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Abstract

Prior to the early 2000s, patients with advanced gastrointestinal stromal tumors (GIST) had

very poor prognoses owing to a lack of effective therapies. The development of tyrosine kinase
inhibitors at the turn of the century significantly improved the overall survival for patients with
GIST. The resounding success of imatinib in the first clinical trial of a tyrosine kinase inhibitor
to treat GIST led to its approval for first-line therapy for advanced GIST; this study was open

to all comers and not restricted to any GIST subtype(s). The trials that led to the approvals of
second-, third-, and fourth-line therapy for advanced GIST were also open to all patients with
advanced/metastatic GIST. Only in retrospect do we realize the role that the molecular subtypes
played in the results observed in these studies. In this review, we discuss the studies that led to
the US Food and Drug Administration approval of imatinib (first line), sunitinib (second line),
regorafenib (third line), and ripretinib (fourth line) for advanced KIT-mutant GIST. In addition, we
review how information about GIST molecular subtypes has been used to accelerate the approval
of other targeted therapies for non-KIT mutant GIST, leading to the approval of five additional
drugs indicated for the treatment of specific GIST molecular subtypes. We also discuss how our
understanding of the molecular subtypes will play a role in the next generation of therapeutic
approaches for treating advanced GIST.

1 Introduction

Gastrointestinal stromal tumors (GIST), the most common soft-tissue sarcoma, are driven by
a variety of oncogenic drivers. The understanding of GIST molecular drivers has resulted

in the clinical testing and eventual approval of multiple targeted therapies, specifically
tyrosine kinase inhibitors (TKIs), which have revolutionized the treatment of the majority

of patients with GIST [1]. Since the implementation of effective targeted therapies, the
overall survival (OS) of patients with advanced GIST has improved to the current estimated
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range of 6-8 years, compared with historical results of approximately 1.5 years when

treated with chemotherapy or radiation (neither of which is effective in GIST), or < 15
months with surgery alone [1-5]. This improvement in survival is mostly confined to the
population of patients with GIST with driver mutations in the receptor tyrosine kinase (RTK)
KIT, which can be effectively targeted with KIT TKIs. The KIT TKIs imatinib (first line),
sunitinib (second line), regorafenib (third line), and ripretinib (fourth line) were approved
by health authorities, such as the US Food and Drug Administration, based on studies in
which eligibility required only a diagnosis of advanced GIST and no requirements of any
particular molecular driver [4, 6-8]. For the purposes of classification, we have labeled these
registrational studies as examples of a mutation-agnostic/histology-specific study design.
This approach was successful for the clinical development of KIT TKIs because the vast
majority (70%) of patients with GIST have KIT mutations (Fig. 1A) that can be effectively
targeted by these agents [9]. However, we believe that this approach is not viable for the
development of future therapies. It has become apparent that mutation-agnostic clinical
studies using KIT TKIs to treat patients of other molecular subtypes outside of KIT-mutant
GIST do not provide the same degree of clinical benefit, therefore leaving these patients
with advanced GIST with few to no options for effective therapy [10-15].

Recently, rational drug design and biological approaches focused on these less common
GIST molecular subtypes (remaining 30% of cases) have resulted in successful clinical
studies testing novel therapeutics. These drugs include: avapritinib (a novel type | platelet-
derived growth factor receptor alpha [PDGFRA]/KIT TKI), larotrectinib and entrectinib
(potent NTRK TKiIs for targeting NTRK fusions in GIST) [16-19], and the combination of
a BRAF inhibitor (dabrafenib) and a MEK inhibitor (trametinib) for BRAF VV600E-mutant
GIST [20-22]. The recent approvals of these five treatments, each for a specific molecular
subtype, were enabled by clinical studies with fundamentally different approaches for
selecting eligible patients for participation than those used for the early KIT TKI trials.

The inclusion criteria of avapritinib, larotrectinib or entrectinib, and the combination of
dabrafenib and trametinib, phase I-I1 studies required the presence of a PDGFRA D842V
mutation [23, 24], a NTRK family fusion, or a BRAF V600E mutation [16-19, 22],
respectively. In this review, we refer to these studies as having a precision medicine study
design (i.e., mutation-specific patient eligibility). This type of study design can be histology
specific (e.g., GIST avapritinib approval) or histology agnostic (e.g., BRAF V600E-mutant
solid tumors and approval of dabrafenib and trametinib combination [22]). We posit that
precision medicine approaches, facilitated by diagnostic molecular testing and pre-clinical
research, will be the most successful strategy for developing new GIST treatment strategies,
especially for those less common, non-KIT mutant GIST subtypes.

2 GIST Drivers and Molecular Subtypes

Over the past 20 years, analysis of tens of thousands of cases of primary GIST have led

to the identification of molecular drivers in almost all cases. Mutations in homologous
RTKSs, KIT and PDGFRA, account for 70 and 15% of cases, respectively (Fig. 1A) [1, 11,
25-28]. As is well known, most (RTKSs), including mutant forms of KIT or PDGFRA, signal
through the canonical JAK/STAT, PI3BK/AKT/mTORC, and RAS/RAF/MEK/ERK pathways
(Fig. 1B) [29-34]. Along this line, a minority of GIST cases have other RTKSs in addition
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to KIT/PDGFRA as molecular drivers, including more recent descriptions of activating
translocations of FGFR1, FGFR2, NTRK1, NTRK3, and ALK (Fig. 1A, B) [28, 35-38].

