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in colorectal cancer patients
Jinho Kim1†, Hyunjung Kim2†, Min‑Seok Lee2, Heetak Lee1,3, Yeon Jeong Kim4, Woo Yong Lee5, 
Seong Hyeon Yun5, Hee Cheol Kim5, Hye Kyung Hong6, Sridhar Hannenhalli7, Yong Beom Cho5,8*, 
Donghyun Park9* and Sun Shim Choi2*    

Abstract 

Background  Previous investigations of transcriptomic signatures of cancer patient survival and post-therapy relapse 
have focused on tumor tissue. In contrast, here we show that in colorectal cancer (CRC) transcriptomes derived from 
normal tissues adjacent to tumors (NATs) are better predictors of relapse.

Results  Using the transcriptomes of paired tumor and NAT specimens from 80 Korean CRC patients retrospectively 
determined to be in recurrence or nonrecurrence states, we found that, when comparing recurrent with nonrecurrent 
samples, NATs exhibit a greater number of differentially expressed genes (DEGs) than tumors. Training two prognostic 
elastic net-based machine learning models—NAT-based and tumor-based in our Samsung Medical Center (SMC) 
cohort, we found that NAT-based model performed better in predicting the survival when the model was applied to 
the tumor-derived transcriptomes of an independent cohort of 450 COAD patients in TCGA. Furthermore, composi‑
tions of tumor-infiltrating immune cells in NATs were found to have better prognostic capability than in tumors. We 
also confirmed through Cox regression analysis that in both SMC-CRC as well as in TCGA-COAD cohorts, a greater 
proportion of genes exhibited significant hazard ratio when NAT-derived transcriptome was used compared to when 
tumor-derived transcriptome was used.

Conclusions  Taken together, our results strongly suggest that NAT-derived transcriptomes and immune cell compo‑
sition of CRC are better predictors of patient survival and tumor recurrence than the primary tumor.

Keywords  Colorectal cancer, Normal tissues adjacent to tumors, Recurrence, Elastic net-based machine learning, 
Tumor-infiltrating immune cells

†Jinho Kim and Hyunjung Kim contributed equally to the manuscript.

*Correspondence:
Yong Beom Cho
yongbeom.cho@samsung.com
Donghyun Park
dh37.park@kr-geninus.com
Sun Shim Choi
schoi@kangwon.ac.kr
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-023-04053-2&domain=pdf
http://orcid.org/0000-0001-6289-4220


Page 2 of 15Kim et al. Journal of Translational Medicine   (2023) 21:209  

Background
Histologically normal tissues adjacent to the tumors 
(NATs) have long been considered equivalent to a healthy 
normal [1]. It is thus a common practice to use NAT as 
a control for tumor in omics studies [2–4], although the 
difficulty in acquiring healthy tissue is a strong reason 
underlying this practice. However, recent studies have 
shown that NAT has molecular and cell compositional 
properties distinct from healthy normal tissues, posi-
tioned in an intermediate state between healthy normal 
and tumor tissues, which can differentiate poor or good 
prognosis of cancers [5, 6].

Colorectal cancer (CRC) is one of the most commonly 
diagnosed cancers worldwide [7]. As a result of increased 
cancer screening at the population level, early CRC can 
be treated with surgical removal of the tumor com-
bined with chemotherapy [8]. However, approximately 
30–50% of CRC patients are predicted to eventually 
experience recurrence and metastasis after treatment, 
with a 5-year survival rate of less than 60% [9–12]. The 
mechanism driving recurrence after surgical resection of 
CRC remains unclear. In terms of biomarkers to predict 
patient prognosis, TNM staging method, a method inte-
grating tumor (T), lymph node (N) and metastases (M), is 
commonly used to classify cancers pathologically by their 
localization and histology [13–15]. However, TNM stag-
ing often fails to predict the prognosis of patients after 
treatments. Mutational subtyping of CRC has thus been 
developed for targeted therapy such as anti-EGF receptor 
antibody called cetuximab, with limited success [16, 17].

