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Abstract  30 

Background: Homologous Recombination Deficiency (HRD) is a pan-cancer predictive biomarker that 31 

identifies patients who benefit from therapy with PARP inhibitors (PARPi). However, testing for HRD is 32 

highly complex. Here, we investigated whether Deep Learning can predict HRD status solely based on 33 

routine Hematoxylin & Eosin (H&E) histology images in ten cancer types.  34 

Methods: We developed a fully automated deep learning pipeline with attention-weighted multiple 35 

instance learning (attMIL) to predict HRD status from histology images. A combined genomic scar HRD 36 

score, which integrated loss of heterozygosity (LOH), telomeric allelic imbalance (TAI) and large-scale 37 

state transitions (LST) was calculated from whole genome sequencing data for n=4,565 patients from 38 

two independent cohorts. The primary statistical endpoint was the Area Under the Receiver Operating 39 

Characteristic curve (AUROC) for the prediction of genomic scar HRD with a clinically used cutoff 40 

value.  41 

Results: We found that HRD status is predictable in tumors of the endometrium, pancreas and lung, 42 

reaching cross-validated AUROCs of 0.79, 0.58 and 0.66. Predictions generalized well to an external 43 

cohort with AUROCs of 0.93, 0.81 and 0.73 respectively. Additionally, an HRD classifier trained on 44 

breast cancer yielded an AUROC of 0.78 in internal validation and was able to predict HRD in 45 

endometrial, prostate and pancreatic cancer with AUROCs of 0.87, 0.84 and 0.67 indicating a shared 46 

HRD-like phenotype is across tumor entities.  47 

Conclusion: In this study, we show that HRD is directly predictable from H&E slides using attMIL within 48 

and across ten different tumor types. 49 

 50 

Keywords: Homologous Recombination Deficiency, Deep Learning, DNA repair mechanism, artificial 51 

intelligence, molecular pathology, pan cancer study.  52 

  53 
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Background 54 

Homologous recombination repair (HRR) is a DNA repair mechanism that ensures genomic integrity 55 

after DNA double-strand breaks (DSB), which occur regularly during the cell cycle (1). Homologous 56 

recombination deficiency (HRD) results in defective DNA break repair, increased somatic copy number 57 

alterations and genomic instability, driving malignant transformation and causing cancer (2). Poly(ADP-58 

Ribose)-polymerase (PARP) plays pivotal roles in base excision repair of single strand DNA breaks 59 

(SSDBs), which is a compensatory DNA repair mechanism in the context of HRD. In the setting of 60 

homologous recombination (HR) proficiency PARP inhibition results in the accumulation of unrepaired 61 

SSDBs. These can eventually convert to DSBs, which can be repaired via HR thus maintaining 62 

genomic integrity and cell viability. However in the case of a HRD tumor, PARP inhibition-induced DSBs 63 

are no longer repaired, resulting in direct cytotoxicity.. This phenomenon of synthetic lethality is the 64 

reason why HRD is an important biomarker to select patients for PARP inhibitor (PARPi) treatment in 65 

several tumor types, especially in breast, ovarian, prostate and pancreatic cancer (3–6). Prevalences of 66 

HRD varies according to the genomic definition of HRD and among tumor types, ranging from 0% in 67 

thymoma or thyroid cancer up to 70% in ovarian cancer(7). The use of PARPi has led to improved 68 

disease-free survival in multiple clinical trials by increasing platinum sensitivity in ovarian (OV) and 69 

breast cancer (BRCA), and other tumor types (8,9).  70 

 71 

The success of PARPi therapy is mainly limited by the challenge of diagnosing HRD. Many different 72 

test strategies are available. The most robust test for HRD are oncogenic mutations in the Breast 73 

Cancer genes 1 and 2 (BRCA1/2) (10,11). However, this approach excludes patients without BRCA1/2-74 

related deficiencies in the HR pathway (12). Moreover, other mechanisms such as epigenetic 75 

modifications, germline and somatic mutations of genes related or non related to the HRR pathway may 76 

cause HRD (13). Unfortunately, non-BRCA HR mutations have not been reliably shown to predict HRD 77 

or PARPi benefit in the clinic. Certain patterns of mutations, like the single base substitution 3 (SBS3) 78 

are also associated with a defective HR and therefore a potential biomarker (14,15). Finally, another 79 

strategy for detecting HRD is to look for the consequence of HRD rather than the cause. This approach 80 

uses whole genome sequencing single nucleotide polymorphism (SNP) array data to identify loss of 81 
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heterozygosity (LOH), telomeric allelic imbalance (TAI) and large-scale state transitions (LST), also 82 

defined as a genomic instability score (GIS). This combined score has been validated in randomized 83 

clinical trials as predictive of PARPi benefit (16–18). Biologically, this methods provides a more 84 

comprehensive assessment of genomic instability caused by HRD, rather than scores exclusively 85 

based on mutation or HRR genes (Figure 1A). However, the GIS is not yet implemented in routine 86 

diagnostics in clinical workflows (11,12,19). Combining the different components of HRD using 87 

algorithms (e.g. scarHRD, HRDetect, CHORD) may be the gold standard to determine the genomic 88 

“scar” associated with HRD (20–22). A non-DNA-based way to determine HRD is using a functional test 89 

such as the RAD51 focus formation assays (23,24). U.S. Food and Drug Administration (FDA)-90 

approved genetic tests for HRD typically rely on a combination of alterations in BRCA1/2 genes and 91 