In addition, there are cases of GIST that arise because of activating mutations of PIK3CA,
BRAF, or RAS family members (Fig. 1A, B) [39-42]. More recently, BRAF translocations
have been reported as a molecular driver in GIST [43]. In addition, homozygous/hemizygous
loss of neurofibromatosis (type 1) [NF1] is a well-established cause of some cases of GIST,
likely due to dysregulation of the RAS/RAF/MEK/ERK pathway. Neurofibromatosis (type
1) loss giving rise to GIST can occur sporadically owing to a somatic mutation or in the
setting of NF1 with a heterozygous germline NF1 mutation [44-48]. In total, cases of

RTK translocation-mutant GIST or those with mutations of downstream signaling pathways
account for approximately 5% of all cases of GIST (Fig. 1A) [9].

In addition to mutations that activate RTK downstream signaling pathways, a biologically
and clinically distinct subtype of GIST is driven by succinate dehydrogenase (SDH)
deficiency [49-51]. Gastrointestinal stromal tumors of this subtype result from inactivating
hemizygous or compound heterozygous mutations of one the four SDH subunits (SDHA,
SDHB, SDHC, or SDHD) or epimutation of the SDHC promoter (Fig. 1C) [49, 52-56]. In
total, 9% of GIST are SDH deficient, comprising the third largest molecular subtype after
KIT- and PDGFRA-mutant GIST. In contrast to GIST driven by activating mutations in
RTKSs or within the classical RTK-signaling pathways, these cases arise as a consequence
of SDH loss of function. Succinate dehydrogenase loss of function results in increased
intracellular succinate that inhibits a certain class of enzymes leading to activation of the
VHL pathway (pseudohypoxia), as well as inhibition of ten-eleven translocation and KDM
family enzymes with resultant genome-wide epigenetic reprogramming (Fig. 1C) [51, 53,
57, 58].

3 Traditional TKI Treatment Paradigm for Advanced GIST

Slightly more than two decades ago, the first clinical trial of a targeted therapy in GIST
began [8, 59]. There are now nine targeted therapies approved for GIST, and while we now
know that each drug is most effective for specific subtypes of GIST, four of these agents
are still approved for the treatment of all forms of GIST because their registrational studies
included all patients with advanced GIST (Table 1). The current treatment sequencing

for KIT-mutant GIST remains in the order of original drug development and US Food

and Drug Administration (FDA) approval: imatinib (first line), sunitinib (second line),
regorafenib (third line), and ripretinib (fourth line). The trials that led to the approvals

of imatinib, sunitinib, regorafenib, and ripretinib were open to all patients with advanced/
metastatic GIST and only later was it fully appreciated the role molecular subtypes played
in the results reported from those studies [4, 7, 8, 10-13, 60—65]. Figure 2 highlights the
results from these studies and showcases that the traditional treatment paradigm was mostly
successful for patients with KIT-mutant and certain non-exon 18 PDGFRA-mutant GIST
and minimally effective for patients with other subtypes. In the following sections, we
focus on the preclinical and clinical studies that led to the approval of imatinib, sunitinib,
regorafenib, and ripretinib.
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3.1 Imatinib

Imatinib, a novel agent originally designed to inhibit the aberrant enzymatic function of the
oncogenic driver in chronic myelogenous leukemia, BCR::ABL1, was found to be similarly
effective in inhibiting the enzymatic function of KIT, the main driver in the majority of
GIST cases (Fig. 1) [66-68]. Despite being designed for targeted cancer therapy, the phase
I, I1, and 111 studies of imatinib that led to its approval for advanced GIST included patients
of all GIST subtypes, the only criteria being “metastatic or advanced CD117+ GIST”
(Table 1) [8, 59, 69, 70]. The response rate to imatinib in the initial studies was 50-80%

[8, 11, 14, 70-73]. At that time, molecular analysis of GIST was in its infancy, thus the
vast majority of patients were enrolled without any molecular testing results, but it was
subsequently determined that almost all of the responders in this trial had driver mutations
that were sensitive to imatinib (e.g., KIT exons 9, 11, or 13; PDGFRA exon 12) [Fig. 2]
[13, 14, 70, 73]. Those with the third most common subtype, SDH-deficient GIST, had

a < 5% objective response rate (ORR) to imatinib [51, 74]. With the appreciation of the
molecular underpinnings of the success of imatinib as a targeted therapy in GIST, the
search for additional targetable drivers accelerated. For example, analysis of a patient with
a partial response to imatinib whose tumor lacked a KIT mutation led to investigations

that identified an imatinib-sensitive PDGFRA mutation [11, 14]. Likewise, investigation of
patients with “wild-type” KIT (meaning no KIT mutation) GIST who had rapid progression
during imatinib therapy led to the identification of the imatinib-resistant primary PDGFRA
D842V mutation [25, 75]. It is known that TKIs that target wild-type KIT also inhibit
wild-type PDGFRA and the converse is true as well [66, 76—78]. Therefore, at the time,
the treatment of PDGFRA mutant-GIST followed the same clinical development paradigm
as the treatment of KIT-mutant GIST with the exception of patients with imatinib-resistant
PDGFRA D842V, which we discuss in a later section.

After several years, the first reports about patients with GIST with delayed resistance

to imatinib began to appear because of acquired secondary intra-allelic KIT mutations

that disrupted drug binding [79-83]. We now appreciate that intra-allelic secondary kinase
mutations are the most common mechanism of acquired resistance to imatinib in GIST [1, 9,
84-87]. This mechanism of resistance demonstrated the continued dependence of GIST on
the enzymatic activity of the initial driver, and led to the development of additional targeted
TKIs to overcome specific secondary KIT mutations in imatinib-resistant patients.