To overcome these challenges, numerous studies have 
tried to classify tumors based on various molecular 
markers of CRC including microsatellite instability (MSI) 
[18, 19], CpG island methylator phenotype (CIMP) [20, 
21], chromosomal instability (CIN) [22, 23], and BRAF 
and KRAS mutations [24, 25]. Compositional changes in 
stromal and mesenchymal cell subpopulations and pat-
terns of tumor infiltrating B cells, T cells, and myeloid 
cells are another area of research looking for the CRC 
prognosis markers [26, 27]. Furthermore, several recent 
studies have shown that consensus molecular subtypes 
(CMS) (including CMS1 through CMS4), a system that 
was developed by integrating gene expressions of cell-
type specific marker genes, key mutations events, and 
cell subpopulations in tumor microenvironment, is asso-
ciated with therapy response, patient prognosis, and 
tumor recurrence [28–30]. However, CMS subtyping is 
also uncertain for ~ 63% of CRC samples [31–35].

It is noteworthy that a majority of these studies regard-
ing the prognostic classifications described above has 
been performed with data derived from tumor tissues 
and the tumor microenvironments. However, previous 
studies have shown that NATs are quite distinct from 

healthy normal in their molecular makeup and various 
degrees of transcriptional similarities to the tumor in 
different types of cancers [1–6], and furthermore, NATs 
may represent the tissue microenvironmental changes 
facilitating tumor growth [36] and therefore may be 
informative with regards to patient prognosis and drug 
response and recurrence. For instance, according to Gra-
ham et  al. [37], gene expressions in NATs can identify 
estrogen receptor (ER)-positive and ER-negative breast 
cancers. In addition, Pan et al. [5] have reported Hippo-
related genes expressed in NATs to harbor prognostic 
property in hepatocellular carcinomas.

Here we investigate specifically in CRC relative advan-
tage of NAT transcriptome over the tumor transcriptome 
in clinical prognosis. For this purpose, using the CRC-
derived NAT and tumor paired transcriptome data gen-
erated by Samsung Medical Center (SMC) in Korea, we 
build two classes of elastic net-based machine-learning 
models, i.e., NAT-based models and tumor tissue-based 
model, to predict CRC prognosis, and examine which 
of the two types of models predict better the recurrence 
states of CRC patients, i.e., recurrent (shorten to be RC) 
and nonrecurrent (shorten to be nonRC) states. We 
validated the models built with SMC-derived transcrip-
tomes in independent transcriptome data of The Can-
cer Genome Atlas (TCGA)-colorectal adenocarcinoma 
(COAD) cohort. We believe that our study substan-
tially contributes toward establishing NATs as a critical 
resource to understand oncogenesis, tumor aggressive-
ness, and therapy response.

Results
Summary characteristics of tissue specimens to produce 
total RNA‑seq data
A total of 80 Korean patients with primary CRC deter-
mined with TNM stages 1–3 after excluding TNM stage 
4 who did not have distant metastasis at the time of sur-
gical resection were enrolled in this study. A total of 160 
tissue specimens from the 80 patients, including primary 
tumor tissues and adjacent histologically normal tissues 
(i.e., NATs) derived from the same individuals were col-
lected during the resection surgery, operated in SMC 
from the period, 2011 to 2013 (Table 1). The average size 
of the resected primary tumors was about 6.2  cm, and 
the NATs were biopsied at approximately 10 cm from the 
tumor resection boundary. Most samples (72/80; 90.0%) 
with an average age of about 63.86 were from male 
patients (Table  1). About 87.5% (70/80) of the samples 
were microsatellite stable (MSS) while only 12.5% (10/80) 
had high microsatellite instability (MSI-H) (Table  1); 
MSI was determined by PCR when two or more of the 
five repetitive sequences (BAT25, BAT26, D2S123, 
D5S346, D17S250) were unstable with indels, otherwise 
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the sample was deemed MSS [38]. After collecting sam-
ples from surgical resection, patients’ progress was fol-
lowed up for three years to examine whether recurrence 
occurred. As a result, a total of 73 patients including 25 
patients with recurrence and 48 patients with nonrecur-
rence were used for further analyses (Fig. 1), after remov-
ing seven samples with ambiguity in the recurrence state; 
two different types of total RNA-seq data were generated 
from each of the 146 specimens, i.e., 73 tumor-derived 
transcriptomes and 73 site paired NAT-derived tran-
scriptomes. Based on these two types of transcriptomes, 
we later developed machine learning models for predict-
ing the recurrence of patients with CRC (Fig. 1).