LOH (FoundationOne CDx, Foundation Medicine, Inc., Cambridge, MA) or GIS (myChoice CDx, Myriad 92 

Genetics Laboratories, Inc., Salt Lake City, UT) (10,11). However defining cut-off values for 93 

stratification between positive and negative cases is difficult (7,25). Taken together, the HRD testing 94 

landscape is highly complex. Many different tests coexist and they are not perfectly concordant. There 95 

is a high clinical need for a cheap, fast and standardized HRD test which captures a breadth of 96 

biological processes and not just alterations in individual genes. In this study, we hypothesized that the 97 

tumor phenotype as observed on histological whole slide images (WSI) of tumors reflects the HRD 98 

status and can be used to diagnose HRD.  99 

 100 

Deep Learning (DL) is an artificial intelligence (AI)-based technology which has emerged as a powerful 101 

method to quantitatively mine data from histological WSI of tumors in the last five years. DL enables us 102 

to detect genetic alterations directly from histopathological image data (26–28). Specifically, DL has 103 

been shown to detect single mutations(29,30), as well as phenotypic manifestation of DNA instability 104 

mechanisms such as microsatellite instability (MSI), just by processing scanned WSI of tumor tissue 105 

stained with H&E (31,32). Today, several DL systems to predict genetic alterations and clinical 106 

outcomes have received regulatory approval and are available for routine diagnostic use in Europe and 107 

the USA (33,34). Some smaller pilot studies have shown encouraging data for DL-based prediction of 108 

HRD from H&E WSI (35,36). However, HRD is a pan-cancer biomarker and DL has not been 109 

systematically used to diagnose HRD across tumor types directly from routine H&E pathology slides. 110 
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 111 

Therefore, in the present study, we developed a DL system to predict HRD status directly from H&E 112 

pathology slides. We used the state-of-the-art technology “attention-based Multiple Instance Learning” 113 

(attMIL) in a weakly supervised experimental setup, using no spatial labels or manual annotations 114 

whatsoever (28)ruth to train the DL system, we used the calculated scarHRD, one of the most 115 

comprehensive HRD scores which integrates a variety of genomic changes (Figure 1B). We trained and 116 

evaluated the DL classifiers by cross-validation in a large cohort of n=4,113 patients from The Cancer 117 

Genome Atlas (TCGA), comprising 10 types of solid tumors. The models were then externally validated 118 

on four cancer types in an independent validation dataset (n=474) in a tumor-wise and cross-cancer 119 

experimental approach (Figure 1C). Taken together, our experimental results provide direct evidence 120 

that HRD is detectable from routine histology in different types of cancer with DL. 121 

Methods 122 

Data Acquisition  123 

In total data from 5,155 patients of 10 tumor types from The Cancer Genome Atlas (TCGA) and 573 124 

patients from five tumor types from the Clinical Proteomic Tumor Analysis Consortium (CPTAC, Figure 125 

1C) were obtained from https://www.cbioportal.org/. Accordingly, the cancer types included in the 126 

present study were breast invasive carcinoma (TCGA-BRCA n=1,058), colorectal cancer (TCGA-CRC 127 

n=580), glioblastoma (TCGA-GBM n=420, CPTAC-GBM n=99), liver hepatocellular carcinoma (TCGA-128 

LIHC n=364), lung adenocarcinoma (TCGA-LUAD n=536, CPTAC-LUAD n=111), lung squamous cell 129 

carcinoma (TCGA-LUSC n=497; CPTAC-LSCC n=109), ovarian cancer (TCGA-OV n=520), pancreatic 130 

adenocarcinoma (TCGA-PAAD n=177; CPTAC-PDA n=153), prostate adenocarcinoma (TCGA-PRAD 131 

n=488) and endometrial carcinoma (TCGA-UCEC n=515, CPTAC-UCEC n=101, Supplementary Figure 132 

1A,B). Image data and clinical data were available in TCGA-BRCA for n=1005, TCGA-CRC for n=496, 133 

TCGA-GBM for n=232, CPTAC-GBM for n=99, TCGA-LIHC for n=348, TCGA-LUAD for n=460, 134 

CPTAC-LUAD for n=106, TCGA-LUSC for n=451, CPTAC-LSCC for n=108, TCGA-OV for n=90, 135 

TCGA-PAAD for n=173, CPTAC-PDA for n=139, TCGA-PRAD for n=391, TCGA-UCEC for n=467 and 136 

CPTAC-UCEC for n=99, therefore leaving us in total with n=4,565 patients for the analysis (Figure 1C, 137 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.23286975doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.08.23286975
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

Supplementary Figure 1A,B). Moreover, some figures were created using https://www.cbioportal.org/ 138 

(37,38). For additional experiments on BRCA1/2 mutational status we retrieved data from Riaz et al 139 

previously published paper (39). Estrogen receptor data for the subgroup analysis was only available 140 

for n=661 patients in the TCGA-BRCA cohort.  141 

 142 

Image Preprocessing 143 

WSIs were downloaded for the above mentioned cohorts from the GDC Portal 144 

(https://portal.gdc.cancer.gov/) and The Cancer Imaging Archive (TCIA, 145 

https://www.cancerimagingarchive.net/). Initially, the images were tessellated into patches with an edge 146 

length of 256 µm and a resolution of 224x224 pixels. Secondly, the patches for each cohort were color 147 

normalized using the Macenko spectral matching technique(40) to enforce a standardized color 148 

distribution across cohorts. To train the prediction models, we used our in-house open-source DL 149 

pipeline “marugoto” (https://github.com/KatherLab/marugoto) consisting of a self-supervised learning 150 