3.2 Sunitinib

The “next-generation” GIST TKIs arose from the rapid development of various small-
molecule kinase inhibitors in the early 2000s. In most cases, KIT was not the primary
target of the drug development program, but drugs designed to inhibit vascular endothelial
growth factors and/or PDGFRs commonly had similar, or even greater, potency against KIT.
Sunitinib, a type 1l multi-kinase inhibitor, entered phase I-1I studies and then proceeded

to be tested in a phase 11 clinical study in patients with imatinib-refractory GIST in 2003
[7, 88]. Again, these trials were conducted with a mutation-agnostic approach. “Imatinib-
refractory” patients that enrolled in the registrational sunitinib phase study included both
those with primary resistance (progression in < 6 months, e.g., PDGFRA D842V) and
those with secondary resistance, meaning they initially responded to imatinib, but then
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their tumors progressed after months or even years of clinical response. No molecular
testing was required for study eligibility (Table 1). Pre-clinically, sunitinib was shown

to inhibit some imatinib-resistant KIT secondary mutations, including the most common
imatinib-resistance mutation, V654A, and other secondary KIT mutations in exons 13 and
14, which encode the ATP binding pocket (ABP) [Fig. 3] [10, 12]. However, as sunitinib

is a type Il TKI like imatinib, it does not inhibit activation loop mutations that confer
primary resistance (PDGFRA D842V and cases lacking a KIT/PDGFRA driver mutation
[historically classified as “wild-type” cases]) nor those with secondary KIT activation loop
(exons 17-18) mutations of the kinase domain [12, 89-94]. Notably, these studies were
predictive of the results of the sunitinib clinical studies, specifically the greatly reduced
response rate compared with the initial imatinib trials (6.8 vs ~ 51.4%, respectively),
largely owing to the presence of heterogeneous tumor clones, some with sunitinib-sensitive
mutations and others with resistant mutations [10, 12, 86, 87, 95]. It was also thought that
a minority of SDH-deficient GIST cases may respond to sunitinib or regorafenib (discussed
below), likely due to vascular endothelial growth factor receptor inhibitory activity against
these agents [51, 62, 96, 97]. However, at that time, after progression on imatinib, patients
had no other options, therefore the criteria for approval were low. Sunitinib was approved for
second-line treatment of patients with GIST after progression on imatinib, although it is now
clear that it mainly benefits only a select subset patients with the KIT mutation (those with
secondary ABP or primary KIT exon 9 mutations) [98, 99]. Potentially, the results of these
trials could have had a higher response rate if the eligibility criteria were limited to those
with ABP mutations; however, there would still remain the issue of how to treat patients
with heterogeneous tumor clones after progression on imatinib.

3.3 Regorafenib

Regorafenib, a more promiscuous type Il TKI, entered clinical testing for all patients with
GIST who had not responded to both imatinib and sunitinib (first- and second-line therapy)
[100]. Pre-clinical testing indicated improved potency against activation loop mutations in
exons 17 or 18 [100]. Unfortunately, potency against these mutations came at the expense
of potency against secondary resistance mutations in KIT exons 13 and 14 (Fig. 3) [86].
Promising results were seen in a phase 11 study, with a partial response rate of 18% and

a median progression-free survival (PFS) of 13 months (Table 1) [6, 61, 101]. This study
led to a randomized, double-blind, placebo-controlled phase 111 study (NCT01271712) of
regorafenib in patients with progression or intolerance to prior imatinib and sunitinib. This
study was open to all mutational subgroups and in fact did not require any testing in order to
be eligible for enrollment (mutation agnostic). In this study, the ORR was slightly lower than
that seen in the phase I11, second-line sunitinib study (4.5%) [61]. Despite this low response
rate, regorafenib offered a statistically significant benefit in PFS compared with placebo and
was FDA approved as a third-line GIST therapy in 2012 [6, 61, 101].

3.4 Ripretinib

A program to rationally design a TKI that could overcome secondary resistance mutations
specifically led to the development of ripretinib (originally known as DCC-2618), a TKI
that binds KIT in the “switch pocket” rather than the classical ABP, thereby preventing
conformational change of the kinase to the active form [76]. Pre-clinical studies showed
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improved potency against many of the KIT secondary mutations when compared with
approved KIT TKIs (Fig. 3) [76]. In the first in-human phase | trial (NCT02571036),
promising results were seen in terms of ORR and PFS from patients treated with different
numbers of prior lines of therapy (Table 1). Notably, the PFS for patients treated in

the second, third, or fourth line or later was 10.7, 8.3, and 5.5 months, respectively

[102]. Based on these results, a randomized, placebo-controlled, double-blind phase 111
trial (INVICTUS, NCT03353753) was conducted to study the efficacy of ripretinib in
patients who had progressed on prior treatment with imatinib, sunitinib, and regorafenib

or those who have documented intolerance to any of these treatments [102, 103]. The
eligibility criteria specified prior lines of therapy but did not require molecular testing

or exclude any molecular subtypes (similar to a mutation-agnostic study design). In this
registrational study, treatment with ripretinib significantly improved PFS compared with
placebo (6 months vs 1 month, hazard ratio = 0.15, p < 0.0001). These results led to