Relative to tumors, NATs exhibit smaller magnitudes 
but significant differences in expression between RC 
and nonRC states
We first investigated how the two types of data, tumor-
derived transcriptomes and NAT-derived transcrip-
tomes, transcriptionally differentiate RC from nonRC 
states with respect to the numbers and the statistical 
significance of DEGs. For this purpose, we derived two 
types of DEGs; (i) tumor-DEGs, i.e., DEGs estimated 
using the tumor-derived transcriptome by comparing the 

Table 1  Patient characteristics

a n(%); Median (IQR)
b For dichotomous variables (ex. Sex, MSI), Fisher’s exact test was used, while 
for variables with more than two groups such as Age, TNM stage, Kruskal–Wallis 
rank sum test was employed

Variable nonRC, N = 48a RC, N = 25a Unknown, N = 7a P-valueb

Sex 0.4

 F 6 (12%) 1 (4.0%) 1 (14%)

 M 42 (88%) 24 (96%) 6 (86%)

Age 62 (51, 70) 66 (51, 74) 75 (64, 77) 0.14

TNM stage 0.2

 0 1 (2.1%) 0 (0%) 0 (0%)

 I 4 (8.3%) 2 (8.0%) 1 (14%)

 IIA 19 (40%) 5 (20%) 1 (14%)

 IIB 1 (2.1%) 0 (0%) 0 (0%)

 IIC 1 (2.1%) 0 (0%) 0 (0%)

 IIIA 3 (6.2%) 0 (0%) 0 (0%)

 IIIB 17 (35%) 11 (44%) 4 (57%)

 IIIC 2 (4.2%) 7 (28%) 1 (14%)

MSI 0.045

 MSI-H 9 (19%) 0 (0%) 1 (14%)

 MSS 39 (81%) 25 (100%) 6 (86%)
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Fig. 1  Study overview. RNA-seq data were produced from 160 surgical tumor and NAT samples from 80 Korean CRC patients. The total RNA-seq 
data, (i) tumor-derived transcriptomes and (ii) NAT-derived transcriptomes, were used to identify DEGs by comparing between RC and nonRC 
groups and functional analysis was done for the DEGs. The RNA-seq data of DEGs were used to construct recurrence prediction machine learning 
models. Subsequently, we investigated which machine learning prediction models constructed with NAT-based datasets or tumor-based datasets 
were superior for differentiating the recurrence states of patients with CRC. The two types of prediction models were then validated using the 
tumor-derived transcriptome data of 450 TCGA-COAD samples. Inferred immune cell composition were also used to compare which type of 
samples has more significant association with recurrence states with respect to infiltrated immune cell compositions. Finally, association of each 
gene with the survival of patient in different cancer types of TCGA cohorts was compared between NATs and tumor tissues
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expression levels of genes between RC and nonRC sam-
ples, and (ii) NAT-DEGs, i.e., DEGs estimated using the 
NAT-derived transcriptome by comparing the expres-
sion levels of genes between RC and nonRC samples. We 
found that, in both types of transcriptomes, the P-values 
of DEGs deviated substantially from random expecta-
tions in the QQ plots (Fig. 2A), however, the magnitude 
of P-value deviations for the NAT-DEGs was far greater 
than that for the tumor-DEGs (Fig.  2A). Consistently, 
the numbers of NAT-DEGs were significantly larger 
than those of tumor-DEGs at various false discovery 
rate (FDR) thresholds from FDR < 0.01 to FDR < 0.0001 
(Fig. 2B). Notably, at FDR < 0.01, almost six times more 
NAT-DEGs than tumor-DEGs (Fig.  2B) were found. 
Consistently, when DEGs selected by −  log10(FDR) > 2 
threshold were indicated in the volcano plot, the num-
ber of NAT-DEGs (blue genes one the left panel) was 