(SSL) model using a pre-trained ResNet50 architecture with ImageNet weights, fine-tuned pan-cancer 151 

on approximately 32.000 WSI to extract a 2048-dimensional feature vector for each patch per patient 152 

(41). To obtain patient-level predictions, 512x2048 feature matrices (MIL bags) are constructed by 153 

concatenating 512 feature vectors selected at random per patient and fed into an attMIL framework with 154 

the following architecture: (512x256), (256x2) with a subsequent attention mechanism (Figure 1B). 155 

(42,43)  156 

Calculation of HRD Scores 157 

For the patient-wise calculation of HRD, single nucleotide polymorphism (SNP) data, generated by the 158 

Allele-Specific Copy number Analysis of Tumors (ASCAT) algorithm, was downloaded from the 159 

Genomic Data Commons (GDC) Portal: https://portal.gdc.cancer.gov/ (accessed 06/15/2022). In 160 

CPTAC, the respective data was only available for the CPTAC-3 cohort. The HRD score was calculated 161 

using the scarHRD (https://github.com/sztup/scarHRD), as described in previous studies (20,44). 162 

ScarHRD uses whole genome sequencing data in the form of SNP arrays to calculate the three 163 

subscores LOH, LST and TAI. The sum of these subscores makes up the patient-wise HRD score 164 
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(Figure 1A). The cut-offs of the different subscores have been previously defined by Abkevich et al. for 165 

LOH, Popova et al. for LST and Birkbak et al. for TAI (16–18). Adding up the LOH, LST and TAI scores, 166 

patients can be divided into HRD high (HRD-H) and HRD low (HRD-L) at a cut-off of 42 (7). All patients 167 

in the CPTAC-GBM cohort were HRD-L. Hence, we excluded them from further analysis 168 

(Supplementary Figure 1A,B). 169 

Experimental Design  170 

In our study, we performed three main experiments (Figure 1B). To assess the baseline predictability of 171 

HRD from routine histology, we first trained an HRD classifier in a within-cohort approach using five-172 

fold-cross-validation within each of 10 tumor entities mentioned above in the TCGA cohorts (internal 173 

validation). This was achieved by randomly splitting each cohort on the level of patients, creating non-174 

overlapping training and test sets for model training. The ratio for splitting the training and testing set 175 

was 80:20 of the entire dataset, and the training and validation set was split 75:25 of the training set. 176 

Thus, the absolute split for training, internal validation and internal testing was 60, 20 and 20, 177 

respectively. Five different models were trained until each part was used as a test set once. Thus, no 178 

data leakage from the test set to the training set occurred. This process was repeated individually for 179 

each cancer type in the TCGA cohorts. A weighted cross-entropy loss function was used to assist the 180 

model with the imbalanced dataset. Secondly, we deployed the five models trained in the first 181 

experiments on the same tumor type from the CPTAC cohorts as an external validation. By utilizing this 182 

approach, we circumvent any potential claims of selecting the model with the highest AUROC in the 183 

external validation. Lastly, we trained an HRD classifier on the TCGA-BRCA cohort, which had the 184 

highest number of patients, and deployed it on all other TCGA cohorts (CRC, GBM, LIHC, LUAD, 185 

LUSC, PRAD, PAAD, OV, UCEC) as well as on all CPTAC cohorts (LUAD, LSCC, PDA, UCEC). In our 186 

study, we aimed to evaluate the performance of the models using the AUROC, which is commonly used 187 

for assessing the accuracy of binary classification tasks. Our primary statistical endpoint was the 188 

AUROC +/- 95%-confidence interval (CI) and Area under the precision recall curve (Supplementary 189 

Table 1). To further assess the performance of each model, we used a two-sided t-test to compare the 190 

patient-level prediction scores between the HRD-H and HRD-L patient groups as defined by the ground 191 

truth and report the p-values, assuming a significance level of 0.05 as statistically significant, without 192 
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correction for multiple testing (Supplementary Table 1). As a final step to obtain a more profound 193 

understanding of the TCGA-BRCA cohort, we uploaded our custom HRD-H and HRD-L ground truth 194 

and predicted subgroups in cbioportal to examine the characteristics of these cases in the TCGA-BRCA 195 

PanCancer Atlas cohorts. 196 

 197 

Explainability 198 

To visualize the output of our model, we created high resolution heat maps that show the spatial 199 

distribution of our model's attention and prediction scores on the WSI. Therefore, using RetCCL 200 

convolutional neural network image feature vectors for 32x32 pixel fields were extracted from the WSI. 201 

We then calculated attention and classification scores for each image region and normalized them 202 

across the distribution of scores within each patient cohort. Based on these scores, color heatmaps for 203 

each patient, with red indicating high attention or a positive classification and blue indicating low 204 

attention or a negative classification were generated. To ensure interpretability of the underlying 205 

morphology together with the attention and classification scores, we separately reconstructed the final 206 

attention and classification heatmaps by blending the raw color heatmaps with the image features. This 207 

approach allows us to interpret the output of our model in a way that is easy to understand and provides 208 

insight into the underlying morphology of the tumor. 209 

 210 

Results 211 

HRD is predictable from histology with attMIL  212 

First, we investigated whether DL could predict HRD status from H&E types within 10 different types of 213 

cancer from the TCGA cohort. We used cross-validation on the level of patients to train and test an 214 

attMIL-based DL model within each cohort. In our dataset, the prevalence of HRD ranged from 3% in 215 

glioblastoma (GBM) up to 63% in OV (Supplements Figure 1C). We found that in five out of 10 cancer 216 

types, the mean prediction AUROC was above 0.6, and the 95% CI of the fold-wise HRD prediction 217 

