16 V100 GPUs 

 

 

 

  



Table 2. Statistics of the benchmark datasets. 

Dataset Train Valid Test Metric 

Named entity recognition 

BC2GM[32] 15197 3061 6325 F1 score 
BC4CHEMD[33] 29478 29486 25346 F1 score 
BC5CDR-chem[34] 5,203 5,347 5,385 F1 score 
BC5CDR-disease[34] 4,182 4,244 4,424 F1 score 
JNLPBA[35] 32178 8575 6241 F1 score 
linnaeus[36] 2119 711 1433 F1 score 
NCBI-disease[37] 5134 787 960 F1 score 
s800[38] 2557 384 767 F1 score 

Relation extraction 

Chemprot[39] 4,154 2,416 3,458 macro-F1 
DDI[40] 2,937 1,004 979 micro F1 
euadr[41] 4796 0 535 F1 score 
GAD-10[42] 318 0 38 F1 score 

Document classification 

HoC[43] 1,108 157 315 micro F1 
BioCreative-LitCovid[29] 24,960 6,239 2,500 micro F1 

 

 

 

 

  



Table 3. Performance on downstream biomedical NLP tasks  

Dataset (metric) Bioformer8L Bioformer16L BioBERTBase-v1.1 PubMedBERTAbs PubMedBERTAbsFull 

Named entity recognition (NER) 

BC2GM (F1) 83.95 84.26 84.07 84.66 84.71 

BC4CHEMD (F1) 92.04 92.34 92.02 92.49 92.63 

BC5CDR-chem (F1) 93.64 94.00 93.67 94.20 94.18 

BC5CDR-disease (F1) 86.29 86.53 86.09 87.54 87.17 

JNLPBA (F1) 76.75 77.17 76.81 77.14 77.34 

Linnaeus (F1) 88.48 88.51 84.33 88.59 88.45 

NCBI-disease (F1) 87.99 87.73 88.48 88.52 87.09 
S800 (F1) 73.47 74.65 74.78 74.02 74.21 

NER average 85.32 85.65 85.03 85.90 85.72 

Relation extraction (RE) 

Chemprot (macro F1) 76.77 79.07 77.69 80.10 80.25 

DDI (micro F1) 81.84 84.56 82.84 84.54 83.74 

EU-ADR (F1) 84.72 84.76 84.21 83.60 83.88 

GAD-10 (F1) 81.31 81.40 81.94 82.65 82.65 

RE average 81.16 82.45 81.67 82.72 82.63 

Document classification (DC) 

HoC (micro F1) 86.41 86.37 86.42 86.41 87.07 

BC7-LitCovid (micro F1) 90.88 90.69 90.72 90.78 90.78 

DC average 88.65 88.53 88.57 88.60 88.93 

Question Answering (pretrained on SQuAD 1.1)  

BioASQ-7b (S. Accuracy) 40.87 43.09 42.96 43.01 42.98 

BioASQ-7b (L. Accuracy) 59.75 60.49 58.64 58.66 58.65 

BioASQ-7b (MRR) 48.08 49.77 49.28 49.29 49.30 

Question Answering (without pretraining) 

BioASQ-7b (S. Accuracy) 34.94 37.53 35.68 35.72 35.71 

BioASQ-7b (L. Accuracy) 53.83 56.42 49.88 49.91 49.89 

BioASQ-7b (MRR) 41.61 44.38 41.09 41.13 41.11 

QA average 46.51 48.61 46.26 46.29 46.27 

Overall average 82.07 82.71 82.02 82.77 82.69 

Notes: 1) BC7-LitCovid denotes BioCreative VII LitCovid challenge and the results are development set performance. 

2) S. Accuracy: strict accuracy; L. Accuracy: lenient accuracy; MRR: mean reciprocal rank. 3) QA average is the average 

score of the three metrics of the two methods (with/without pretraining on SQuAD 1.1). 4) Overall average = (NER 

average * 8 + RE average * 4 + DC average * 2 + QA average)/15. 

 

 

 