significantly greater than that of tumor-DEGs (red 
genes on the right panel) (Fig.  2C). In contrast, when 
log2 fold change (FC) was applied along with FDR, (e.g., 
− log10(FDR) > 2 and abs(log2FC > 2), the number of dots 
representing DEGs in the volcano plot of the tumors 
became larger than that of the NATs, indicating that the 
expression level of each gene within the tumor samples 
is more heterogeneous than NAT samples. The same 
conclusions were drawn when only protein-coding NAT-
DEGs and protein-coding tumor-DEGs were compared 
(Additional file 1: Fig. S1A, B), consistently showing that 
the number of NAT-DEGs was significantly higher than 
that of tumor-DEGs. The significant (FDR < 0.01) cod-
ing and non-coding DEGs for both NATs and tumors are 
provided in Tables S1-2 (Additional file 2: Tables S1–2).

Next, we analyzed the same question with a total of 
fifty-one genes collected from the five commercially 

Fig. 2  Comparison of the usefulness of NATs and tumor tissues for discovering prognostic gene markers. A–C Two types of DEGs, NAT-DEGs and 
tumor-DEGs, were identified by comparing gene expression levels between RC and nonRC samples using the NAT-derived transcriptomes and 
tumor-derived transcriptomes. A QQ plots comparing P-values of NAT-DEGs and tumor-DEGs. B Bar graphs showing the number of NAT-DEGs and 
tumor-DEGs obtained with three FDR cutoffs (0.0001, 0.001, and 0.01). C Volcano plots generated by selecting NAT-DEGs (left) and tumor-DEGs 
(right) based on the thresholds of − log10(FDR) > 2. The names of selected DEGs identified with these thresholds are shown. Yellow shaded areas 
represent − log10(FDR) > 2 and abs(log2FC) > 2. D Comparison of the − log10(FDR) (upper panel) and log2FC (lower panel) of the changes in gene 
expression between RC and nonRC states of 51 previously identified prognostic marker genes in NATs and tumors. Genes with lower FDR values in 
NAT than in tumor are on the left panel, and vice versa on the right panel. Note that P-values rather than FDR values were assigned to SLC6A11, in 
either NAT-derived transcriptome or tumor-derived transcriptome, because due to too low mean counts for this gene resulting in ‘NA’ by DESeq2. 
The grey bars on the lower panels represent the genes with no statistical difference between NAT and tumors (FDR > 0.05). N.S., not significant. E QQ 
plot of P-values estimated from (D) in NATs and tumors
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available prognostic test kits (Table  3 of Koncina et  al. 
[39], including OncotypeDX, ColoPrint, ColoGuideEx, 
ColoGuidePro, and ColoDefender). Briefly, after overlap-
ping the fifty-one genes with our two datasets, NAT- and 
tumor-derived transcriptomes, respectively, the magni-
tudes of FCs (the lower panel of Fig. 2D) along with P-val-
ues (the upper panel of Fig. 2D) underlying differences in 
gene expressions between RC and nonRC samples were 
estimated, just in the same way as for estimating NAT-
DEGs and tumor-DEGs described in Fig.  2A&B. We 
found that the thirty-three genes of fifty-one genes were 
more significantly differentially expressed between RC 
and nonRC samples when using the NAT- than when 
using the tumor-derived transcriptome (Fig.  2D), con-
sistently the P-values significantly deviated from random 
expectations for both transcriptome datasets but NATs 
had higher magnitudes than tumors (Fig.  2E). In par-
ticular, nine of the fifty-one genes had significantly lower 
P-values and higher FCs in NAT-derived transcriptome 
while only four genes had significantly lower P-values and 
higher FCs in tumor-derived transcriptome. The lowest 
five P-values were observed for CXCL9, CXCL10, PIM3, 
DMBT1 and MMP3 in the NAT-derived transcriptomes 
(Fig. 2D).