AUROCs remained above the null hypothesis of 0.5. Among these, HRD prediction reached statistical 218 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.23286975doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.08.23286975
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

significance with a p-value below 0.05 in three cancer types: endometrial cancer (UCEC, AUROC 219 

0.79+/-0.04, p=0.0008), breast cancer (BRCA, AUROC 0.78+/-0.02, p<0.0001) and lung 220 

adenocarcinoma(LUAD, AUROC 0.66+/-0.05, p=0.02; Figure 2A). AUPRC values are reported in the 221 

Supplementary Table 1. Prediction of HRD was not possible in LUSC, LIHC, GBM, as their prediction 222 

AUROCs did not exceed the baseline (0.55+/-0.04 0.56+/-0.14, 0.58+/-0.38) with CIs above the null 223 

hypothesis or p-values below 0.05 (Supplementary Figure 2 A-J, Supplementary Table 1). For the 224 

tumor types PAAD, OV and PRAD, the AUROCs ranged from 0.58+/-0.22 to 0.6+/-0.09 to 0.76+/-0.22. 225 

Together, these data demonstrate that DL can predict HRD status from histology images alone in 226 

several tumor types. 227 

HRD is predictable from H&E histology with attMIL in an independent test set 228 

A step that is germane to the successful development of DL models is external validation with WSIs 229 

from patient cohorts which are completely independent from the training set (45). Hence, for our 230 

external validation experiments, we deployed the classification models obtained from the cross-231 

validation training on TCGA to analyze cohorts from the CPTAC dataset corresponding to the same 232 

cancer type. External validation cohorts in CPTAC were available for endometrial cancer (UCEC), 233 

pancreatic cancer (PDA), lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LSCC). In 234 

these external validation experiments, we noted that the prediction performance was highercompared 235 

to internal validation experiments. Once again, the best performance was obtained in UCEC, with an 236 

AUROC of 0.93+/-0.07, p=0.01. In LUAD, the performance increased in the external validation, yielding 237 

an AUROC of 0.73+/-0.11 and a significant p-value of 0.03. In the case of PAAD/PDA, where the 238 

internal validation was unsuccessful (internal validation AUROC 0.58+/-0.22), the external validation 239 

resulted in an improved AUROC reaching 0.81+/-0.14, albeit with a p-value of 0.07. Meanwhile, in 240 

LUSC/LSCC, no improvement in performance was observed in the external validation set compared to 241 

the internal training set (AUROC 0.57+/-0.01, p=0.23, Figure 2A, Supplementary Figure 2 K-N). 242 

Together, these data show that DL-based classifiers of HRD status generalize beyond the training 243 

cohort.  244 
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A HRD classifier trained on BRCA detects HRD across various types of cancer 245 

Lastly, we aimed to investigate if HRD-related morphological features in one cancer type can help to 246 

predict HRD status in another cancer type. This would point to a shared set of morphological features 247 

across cancer types, potentially allowing us to develop a pan-cancer pathology-based prediction 248 

system for HRD status. To test this, we applied our trained HRD classifiers in a cross-cancer 249 

experimental design. We used the breast cancer cohort TCGA-BRCA to train the HRD classification 250 

model because this cohort had the highest number of patients. Subsequently, we deployed this model 251 

on all other cohorts obtained from the TCGA and CPTAC datasets. Surprisingly, the BRCA-based 252 

model was able to significantly predict HRD from non-BRCA tissue in UCEC, PRAD and PAAD. For 253 

those three cohorts, the external deployment of a BRCA-based model resulted in higher prediction 254 

AUROCs than the respective internal validation experiments, reaching AUROCs of 0.70+/-0.02, 255 

p<0.001 in TCGA-UCEC, 0.84+/-0.07 and p=0.004 in TCGA-PRAD 0.67+/-0.03, p=0.2 in TCGA-PAAD, 256 

0.87+/-0.1 p=0.05 in CPTAC-UCEC and 0.65+/-0.02 p=0.26 in CPTAC-PDA, respectively (Figure 2B).  257 

In the tumor types LUAD and OV, the AUROCs remained with 0.62+/-0.03 for TCGA-LUAD, 0.66+/-258 

0.06 for CPTAC-LUAD and 0.61+/-0.03 in TCGA-OV in a similar range to the internal validation results 259 