FDA approval of ripretinib for treatment of patients with GIST who had not responded to
at least imatinib, sunitinib, and regorafenib [4, 102]. Even though this study incorporated

a cross-over from placebo to ripretinib at the time of progression, OS was improved for
patients initially assigned to ripretinib treatment (15.1 months vs 6.6 months, hazard ratio =
0.36, no statistical testing because of the hierarchical study design). In addition, the ORR for
ripretinib was numerically superior to that seen in the second-line sunitinib, or third/fourth-
line regorafenib studies. These results suggest an improved ability of ripretinib to control
complex heterogeneous TKI-resistant disease compared with sunitinib or regorafenib [104].
However, given that the PFS with ripretinib was only 6 months, the results also indicate
that either ripretinib cannot durably control all secondary KIT resistance mutations and/or
KIT-independent resistance mutations that arise in heavily pre-treated KIT-mutant GIST
[105, 106]. In addition to the issue of KIT secondary resistance mutations, the study also
enrolled patients lacking KIT or PDGFRA mutations (approximately 8%) or with tumors
that had not been genotyped (approximately 15%), likely diluting some of the benefit from
this therapy [4, 104].

These clinical results suggested that ripretinib might be able to control disease if used earlier
in the treatment sequence, rather than as fourth-line or later therapy. A phase Il clinical

trial (INTRIGUE, NCT03673501) was conducted to compare the activity of ripretinib versus
sunitinib for the treatment of patients with failure of prior imatinib therapy (progression or
documented intolerance but no other TKI therapy). In a departure from previous studies, in
order to be eligible for this study, a molecular pathology report was required, although no
specific patients with subtypes of GIST were excluded. However, patients were stratified
based on mutational status as well as a history of imatinib intolerance. The primary endpoint
of the study was PFS, per the statistical design plan, this endpoint was analyzed first in

the KIT exon 11 intention-to-treat patient population and then in the all-patient intention-
to-treat population. Therefore, the overall study design was mutation agnostic, but the

initial endpoint analyzed was for a mutation-specific patient population [103]. Despite the
expectation that ripretinib would yield superior PFS results compared with sunitinib, the
study failed to meet the endpoint of superior PFS with ripretinib compared with sunitinib.
Specifically, the median PFS in the KIT exon 11 intention-to-treat population for ripretinib
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versus sunitinib was 8.3 and 7.0 months, respectively (hazard ratio 0.88, p = 0.36) [107,
108].

3.5 Disease Heterogeneity and Tumor Burden Increases with Successive Lines of
Therapy in KIT-Mutant GIST

Figure 3 summarizes the overall tumor burden in a hypothetical KIT-exon 11-mutant patient
with metastatic disease from initial imatinib therapy through the end of ripretinib treatment.
With each line of therapy, there is a progressive increase in tumor burden, suggesting

that it will not be possible to indefinitely add on sequential salvage therapies (e.g., fifth-,
sixth-,...-, and nth-line) unless new therapies cause significant tumor regression. Eventually
the increasing tumor burden will not be compatible with survival to the next line of therapy.
This was suggested in the INVICTUS study, where the OS of patients initially randomized
to placebo was inferior to patients initially assigned to ripretinib, despite the presence of

a cross-over in the study design [4]. This is likely due to these placebo-assigned patients
experiencing such clinical deterioration in which they were either too ill to cross-over or
the tumor burden became so large that ripretinib could no longer provide sufficient clinical
benefit and improve survival. Although the registrational studies for sunitinib, regorafenib,
and ripretinib all included a blinded placebo arm, the results from INVICTUS suggest that
further placebo-controlled studies in advanced GIST might violate the concept of equipoise
[4,7, 61, 109]. Notably, the PFS of placebo patients was very similar in all of these studies,
averaging 4-6 weeks, suggesting that perhaps this duration could be used to conduct future
single-arm studies of new agents in the fifth line or later.

As predicted by in vitro profiling, each of the approved KIT inhibitors has different
liabilities against secondary resistance mutations, likely explaining the limited overall
duration of PFS for agents used after imatinib (Fig. 3) [4, 7, 61, 62, 110, 111]. For example,
sunitinib has minimal activity against secondary KIT activation loop mutations (e.g.,
D816H), but potently inhibits the common secondary ABP mutations such as V654A and
T670I (Fig. 3) [10, 86]. Regorafenib has better activity than sunitinib against some but not
all activation loop mutations, with inferior activity against V654A. Of the approved agents,
ripretinib has the best activity across the entire spectrum of activation loop mutations,

but may lack sufficient clinical activity against the ABP mutations [105, 106]. However,

the mechanisms leading to ripretinib resistance are just beginning to be elucidated and

may include both KIT-dependent (secondary mutations) and KIT-independent mechanisms
that activate downstream signaling pathways (e.g., RAS mutations or NF1 loss [Fig. 1])
[85, 112]. Despite the data suggesting differential activity of sunitinib, regorafenib, and
ripretinib against different secondary mutations, currently, treatment is prescribed based on
the line of therapy, rather than any individualized biomarkers such as sequencing of tumor
biopsy and/or circulating tumor DNA (ctDNA) samples. As we continue to understand
resistance mechanisms and the molecular drivers of GIST, and with the development of new
technologies and approaches, we posit that the use of precision medicine study designs may
be more useful in creating new targeted therapies, especially for specific GIST subtypes.
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4 Precision Medicine Approaches Accelerated FDA Approvals for Non-KIT
Mutant GIST Therapies