NAT‑ and tumor‑DEGs reveal distinct functions
We performed gene ontology (GO) analysis on the NAT-
DEGs and the tumor-DEGs, respectively, to investi-
gate how these two types of DEGs differ with respect to 
gene functions. As a result, interestingly, the functional 
terms related to tumorigenesis were enriched in both 
NAT-DEGs and tumor-DEGs, whereas the terms such 
as inflammatory response, response to hypoxia, and 
angiogenesis were enriched only in NAT-DEGs (Fig. 3A). 
Furthermore, when gene expressions were compared 
between nonRC and RC states, we found that NATs tend 
to express various kinds of signature genes for ‘premeta-
static niche’ and ‘proliferation’ at significantly different 
levels, whereas no significant differences in tumor tissues 
(genes in the red box of Fig. 3B). No significant difference 
exhibited in both NATs and tumor tissues in signature 
genes for ‘dormancy’ except only one class called ‘D_1’ 
representing dormancy-associated genes from the ‘dor-
mancy study_1’ signature (see “Methods”) (Fig. 3B).

NAT‑based predictive model effectively predicted 
the survival of COAD patients when applied 
to tumor‑derived transcriptome data from TCGA​
Considering that only the tumor-derived transcriptomes 
are available in most cases in the clinical setting, we 
assessed to which our NAT- and tumor-derived mod-
els are prognostic in an independent cohort where only 
tumor-derived transcriptomes are available. For this 

purpose, we attempted to validate the two prognostic 
models using the tumor-derived transcriptome data of 
450 TCGA-COAD patients as an independent test set.

We first investigated how concordant NAT-DEGs and 
tumor-DEGs were in terms of P-values that underlie the 
estimation of each type of DEGs, and found that they are 
highly concordant each other (Fig.  4A). We then con-
structed two elastic net-based machine learning models 
to predict the recurrence state of CRC, (i) NAT-based 
elastic net models and (ii) tumor-based elastic net mod-
els. We chose the elastic net algorithm, one of regulari-
zation-based machine learning algorithms, to build the 
prognostic models, because it has been reported to out-
performs in general other machine learning algorithms 
such as random forest, support vector machine, and 
LASSO, etc., when the number of features is much larger 
than the number of samples [40–44]. For each type, sev-
eral elastic net models were built using different numbers 
of DEGs, 16, 20, 24, 28, 32, 36, and 40 DEGs. (Fig.  4B). 
The recurrence risk score was then calculated for each 
TCGA sample as the Cosine product of the gene coef-
ficients in the elastic net model and the gene expression 
in the sample. Finally, a multivariate logistic regression 
analysis was performed with these estimated risk scores 
using TNM stage and sex information as covariates in 
predicting three-year survival of TCGA-COAD patients. 
Notably, the multivariate logistic regression models built 
with the risk scores derived from NAT-derived elastic net 
models produced higher coefficients (~ 0.6) (the upper 
right panel of Fig. 4B) than those built with the risk scores 
derived from tumor-derived elastic net models (~ 0.25) 
(the lower right panel of Fig. 4B). In addition, coefficients 
of the predicted risk scores generated from all different 
NAT-derived elastic net models built with different num-
bers of NAT-DEGs had 95% confidence intervals (CIs) 
above zero, whereas coefficients generated from all differ-
ent tumor-derived elastic net models built with different 
numbers of tumor-DEGs all included zero, without any 
exception (the far-right panel in Fig. 4B). The NAT-based 
elastic net model built with 28 DEGs was found to be the 
best prognostic model in this analysis, and these 28 DEGs 
contained several genes involved in chemokine activity 
or insulin-like growth factor receptor binding including 
NRSN2, CXCL10, CXCL9, NOS2, and TYMP.