(Supplementary Figure 3A-M). Together, these data show that a classifier trained on breast cancer can 260 

predict HRD status from histology in other tumor types, indicating a shared “HRD morphology” between 261 

tumor types.  262 

Molecular and histomorphological characterization of TCGA-BRCA HRD-H and 263 

HRD-L cases 264 

Finally, we  investigated which molecular and morphological patterns were associated with ground truth 265 

and DL-predicted HRD status. We used the TCGA-BRCA cohort to analyze this in detail, as this was 266 

the largest cohort. We observed that in the HRD-H subgroup, 45% were classified as basal-like breast 267 

cancers, 11% as HER2-enriched, 15% as Luminal A, and 26% as Luminal B. In contrast, only 7% of the 268 

cases in the HRD-L subgroup were basal-like, 7% were HER2-enriched, 64% were Luminal A, and 18% 269 

were Luminal B (Figure 3A) (46). Within our predicted groups, we observed a similar distribution among 270 

the BRCA subtypes (Figure 3B).  271 
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To reassure that our model predicts HRD detached from phenotypic differences of estrogen receptor 272 

negative (ER-) vs. ER-positive (ER+) breast cancers we calculated the receiving operating curve (ROC) 273 

and precision recall curve (PRC) for the subgroups: ER+/HER2+, ER+/HER2-, ER-/HER2+, ER-/HER2-274 

, indicating that HRD was also predictable with AUROCs of 0.66+/-0.3, 0.8+/-0.09, 0.72+/-0.43 and 275 

0.62+/-0.11 (Supplementary Figure 4A-H). Our analysis of the mutational landscape of both HRD-H and 276 

HRD-L ground truth revealed that TP53 had the highest alteration frequency with 67% in the HRD-H 277 

ground truth group, significantly higher than 20% in the HRD-L group, following alterations in the TTN 278 

(26% vs. 14%) gene. In contrast, the most enriched alterations in the HRD-L group were observed in 279 

the genes PIK3CA (39%) followed by CDH1 (16%), GATA3 (14%) and MAP3K1 (11%), whereas the 280 

prevalences in the HRD-H group of PIK3CA, CDH1, GATA3 and MAP3K1 were 19%, 2%, 6% and 1%, 281 

respectively (Figure 3C). For the HRD-H prediction subgroup alteration frequencies for TP53, were 282 

significantly higher at 77% (Figure 3D). Such divergences were not as noticeable in the HRD-L 283 

prediction group. These findings suggest that there are notable differences in alteration frequencies 284 

between the two subgroups, which are consistent across both the ground truth and prediction data. 285 

Moreover, we compared the HRD-H prediction score to the alteration status of somatic and germline 286 

mutations in the BRCA1/2 genes, whereupon we saw that there was a significant difference between 287 

the mutant and wild-type cases for BRCA1 germline and BRCA2 somatic mutations (Figure 3E). 288 

Methylation data indicated that the HRD-H group had most of its methylation alterations in the N-shore 289 

portion of the BRCA1 promoter region, whereas those in the HRD-L group were mainly located in the S-290 

shore portion (Supplementary Figure 4I). Lastly, we proceeded to investigate the histomorphological 291 

patterns associated with the presence of HRD through whole slide prediction heatmaps in CPTAC-292 

UCEC (Figure 4A-C). Our findings revealed that high grade, fibrosis, hemorrhage and lymphocytic 293 

infiltration are consistent features predictive of HRD across various tumor types, as shown in Figure 4 294 

for BRCA and UCEC, particularly in the top predicted HRD-H tiles for the top three patients. Fibrosis 295 

was observed in HRD-positive cases, particularly in BRCA (Figure 4D). Moreover, hemorrhagic 296 

necrosis especially adjacent to tumor tissue and tumor stroma was consistently observed as highly 297 

predictive areas in the true HRD-H cases across various cancer types. (Supplementary Figure 5,6). In 298 

summary, these data show that known HRD morphology characteristics were found in our DL based 299 

top predicted HRD-H patients.   300 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.23286975doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.08.23286975
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

Discussion 301 

HRD has recently emerged as an important pan-cancer biomarker for targeted treatment in solid tumors 302 

(11,47). The assessment of HRD clinically, albeit indicated for all patients with gynecological tumors, 303 

remains challenging. This is due to the given availability of different methods with limited agreement 304 

and whose logistic complexities and inherent costs pose significant hurdles for their adoption. In this 305 

light, a pan-cancer test of HRD by DL-based image analysis on pathology slides could be a useful pre-306 

screening tool and reduce the load of genetic tests. 307 

 308 

In this study, we demonstrated that DL can predict HRD status from H&E histology in different tumor 309 

types in both within-cohort and external validation experiments. Surprisingly, our findings revealed that 310 

a BRCA-based classifier could detect HRD from H&E slides across different tumor entities. As 311 

expected, the HRD prediction was significantly lower in tumors with a low prevalence of HRD. Our 312 

classifier has identified histomorphological characteristics such as hemorrhagic necrosis at tumor 313 

margins, lymphocyte infiltration, fibrosis, and high tumor cell density that are associated with HRD in 314 

BRCA(36). These findings validate the efficacy of our classifier. Moreover, despite having trained our 315 

classifier solely on BRCA, its consistent identification of HRD-associated morphological patterns across 316 

different tumor entities reiterates the value of our tool for broader applications. Compared to previous 317 

studies, we here show a pan-cancer DL-based prediction of a more comprehensive HRD score 318 

calculated from LOH, TAI, and LST as ground truth directly from H&E tumor slides. (35,36)  319 