While the mutation-agnostic approach to clinical drug development in GIST has undeniably
benefited the majority of patients with GIST, increasing the median OS for patients with
KIT-mutant/imatinib-sensitive GIST to the range of 6-8 years, there remained unmet
clinical needs [1]. Outside of KIT-mutant GIST and certain patients with PDGFRA
mutations outside of exon 18, the traditional mutation-agnostic approach and treatment
paradigm provides limited benefit to other patients with GIST, leaving these patients
subject to physical and financial toxicity (Fig. 2). Most notably was the challenge of
primary TKI resistance associated with PDGFRA D842V-mutant GIST and the many
historically designated patients with KIT/PDGFRA “wild-type” GIST. The traditional
treatment paradigm highlighted above was unsuitable for addressing these rare, but not
insignificant populations and therefore called for a different approach to clinical study
designs. A shift to a mutation-focused treatment approach was facilitated by an increased
understanding of the molecular subtypes of GIST and improved availability of molecular
testing. This precision medicine study approach has demonstrated great success for patients
with rare GIST subtypes that were not addressed in the original KIT TKI mutation-agnostic
trials.

4.1 Avapritinib for PDGFRA-Exon 18-Mutant GIST

The most common PDGFRA driver mutation seen in GIST, exon 18 D842V (in the kinase
activation loop), displays primary resistance to imatinib and other type Il TKiIs (e.g.,
sunitinib) [10, 25, 26, 73, 113]. It is now appreciated that certain PDGFRA activation

loop mutations, such as PDGFRA D842V, lock the kinase in the active confirmation, which
interferes with type Il TKI binding [114]. Therefore, rational drug design was used to
specifically develop a type | TKI to target activation loop mutation PDGFRA D842V, and
the homologous mutation KIT D816V (seen in mastocytosis). Preclinical in vitro studies
demonstrated that avapritinib (formally BLU-285) had potent biochemical activity against
these KIT and PDGFRA activation loop mutations, which was further explored in clinical
trials [115].

In 2015, the phase | NAVIGATOR (NCT02508532) study, a two-part, open-label, non-
randomized trial, was initiated [23, 24]. NAVIGATOR represents a prototypical example
of a precision medicine approach, which describes a mutation-specific, histology-specific
study design. Patients with PDGFRA-D842V mutant GIST were a pre-specified subgroup
within the overall safety population (20/46 in the dose-escalation phase and 36/204 for the
dose-expansion phase). The other patients enrolled were those without PDGFRA D842V
mutations treated with imatinib and one or more other TKIs (Table 1). At the time of

data cut-off, the ORR for patients with PDGFRA D842V was 88%, with seven complete
responses and 44 partial responses [24]. In contrast, the ORR for all other patients was
22% [23]. This highlights the importance of molecular testing and tailoring treatments based
on mutational status, as avapritinib was initially developed to target PDGFRA activation
loop mutations, and those patients without these mutations did not respond as well [116].
The success of avapritinib specifically in PDGFRA-D842V patients fast tracked its FDA
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approval in February 2020 for the treatment of all exon 18 PDGFRA-mutant GIST (Fig. 4)
[117].

Despite a much lower response rate in non-PDGFRA D842V patients, clinical trials
(specifically VOYAGER, NCT03465722) continued with avapritinib, primarily to compare
its efficacy to regorafenib for third-line treatment in patients with GIST previously

treated with imatinib and one or two other TKIs. This phase 11 study failed to show a
significant improvement in median PFS (4.2 and 5.6 months for avapritinib and regorafenib,
respectively) [116]. Based on this disappointing result, avapritinib is no longer being
developed for the treatment of KIT-mutant GIST, although it is now FDA approved for

the treatment of advanced systemic mastocytosis, another neoplasm driven by activating
KIT mutations (most typically KIT D816V) [118]. These results highlight the contrast

in success rates between mutation-specific (PDGFRA D842V) and mutation-agnostic
(GIST treated with one to two other TKIs) studies for the same drug. In the case of
avapritinib, this rationally designed drug did not fare well in a mutation-agnostic study with
previously treated GIST, as mutational load increases in complexity as disease progresses
and avapritinib could not overcome tumor heterogeneity any better than regorafenib.

4.2 Larotrectinib and Entrectinib for NTRK-Fused GIST

Gastrointestinal stromal tumors with unidentified drivers have been a continued area of
ongoing research. Originally referred to as “wild type” because sequencing of the tumors
failed to detect any of the known driver mutations, the proportion of these GIST cases has
consistently shrunk as drivers have been identified [119-121]. The most recently identified
and exceptionally rare drivers in GIST are RTK gene fusions (1% of GIST cases, Fig.

1A), including those involving NTRK family members [122, 123]. NTRK fusions as
oncogenes had previously been discovered in other cancers, and as a result, NRTK TKIls
were developed and clinically tested in these select populations [17, 19, 124]. The first
NTRK-fusion genes were identified in GIST over 5 years ago, just when NTRK TKIs
were entering clinical study. Shi et al. identified a fusion between NTRK3and ETV6

in a patient with GIST who then was able to enter the phase I trial of larotrectinib
(LOXO-101, NCT02122913) and responded well despite rapid progressive disease when
previously treated with the KIT/PDGFRA TKIls imatinib (3 months), sunitinib (2 months),
and sorafenib (2 months) [17, 19]. Since then, a handful of patients with GIST with NTRK
fusions have been identified and successfully treated with larotrectinib. In a pooled analysis
of three phase I/1l trials, three patients with GIST were treated and all achieved complete
responses (Table 1) [17, 19]. Because these studies defined eligibility using a molecular
rather than a histological diagnosis, FDA approval was granted for this mutation-selected/
histology-agnostic population, both for larotrectinib and subsequently for another NTRK
TKI, entrectinib (Fig. 4) [16]. Because of the rarity of this type of GIST, four patients in
total were included in the larotrectinib (7= 3, response rate 100%) and entrectinib (7=