We further validated the fact that the NAT-based mod-
els outperformed the tumor-based models, even after 
correcting the batch effect in the two datasets, i.e., the 
SMC-CRC transcriptomes (i.e., the transcriptomes gen-
erated in the present study) and the TCGA-COAD tran-
scriptomes, by testing which one of these two types of 
models better predicted the three-year survivals of the 
TCGA-COAD patients, when NAT- or tumor-derived 
transcriptomes of TCGA-COAD were used as inputs to 
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the models. As shown in Additional file  1: Fig. S2, the 
NAT-based models performed very well for the NAT-
derived transcriptomes of TCGA-COAD as well as 
tumor-derived transcriptomes of TCGA-COAD, whereas 
tumor-based model failed to predict the three-year 

survival even when tumor-derived transcriptomes of 
TCGA-COAD were used as input.

We also investigated how well the risk scores estimated 
by the NAT- and tumor-based elastic net models are con-
cordant with the three-year survivals of TCGA-COAD 
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patients. For this purpose, Kaplan–Meier plot analysis 
was performed after the TCGA-COAD patients were 
divided into two groups based on the risk scores: the top 
20% (i.e., patients with high risk scores) and the remain-
ing 80% (i.e., patients with low risk scores). Interestingly, 
a significantly different survival between the patients 
with high risk scores and the patients with low risk scores 
was observed, only when the risk scores were estimated 
by NAT-derived elastic net model; when the NAT-
based models were used, patients with high risk scores 
were found to have poor survival rates within 2–3 years 
(P = 0.00043) (Fig.  4C), whereas when tumor-based 
model used, the difference in survival rates between 

patients with high and low scores was not statistically sig-
nificant (Fig. 4D).

Taken together, NAT-derived elastic net models per-
formed better in predicting the three-year survival of 
TCGA-COAD patients than tumor-derived elastic net 
models, even when the NAT-derived elastic net models 
were applied to estimate risk scores using the tumor-
derived transcriptomes of TCGA-COAD.

Infiltrating immune cells are better predictor in NATs 
than in tumors
Based on the finding that the compositions of tumor-
infiltrating immune cells, such as T cells, B cells, and 
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macrophages are associated with patient survival in sev-
eral cancer types including CRC [39, 45–49], we asked 
whether compositions of tumor-infiltrating immune cells 
in NATs could also provide useful information for pre-
dicting prognosis. To address this, using xCell—a decon-
volution tool [50] we first inferred cell type composition 
in the NATs and tumor tissues of the 73 CRC patients. A 
total of 29 immune cell types were identified in NATs and 
tumors (Additional file 2: Table S3). After the proportion 
of each immune cell type was estimated for each patient, 
logistic regression analysis was performed to determine 
how well the immune cell proportions in NATs or in 
tumors can distinguish RC and nonRC states, with TNM 
stage and sex used as covariates. As a result, four out of 
the 29 immune cell types (naïve CD8 + T cells, CD8 + T 
cells, and Th2 cells, and naïve B cells), and three other cell 
types including macrophage and dendritic cells (M1 mac-
rophages, aDCs and pDCs), and neutrophils were found 
significant predictors with respect to beta coefficients of 
recurrence (Fig.  5A and Additional file  2: Table  S4), at 
least for one of the NATs and tumors. More importantly, 
seven types of cells had greater significance in NATs (i.e., 

lower P-values) than in tumors to discriminate between 
RC and nonRC conditions (Fig.  5B). Consistently, the 
proportions of these cell types were higher in NATs than 
in tumors (Fig.  5C). All these results strongly indicate 
that compositions in tumor-infiltrating immune cell of 
NATs could also provide information regarding the prog-
nosis of patients.