 320 

Our morphological analysis showed that UCEC or PAAD, achieved better predictive results compared 321 

to LUSC or LIHC, a trend previously observed in pan-cancer studies (30,48). In general, tumors with a 322 

complex structure, such as adenocarcinomas are morphologically susceptible to genetic alterations 323 

than solid tumors growing in rather syncytial patterns. HRD-positive tumors barely resemble glandular 324 

tissue anymore, which might be their main distinctive feature and therefore a potential explanation for 325 

this constellation. Additional studies with larger patient cohorts would be required to confirm this. A 326 

closer look at the TCGA-BRCA subgroups revealed that predicted HRD-H is more common in triple-327 

negative breast cancer, which is known for its poor prognosis and resistance to conventional 328 
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chemotherapy. In line with their ground truths, the majority of those patients were predicted to be HRD-329 

positive by our classifier (Figure 3A,B) (46). Furthermore, clear molecular pathological differences were 330 

found in the two subgroups. Specifically, the HRD-H subgroup is characterized by TP53 alterations, 331 

while the HRD-L subgroup has a higher frequency of PIK3CA alterations, suggesting an interactive 332 

effect between the TP53 mutated cases and HRD-H patients (49,50). This is particularly true for 333 

BRCA1 mutated cancers, where HRD-H was predicted significantly better than in BRCA1 wildtype 334 

cases (Figure 3E) (51).  335 

 336 

Recently, the EMA and FDA granted the first approval to use PARPi therapy for HRD positive ovarian 337 

cancer patients. Clinical trials with promising interim data are also underway for other tumor entities and 338 

further approvals are expected in the future. Despite the evident link between HRD and BRCA1/2 339 

mutations, it is now well established that the total number of HRD-positive patients significantly exceeds 340 

the total number of BRCA-mutated patients in various cancer types (22,52). The patients who fall into 341 

this diagnostic gap can be identified with comprehensive HRD testing, as proposed in our study.41 HRD 342 

testing would thus complement BRCA1/2 testing as a biomarker test for PARPi use, such as with AI-343 

based screening methods as applied here. Moving diagnostic routines towards phenotype-based 344 

instead of inconsistent, alteration-based HRD detection methods might extend our ability to identify 345 

patients who may benefit from PARPi and enroll them in clinical trials. Our study provides a proof of 346 

concept that there is indeed a pan-cancer preserved HRD morphology in histology slides which could 347 

potentially serve as an HRD marker. Prospective trials are needed to evaluate an AI-based HRD score 348 

as a biomarker to guide treatment decisions, potentially in a two-step approach leading to lower 349 

sequencing requirements and cost reduction.  350 

Limitations  351 

Our study has several limitations. Firstly, the sample sizes of our cohorts, particularly the CPTAC 352 

dataset, are relatively small. Moreover, the variation within the distribution of HRD prevalences between 353 

tumor types can result in class imbalances. Although the effect of imbalanced datasets on the accuracy 354 

of our classifiers was addressed via weighing techniques during the model training process, this could 355 

still have an effect on the statistical power of the results, as well as the generalisability of our models to 356 
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a larger population. We observed higher AUROCs in the external validation cohort, which may be 357 

attributed to the smaller size and higher class imbalance in the test set. Further studies with larger 358 

patient cohorts are required to validate our findings. Furthermore, the quality of the data from the TCGA 359 

and CPTAC cohorts may vary, thus potentially impacting the accuracy of our predictions.  360 

Conclusion  361 

Our findings provide evidence that DL has the potential to not only contribute but improve diagnostic 362 

HRD testing, potentially saving time and costs as well as improving outcomes for patients by identifying 363 

subgroups who may benefit from targeted therapy. Current clinical practices face challenging factors 364 

such as high cost, time consumption, lack of availability, and inconsistency in HRD status screening 365 

methods. These logistic, analytic and financial challenges contribute to the partial identification of 366 

cancer patients who may benefit from PARPi therapy and to the limited genetic testing, which is further 367 

compounded by the panoply of HRD status assessment methods whose inter-assay concordance is 368 

limited. With the aid of AI, we have the opportunity to identify these subgroups and improve patient 369 

outcomes. 370 

 371 
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Figures  463 

464 

Figure 1: Experimental Design and Study overview. (A) Overview of the different Homologou465 

Recombination Deficiency (HRD) scores, their content and assessment methods. (B) Workflow of o466 

Deep Learning (DL) pipeline. A total of n=9517 Whole Slide Images (WSI) were processed and traine467 

with an attention-based Multiple Instance Learning (attMIL) approach. The statistical endpoint was th468 

Area under the receiving operating curve (AUROC). (C) Study design for the three main experimen469 

(Internal 5-fold cross-validation, tumor-wise external validation and cross-cancer external validatio470 

conducted and cohort overview for patients and tumor types included from The Cancer Genome Atl471 
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(TCGA, n=4113 patients) and Clinical Proteomic Tumor Analysis Consortium (CPTAC, n=474 patients472 

Abbreviations: BRCA=breast cancer; CRC=colorectal cancer; GBM=glioblastoma; LIHC=liver cance473 

LUAD=lung adenocarcinoma; LUSC/LSCC=lung squamous cell carcinoma; OV=ovarian cance474 

PAAD/PDA=pancreatic adenocarcinoma; PRAD=prostate adenocarcinoma; UCEC=endometrial cance475 

HRR=Homologous recombination repair. (This Figure was partly generated using Servier Medical A476 

provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license) 477 
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Figure 2: Comparison of Area under the receiving operating curve (AUROC) for internal and 480 

tumor wise external validation experiment models. Boxplot displaying the distribution for the 481 

AUROC for (A) internal 5-fold cross-validation experiment of The Cancer Genome Atlas (TCGA) and 482 

tumor-wise external validation on the Clinical Proteomic Tumor Analysis Consortium (CPTAC); (B) 483 