1, response not reported) registrational studies (Table 1) [17-19, 124-126]. Therefore, it
remains important that additional cases of response/non-response to these agents in patients
with GIST be reported, thereby strengthening the rationale for physicians to identify and
treat patients with NTRK-translocated GIST with these drugs.
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4.3 Dabrafenib and Trametinib for BRAF-V600E Mutant GIST

BRAF V600E-mutant GIST accounts for approximately 0.8% of all cases of GIST (Fig.
1A). Because of the rarity, there are few reports describing this subtype, but one case report
demonstrates the successful use of dabrafenib monotherapy in BRAF V600E-mutant GIST
[127]. In June 2022, the FDA granted accelerated approval to the combination of dabrafenib
and trametinib for the treatment of adult and pediatric BRAF V600E-mutant solid tumors
after progression on prior treatment and for whom no satisfactory treatment options were
available [21]. Previously, this combination had been approved for the treatment of BRAF-
mutant melanoma (adjuvant and advanced disease), metastatic non-small cell lung cancer,
and anaplastic thyroid cancer based on mutation-specific/histology-agnostic clinical studies,
MFR1117019 (NCT02034110) and NCI-MATCH (NCT02465060) [20]. Between these
two studies, only a single patient with GIST was treated, and this patient did not have

an objective response endpoint reported. Despite this, the combination of dabrafenib and
trametinib was still approved for BRAF V600E-mutant solid tumors, which would then
include BRAF V600E-mutant GIST (Fig. 4). As noted above for the case of larotrectinib and
entrectinib, post-marketing reporting of additional cases of treated patients with GIST will
be helpful to understand the efficacy of this combination.

5 Future Directions in GIST Drug Development
5.1 Next Generation of KIT (and PDGFRA) Inhibitors

Currently, a number of new KIT inhibitors are entering phase | studies, including

NBO003 (formerly AZD3229, NCT04936178) and THE-630 (NCT05160168) [105, 1086,
128]. Both of these agents have potency against a broader range of KIT TKI-resistant
mutations, including both ABP and activation loop mutations, offering the possibility of
controlling a broader range of TKI-resistant residual tumor cells and providing clinical
activity even in late-line therapy. An alternative approach is being tested in the case of
CGT-9486 (previously PLX-9486), where combination therapy using CGT-9486 (active
against activation loop mutations) plus sunitinib (active against ABP mutations) is being
tested in sunitinib-naive patient to see if the combination is superior to standard single-agent
sunitinib (NCT02401815) [129, 130].

Although registrational studies of these new agents could continue the historical practice of
enrolling all patients with advanced GIST, we suggest that limiting enrollment to patients
with KIT-mutant GIST as well a subset of PDGFRA-mutant GIST would result in superior
ORRs and improved PFS compared with testing these agents against all patients with
advanced GIST selected only based on the number and type of previous lines of therapy
(Fig. 4). This type of design would be crucial to any attempt at regulatory approval based
on a single-arm study in last-line therapy, where a sufficiently high ORR and duration of
response would be required [131]. Eliminating GIST cases lacking KIT mutations from the
denominator would improve the odds of success of such a study. Following approval as an
“nth-line therapy”, future studies could test these new therapies against approved agents in
a phase 11 study for earlier lines of therapy, but again the use of eligibility requirements
that include a molecular definition for patient eligibility would be predicted to improve

the odds of success. A limitation to this approach would be determining how patients
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with advanced heterogeneous disease (e.g., two or more resistance mutations) should be
enrolled in these types of clinical studies. In order to change the current drug sequencing for
KIT-mutant GIST, future studies could use ctDNA to select or exclude patients for studies
that compare two approved agents [104, 132]. For example, despite the failure of ripretinib
to be proven superior to sunitinib in a second-line phase Il study [108], it remains possible
that biomarker selection of patients might have yielded a different outcome. The ctDNA
selection of patients could either enrich for patients expected to have a superior response

to ripretinib versus sunitinib or exclude patients who would be predicted to have a better
response to sunitinib versus ripretinib [133]. Currently, there are no published data that
would allow an estimation of the likelihood of success of such a study design, but hopefully
such data will be available in the future. One practical issue for the use of ctDNA for study
eligibility is the observation that patients with GIST on average shed less tumor DNA than
other types of solid tumors (e.g., lung cancer or melanoma), with 20-25% of patients with
advanced GIST having undetectable levels of ctDNA [134-136]. In addition, the use of
ctDNA as an eligibility criterion would require the development, validation, and regulatory
approval of a companion diagnostic [137].

5.2 Targeting SDH-Deficient GIST

As mentioned previously, SDH-deficient GIST cases have a dismal ORR to imatinib (<

5%) and, at most, 20-30% of cases have a partial response to sunitinib or regorafenib

[49, 51, 96, 101]. During the conduct of the mutation-agnostic registrational studies for
these agents, these studies were open to patients who met eligibility criteria based on the
number of lines of prior therapy and the drugs used for prior therapy. However, current
treatment strategies are now focused on targeting unique characteristics in SDH-deficient
GIST. Notably, compared with KIT and PDGFRA-mutant GIST, SDH-deficient GIST show
global hyper-methylation [53, 138]. Succinate dehydrogenase deficiency in GIST leads

to succinate accumulation and inhibition of histone lysine demethylases (KDM) and ten-
eleven translocation enzymes, which leads to DNA and histone hyper-methylation (Fig.