Examination of the efficacy of NAT‑ and tumor‑derived 
transcriptomes in other TCGA cancers
Next, we examined whether the finding based on the 
SMC-CRC-derived transcriptomes generalize to other 
cancer types. For this purpose, NAT- and tumor-derived 
transcriptomes were downloaded from other cancer 
types including lung cancers (LUAD), breast cancers 
(BRCA), and liver cancers (LIHC) in the TCGA database. 
One caveat in exploring this question is that in TCGA, 
NAT-derived transcriptomes are severely lacking com-
pared to tumor-derived transcriptomes in most cancer 
types. As shown in Table S5 (Additional file 2: Table S5), 
while 41 COAD, 58 LUAD, 99 BRCA, and 50 LIHC 
NAT-derived transcriptome data were available, only 22 
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COAD, 44 LUAD, 74 BRCA, 41 LIHC paired samples 
had survival information. The numbers of samples with 
death events were 8, 18, 12, and 23 in each cancer. Due 
to the small number of NAT data for the TCGA cancers, 
instead of building the elastic net-based machine learn-
ing models, we chose to perform Cox regression analy-
sis to validate our conclusion. Even in Cox regression, 
only four cancer types including COAD, LUAD, BRCA, 
and LIHC were subjected to the analysis, as the previous 
study showed that Cox regression requires at least 5 to 10 
events per variable [51].

For these four cancer types in the TCGA, we exam-
ined whether NAT- or tumor-derived transcriptomes in 
each cancer type has greater proportions of genes that 
were significantly associated with survival. For this pur-
pose, we first estimated hazard ratio (HR) of each gene 
through Cox regression analysis using age, TNM stage, 
and sex information as covariates, respectively, from 
NAT- and tumor-derived transcriptome. Subsequently, 
we compared the proportions of genes with significant 
HRs between NAT and tumor in each cancer type. Note 
that SMC-CRC and TCGA-COAD were included as a 
kind of positive control in this HR test. Encouragingly, 
we found that the proportions of genes with significant 
HRs in both SMC-derived CRC (Fig.  6A) and TCGA-
COAD (Fig.  6B) were significantly higher in NAT- than 
in tumor-derived transcriptomes; 53% NAT vs. 25% 
tumor for SMC-CRC samples (Fig.  6C), and 65% NAT 
vs. 31% tumor for TCGA-COAD samples (Fig. 6D). Even 
if TCGA-COAD tumor samples were adjusted by tumor 
purity data [52], the result was the same as above (Addi-
tional file 1: Fig. S3). However, LUAD, BRCA, and LIHC 
exhibited completely opposite to SMC-CRC- or TCGA-
COAD-based finding, so the proportion of genes with 
significant HRs was significantly higher in tumor- than 
NAT-derived transcriptome; 22% NAT vs. 75% tumor for 
BRCA, 29% NAT vs. 64% tumor for LIHC, and 20% NAT 
vs. 77% tumor for LUAD (Fig. 6E–G). These results sug-
gest that a greater clinical information in the NAT com-
pared to tumor transcriptome may be true only in some 
of the cancers, specifically, CRC in this analysis.

Discussion
Discovering prognostic factors or developing prognos-
tic machine learning models has recently been a major 
focus in cancer studies [53–55]. However, as with many 
other cancers, numerous prognosis prediction methods 
of CRC, such as tumor locations, types of genetic muta-
tions, degree of chromosomal instability, were largely 
inconsistent [56]. For instance, some studies have shown 
a better prognosis for left-sided tumors than right-sided 
ones [57], while other studies have shown the oppo-
site [58]. Changes in immune or inflammatory cell 

composition in the tumor microenvironment have also 
been controversial in related to the prognosis of patients 
with CRC [48, 59–62]. We noticed that various transcrip-
tomes, epigenomes, and cell composition data used as 
source materials in previous studies to develop prognos-
tic models and biomarkers were primarily derived from 
tumors [63–65]. Therefore, we suspected that part of the 
inconsistencies in various prognostic methods may be 
due to high inter- and intra-tumor heterogeneity.