AUROCs for the cross-cancer external validation experiment of the TCGA breast cancer cohort (TCGA-484 

BRCA) on the TCGA and CPTAC cohort. The horizontal line indicates the median, whereas each box 485 

represents the interquartile range (IQR) between the first and third quartiles. The whiskers extend from 486 

the box to the minimum and maximum values, considering 1.5 times the IQR. Abbreviations: 487 

BRCA=breast cancer; CRC=colorectal cancer; GBM=glioblastoma; LIHC=liver cancer; LUAD=lung 488 

adenocarcinoma; LUSC/LSCC=lung squamous cell carcinoma; OV=ovarian cancer; 489 

PAAD/PDA=pancreatic adenocarcinoma; PRAD=prostate adenocarcinoma; UCEC=endometrial cancer  490 

 491 
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 493 

Figure 3: Molecular Characterization of The Cancer Genome Atlas breast cancer (TCGA-BRCA494 

cohort. (A) Distribution of breast cancer subtypes for the Homologous Recombination deficiency hig495 

(HRD-H) and low (HRD-L) ground truth subgroups. (B) Distribution of the breast cancer subtypes f496 

the HRD-H and HRD-L Deep Learning (DL) predicted subgroups. (C) Alteration Frequency for sever497 

genes of the HRD-H and HRD-L ground truth subgroups. (D) Alteration Frequency for several genes 498 

the HRD-H and HRD-L within cohort internal results prediction subgroups. (E) Grouped Boxplo499 

comparing the Homologous Recombination Deficiency high (HRD-H) prediction scores with th500 

mutational status (mutated=MUT, wildtype=WT) for the somatic and germline alterations of th501 
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BRCA1/2 genes. The central line represents the median value, while the box ranges between the fir502 

and third quartile (IQR) and the whiskers extend to the lowest and highest values within 1.5 times th503 

IQR. The y-axis represents the Deep Learning (DL) HRD-H prediction values. An independent t–te504 

was performed to calculate the p-values: ns: p <= 1.00e+00 *: 1.00e-02 < p <= 5.00e-02 **: 1.00e-03505 

p <= 1.00e-02 ***: 1.00e-04 < p <= 1.00e-03  506 
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Figure 4: Visualization of predicted Homologous Recombination Deficiency high (HRD-H) tumor 510 

samples. (A) Whole slide image (WSI) of an HRD-H predicted patient (ID: C3L-00358-21) from the 511 

Clinical Proteomic Tumor Analysis Consortium (CPTAC) endometrial cancer (UCEC) cohort with 512 

magnification. (B) Attention heatmap for the same patient with magnification. (C) Classification 513 

Heatmap for the same patient with magnification. (D) Top predicted tiles for top three homologous 514 

recombination deficiency high (HRD-H) patients in The Cancer Genome Atlas (TCGA) breast cancer 515 

(BRCA). (E) Top predicted tiles for three HRD-H patients in the CPTAC-UCEC cohort. 516 

  517 
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Supplementary Figures and Tables 667 

668 

 669 

Supplementary Figure 1: Homologous recombination deficiency prevalences across th670 

cohorts. (A) Overview of the total patient count (n=573) in the CPTAC cohort before merging the imag671 

data with the molecular data and afterward. (B) Overview of the total patient count (n=5,155) in th672 

TCGA cohort before merging the image data with the molecular data and afterward. (C) Distribution 673 

the homologous recombination deficiency high (HRD-H) and low (HRD-L) patient number among th674 

different tumor types of The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analys675 
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Consortium (CPTAC). Abbreviations: BRCA=breast invasive carcinoma; CRC=colorectal cance676 

GBM=glioblastoma; LIHC=liver cancer; LUAD=lung adenocarcinoma; LUSC/LSCC=lung squamous ce677 

carcinoma; OV=ovarian cancer; PAAD/PDA=pancreatic adenocarcinoma; PRAD=prosta678 

adenocarcinoma; UCEC=endometrial cancer  679 

 680 

681 

Supplementary Figure 2: Receiving operating curve for the Internal Validation and tumor wis682 

external validation. The Receiving operating curve (ROC) is shown for the five-fold internal cros683 

validation experiment for each of the models in The Cancer Genome Atlas (TCGA) for the Homologou684 

recombination deficiency (HRD) binary score for (A) TCGA-BRCA, (B) TCGA-CRC, (C) TCGA-GBM685 
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(D) TCGA-LIHC, (E) TCGA-LUAD, (F) TCGA-LUSC, (G) TCGA-PAAD, (H) TCGA-PRAD, (I) TCGA-O686 

(J) TCGA-UCEC; Roc curves for the external validation on the Clinical Proteomic Tumor Analys687 

Consortium (CPTAC) for each previously trained model for (K) CPTAC-LUAD, (L) CPTAC-LSCC, (M688 

CPTAC-PDA, (N) CPTAC-UCEC. Abbreviations: BRCA=breast invasive carcinoma; CRC=colorect689 

cancer; GBM=glioblastoma; LIHC=liver cancer; LUAD=lung adenocarcinoma; LUSC/LSCC=lun690 

squamous cell carcinoma; OV=ovarian cancer; PAAD/PDA=pancreatic adenocarcinom691 

PRAD=prostate adenocarcinoma; UCEC=endometrial cancer  692 
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 695 