1C) [139, 140]. A study by Ricci et al. reported that the epigenetic inactivation (i.e.,
methylation) of O%-methylguanine DNA methyl-transferase is higher in SDH-deficient GIST
than compared with SDH-proficient GIST [141]. It has been reported that the inactivation of
0%-methylguanine DNA methyl-transferase leads to an increased effectiveness of alkylating
agents in several other cancers, such as gliomas, colorectal cancer, and large B-cell
lymphoma [141, 142]. These results led to the hypothesis that DNA methylation could affect
05-methylguanine DNA methyl-transferase in SDH-deficient GIST, therefore inducing a
favorable response to alkylating agents. This hypothesis was experimentally supported using
patient-derived tumor models that were very sensitive to temozolomide (TMZ) treatment
[143]. Notably, TMZ is an alkylating agent that is currently approved by the FDA for the
treatment of glioblastoma multiforme and refractory anaplastic astrocytomas [144]. A 2014
study showed that in 15 patients with SDHB-mutant paraganglioma/pheochromocytoma,
50% had a partial response to TMZ [145]. These studies suggest that SDH deficiency could
be a biomarker for TMZ sensitivity [74]. Another case study conducted by De Silva et al.
shows the efficacy of using TMZ in one patient with SDH-deficient GIST, indicated by a
durable partial response, ongoing through 18 cycles [146]. Based on these preliminary data,
a two-arm phase 1l study of TMZ in patients with SDH-deficient GIST (NCT03556384)
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began in 2018 to determine the overall response rate of 6 months of TMZ therapy (Fig. 4).
In an initial report, 2/5 patients had a partial response [143]. The primary results from this
study are expected to be updated in the fall of 2022.

5.3 Other Potential Targetable Mutations

Other GIST subtypes that could be potentially treated with approved or emerging agents
include ALK-translocated and FGFR-translocated GIST. To date, there have been very
limited reports of where patients with GIST were treated with specific inhibitors of these
molecular drivers, but presumably these GIST subtypes would respond to kinase inhibitors
specifically targeting the underlying molecular driver [127]. In addition, NF1 mutant GIST
remains without a known FDA-approved optimal therapy, and future studies should focus on
new treatment strategies for these patients.

6 Conclusions

Although the historical pathway to GIST treatment approval has used a mutation-agnostic
design, a precision medicine approach informed by the molecular underpinnings of GIST
subtypes has shown incredible success for rare GIST subtypes. Advances in technology have
facilitated the utility of this approach, both in GIST-specific studies (e.g., avapritinib) as well
as in histology-agnostic (but mutation-specific) studies (e.g., larotrectinib and entrectinib).
Using up-front molecular testing and precision oncology treatment of GIST results in
superior clinical outcomes and minimizes the number of patients treated with biologically
inactive therapies (Fig. 4). The use of a precision medicine approach necessitates the
widespread use of comprehensive molecular profiling of all cases of advanced GIST
requiring medical therapy. However, in certain countries including the USA, such molecular
profiling occurs in less than 50% of patients, at least in certain countries including the

USA [147, 148]. The push for molecular testing and profiling will definitely be needed

for the less common forms of GIST for which there is no effective FDA-approved therapy
(e.g., NF1-deficient or SDH-deficient GIST). We believe that future registration studies of
KIT/PDGFRA inhibitors should also utilize a precision oncology approach and enroll only
those patients with KIT/PDGFRA mutations that would be predicted to respond to these
novel agents (Fig. 4).

A limitation to these precision medicine-driven clinical studies includes determining

the criteria for those patients previously treated with other TKls and who have highly
heterogeneous disease. These patients differ from TKI-naive patients, as their disease

may not be effectively targeted by a single drug, as previously shown in Fig. 3. With

the emergence of new technologies and models, we should focus on how to combat
heterogeneous disease, and the optimal selection of patients for testing new targeted
therapies. In recent years, mutation-agnostic studies that included all patients with advanced
disease were successful for patients with a specific subtype of GIST. While precision
medicine approaches narrow the inclusion criteria for a study, subjecting patients to new
therapies in which they may not receive a clinical benefit unnecessarily exposes them to
potential toxicities. To address this issue, correlative studies that compare tumor biopsy
with ctDNA mutation profiling should be integrated into future studies, not only to identify
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those patients most likely to benefit from a new therapy, but also to identify mechanisms of
acquired resistance to novel agents. Continuing to understand the mechanisms of acquired
resistance and the molecular underpinnings of each subtype of GIST will aid in the
development of the next generation of targeted therapies.
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Key Points

The discovery and use of tyrosine kinase inhibitors significantly improved the overall
survival of patients with advanced/metastatic gastrointestinal stromal tumors (GIST),
as surgery alone and traditional chemotherapy/radiation therapies provide little clinical
benefit.

The studies that led to the approval of first-, second-, third-, and fourth-line therapies
included all patients with advanced/metastatic GIST, regardless of mutational driver
status, and only provided clinical benefit to a subset of patients.

Our understanding of the molecular mechanisms of various GIST subtypes has informed
precision medicine-focused studies, and led to the development and approval of more
successful targeted therapies for those patients with rarer GIST subtypes.

We propose that future drug development should focus on mutation-specific subsets of
GIST, rather than simply selecting patients based only on the number of specific types of
prior therapy.
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KIT (70%)

PDGFRA (15%)

SDH deficient (9%)

NF1 (2%)

RTK gene fusions (1%)
PIK3CA (0.9%)

BRAF (0.8%)

RAS (0.4%)

Otherwise Wild-type (0.9%)

gEEENOOmOD

SDH complex deficiency
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_/ bk
'SDHC /

'SDHB
 SDHD

J
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Molecular drivers of gastrointestinal stromal tumors (GIST) and their corresponding
oncogenic signaling mechanisms. A Proportion of GIST cases based on oncogenic driver
subtype. B The majority of genetic aberrations that drive GIST development result in

the activation of downstream signaling pathways. The downstream pathways (JAK/STAT,
PIBK/AKT/mTORC1, and RAS/RAF/MEK/ERK) activated are similar for GIST driven by
KIT, platelet-derived growth factor receptor alpha (PDGFRA), or receptor tyrosine kinase
(RTK) gene fusions (e.g., FGFR1, FGFR2, NTRK1, NTRK3, and ALK). Gastrointestinal
stromal tumors driven by neurofibromatosis (type 1) (NF1) loss, RAS, BRAF, or PI3K
activation also utilize similar pathways for oncogenesis. The colors for these genetic
aberrations correspond to the pie chart in panel A. C A subset of GIST is driven by succinate
dehydrogenase (SDH) complex deficiency. This deficiency results from an inactivating
mutation of any one of the four SDH subunit genes (SDHA, SDHB, SDHC, or SDHD) or
epimutation of the SDHC promoter leading to gene silencing. The SDH complex converts
succinate to fumarate, but in SDH-deficient GIST the inactive complex results in the
accumulation of succinate. This accumulated succinate leads to the inhibition of prolyl
hydroxylase (PHD), which is involved in the proteasomal degradation of hypoxia-inducible
factor (HIF). Elevated succinate levels also have an effect on epigenetic reprogramming, by
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inhibiting ten-eleven translocation methyl-cytosine dioxygenase (TET) and lysine-specific
histone demethylase (KDM) family proteins. Image created using BioRender.com
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Depending on subtype,

response rates vary and

many do not respond to
these therapies

leficient

Treatment response

. Responsive

l:lMostIy unresponsive

.Unresponsive

Traditional treatment paradigm for advanced gastrointestinal stromal tumors. The gray box
shows the list of US Food and Drug Administration-approved drugs in the traditional
treatment paradigm, and 1L, 2L, 3L, and 4L correspond to first-, second-, third-, and fourth-
line therapy, respectively. The advanced gastrointestinal stromal tumor subtypes are listed
in the colored boxes, and those colors correspond to patient treatment response to 1L, 2L,
3L, and 4L therapy. It was later discovered after clinical trials that based on the advanced
gastrointestinal stromal tumor subtype, response rates vary amongst patients depending
on the mutational status. NVVFZ neurofibromatosis (type 1), NTRK neurotrophic tyrosine

receptor kinase, PDGFRA platelet-derived growth factor receptor alpha, SDH succinate

dehydrogenase. Image created using BioRender.com
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1L 2L 3L 4L
Imatinib (IM) Sunitinib (SU) Ripretinib (RIP)
mPFS: ~20 mo mPFS: 5.6 mo mPFS: 6.3 mo

Increasing tumor complexity over time
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TKIs
approved

IM responsive disease - Stable disease I Stable disease l Stable disease I @

Fig. 3.

Regpresentation of tyrosine kinase inhibitor (TKI) therapy and the emergence of secondary
resistance in patient with hypothetical KIT-exon 11-mutant gastrointestinal stromal tumors.
Initially KIT-exon 11-mutant gastrointestinal stromal tumor cells typically respond to
first-line (1L) imatinib therapy, and correspond to a decrease in relative tumor bulk

and lead to sustained stable disease. However, over time, residual tumor cells acquire
imatinib-resistant mutations and lead to tumor progression. The table shows the various
areas in which resistance mutations occur, either in the ATP binding pocket or activation
loop of KIT. As tumor cells no longer respond to imatinib therapy, relative tumor bulk
increases and a new therapy is required. Sunit common imatinib-resistant mutations. As

a patient progresses through various therapies, tumor cell heterogeneity increases over
time as additional mutations arise to ongoing therapy. Third- and fourth-line (3L and 4L,
respectively) therapies can target previously acquired mutations, but not all of these are
sensitive to a given drug. This is indicated in the graph as an overall increase in tumor
bulk with intermittent stable disease. After ripretinib (4L), there are no other US Food
and Drug Administration-approved therapies to target ripretinib-resistant tumor cells. mo
months, mPFS median progression-free survival. Image created using BioRender.com
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ADVANCED GIST SUBTYPE
PDGFRA PDGFRA
KIT mutant mutant mutant BR&%%‘E? o NTRK fusion SDH-deficient NF1 mutant
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Fig. 4.

TEMOZOLOMIDE
(TMZ)

Treatment response: -Responsive l:IMostIy unresponsive .Unresponsive

Using precision oncology approaches to treat advanced gastrointestinal stromal tumors
(GIST) significantly improves patient outcomes and treatment options by improving the
likelihood of clinical response and minimizing the treatment of patients who are unlikely
to respond to a given therapy. Colors correspond to patient outcomes; white boxes

indicate therapies that are in development. FDA Food and Drug Administration, NVF1

neurofibromatosis (type 1), NTRK neurotrophic tyrosine receptor kinase, PDGFRA platelet-
derived growth factor receptor alpha, SDH succinate dehydrogenase. Image created using
BioRender.com
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