Supplementary Figure 3: Receiving operating curve for the cross-cancer external validation. The 696 

Receiving operating curve (ROC) is shown for the cross-cancer external validation experiment for each 697 

model trained on The Cancer Genome Atlas (TCGA) breast cancer (BRCA) cohort for the Homologous 698 

recombination deficiency (HRD) binary score on (A) TCGA-CRC, (B) TCGA-GBM, (C) TCGA-LIHC, (D) 699 

TCGA-LUAD, (E) CPTAC-LUAD, (F) TCGA-LUSC, (G) CPTAC-LSCC, (H) TCGA-OV, (I) TCGA-PAAD, 700 

(J) CPTAC-PDA, (K) TCGA-PRAD, (L) TCGA-UCEC, (M) CPTAC-UCEC. Abbreviations: BRCA=breast 701 

invasive carcinoma; CRC=colorectal cancer; GBM=glioblastoma; LIHC=liver cancer; LUAD=lung 702 

adenocarcinoma; LUSC/LSCC=lung squamous cell carcinoma; OV=ovarian cancer; 703 

PAAD/PDA=pancreatic adenocarcinoma; PRAD=prostate adenocarcinoma; UCEC=endometrial cancer  704 
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705 

Supplementary Figure 4: Subgroup analysis and overview the BRCA1 promotor methylations 706 

TCGA-BRCA. The Receiving operating curve (ROC) and Precision Recall curve (PRC) are shown f707 

the five-fold internal cross-validation experiment for each of the models in The Cancer Genome Atlas708 

breast cancer (TCGA-BRCA) cohort for the Homologous recombination deficiency (HRD) score. RO709 

curve is represented for the four different subgroups (A) estrogen receptor positive (ER+) and HER2710 

(B) ER+ and HER2- (C) ER negative (ER-) and HER2+ (D) ER- and HER2-. The PRC curve is show711 

for (E) ER+/HER2+, (F) ER+/HER2-, (G) ER-/HER2+, (H) ER-/HER2-. (I) Sketched representation 712 
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the occurring promotor methylations (accessed with HM27 and HM450) in the BRCA1 gene for th713 

ground truth Homologous recombination deficiency high (HRD-H) and low (HRD-L) subgroups. 714 

715 

Supplementary Figure 5: Morphological features of Homologous recombination deficiency 716 

breast and endometrial cancer. Whole Slide Image (WSI) and classification heatmap (ground trut717 

Homologous recombination deficiency high (HRD-H) and prediction: HRD-H)  with magnifications of tw718 

different regions. The model was trained on The cancer genome atlas (TCGA) breast cancer (BRCA719 

cohort and deployed cross cancer wise. Top true positive predicted patients are shown for (A) TCGA720 
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BRCA, (B) Clinical Proteomic Tumor Analysis Consortium (CPTAC) endometrial cancer (UCEC) an721 

(C) TCGA-UCEC.  722 

723 

Supplementary Figure 6: Morphological features of Homologous recombination deficiency 724 

pancreatic and prostate adenocarcinoma. Whole Slide Image (WSI) and classification heatma725 

(ground truth: Homologous recombination deficiency high (HRD-H) and prediction: HRD-H)  wi726 

magnifications of two different regions. The model was trained on The cancer genome atlas (TCGA727 

breast cancer (BRCA) cohort and deployed cross cancer wise. Top true positive predicted patients a728 

shown for (A) TCGA pancreatic adenocarcinoma (PAAD), (B) Clinical Proteomic Tumor Analys729 
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Consortium (CPTAC) pancreatic adenocarcinoma (PDA) and (C) TCGA prostate adenocarcinoma 730 

(PRAD). 731 

 732 

Supplementary Table 1: All raw statistical results. All raw experimental results related to Figure 2, 733 

including receiving operating curve (ROC) with 95% confidence interval (CI), Precision-Recall Curve 734 

(PRC) with 95% confidence interval (CI), p-values and Homologous recombination deficiency (HRD) 735 

high (HRD-H) and HRD-low (HRD-L) patient numbers based on the ground truth, for internal 5-fold 736 

cross-validation on The Cancer Genome Atlas (TCGA) external validation on Clinical Proteomic Tumor 737 

Analysis Consortium (CPTAC). [Supplementary_Table_1_All_statistical_results.xlsx] in separate file 738 

 739 

Supplementary Table 2: Homologous recombination deficiency score Tables. Training data and 740 

calculated homologous recombination deficiency score (HRD) out of the three subscores loss of 741 

heterozygosity (LOH), telomeric allelic imbalance (TAI) and large-scale state transitions (LST) available 742 

as continuous (HRDsum) and binary (HRD_Binary) target with a chosen cut off of HRD-L<42 HRD-743 

H>=42 for patients of The Cancer Genome Atlas (TCGA, Sheet1) and Clinical Proteomic Tumor 744 

Analysis Consortium (CPTAC, Sheet2). 745 

 746 

Supplementary Table 3: Weblink for customized Homologous recombination deficiency (HRD) 747 

subgroups. Weblink for accessing the clinical and molecular characteristics for both ground truth and 748 

prediction Homologous recombination Deficiency (HRD) subgroups at www.cbioportal.org for The 749 

Cancer Genome Atlas breast cancer (TCGA-BRCA) Pan Cancer Atlas 2018 study and the TCGA-750 

BRCA Firehose Legacy cohort. 751 
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