In the present work, we showed that tumor tissues 
have higher expressional variances than NAT samples, by 
obtaining NAT-DEGs and tumor-DEGs under two types 
of thresholds with a different strength of stringency, (i) 
FDR < 0.01 only, and (ii) both FDR < 0.01 and log2FC > 2, 
were applied (Fig.  2C). A significantly larger number of 
DEGs was generated from the NAT-derived transcrip-
tomes than from the tumor-derived transcriptomes when 
the less stringent threshold was applied, but vice versa 
when more stringent thresholds were used. This result 
indicates that a small number of tumor samples experi-
enced large-scale changes in gene expression between 
the RC and nonRC states, resulting in higher FC values 
on average, but the size of changes was not even across 
all the tumor samples, which caused to failure in dis-
criminating the recurrence states. On the contrary, NATs 
showed expression changes between different recurrence 
states at small sizes but significant changes with relatively 
uniform values across all samples, and consequently, 
NAT-derived transcriptomes turned out to become more 
informative in building the prognostic models.

NAT is a histologically normal tissue, but it has been 
reported that NAT has molecular characteristics that dis-
tinguish it from healthy normal tissues. Aran et al.’s con-
clusion that NAT is an intermediate state between tumor 
and healthy normal states agreed with the concept of field 
cancerization, which was reviewed by Curtius et al. [66]. 
Field cancerization argues that tumor formation begins 
long before clinically detectable morphological changes 
occur, as observed in several cancers, including colon, 
lung, and prostate cancers [66]. It seems that NAT is the 
tissue experiencing field cancerization, in which stepwise 
molecular changes accumulate during tumor forma-
tion through the process of cancer evolution [67, 68]. It 
is expected that the stepwise field cancerization process 
varies in the NAT of each patient because the tumor of 
each patient develops as a result of different initial muta-
tions and various subsequent evolutionary paths that 
are influenced by patient-specific natural selection. The 
results of the present work show that the gene expression 
perturbations that occur in NAT have more prognostic 
value than those in tumor tissue and in good agreement 
with the concept of field cancerization. In other words, 
NAT in a CRC patient without recurrence appears to 
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have specific types of gene expression changes that drive 
tumor growth, and similarly, NAT in a CRC patient with 
recurrence seem to have other specific types of gene 
expression changes driving tumor growth. This suggests 
that prognosis can be predicted based on gene expression 
profiles of NAT from surgically resected samples during 
therapeutic resection of early-stage CRC, long before 
tumor recurrence and metastasis. Consistently, Facista 
et al. [69] showed that early-stage colon cancer resection 

samples had a region (or NAT) with abnormally reduced 
expression of DNA repair enzyme genes (ERCC1, Pms2, 
and Xpf) when a series of approximately 15 sequential 
tissue sections (4 microns for each section) were exam-
ined. Our analysis focused on NAT-derived transcrip-
tomes makes sense in that respect.

It is noteworthy that we validated the performance of 
the elastic net-based prognostic models using the TCGA-
COAD dataset with survival information because no 

Fig. 6  Comparison of proportions of survival-associated genes between NATs and tumors in different TCGA cancer types. A HR and the 95% CI of 
each gene from SMC-CRC samples are depicted. Only genes with top and bottom 20% HR in NATs (left panel) and tumors (right panel) are shown, 
respectively. Significant survival-associated genes (P < 0.05; Cox regression analysis) are colored blue for NAT and red for tumor. B Same as (A) but 
for TCGA-COAD samples. Note that 79 outlier genes with HR > 100 or HR < 0.01 in either NATs or tumors were removed. C–G Pie charts for the 
significant survival-associated genes (P-value < 0.05; Cox regression analysis) in (C) SMC-CRC, D TCGA-COAD, E TCGA-BRCA, F TCGA-LIHC, and G 
TCGA-LUAD are shown
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independent datasets with recurrence information were 
available from TCGA or other curated cancer databases. 
While survival period is strongly correlated with recur-
rence status, it may not always be consistent with the RC/
nonRC states. Nonetheless, the NAT-based elastic net 
models we built predicted well the survivals of patients, 
such that the patients in a high risk group had signifi-
cantly worse survivals than the patients with a low risk 
group (Fig.  4). An interesting point in this validation 
analysis was that we validated the NAT-based elastic net 
model against the 450 tumor-derived transcriptomes 
data rather than NAT-derived transcriptome data 
because of the sample accessibility in general clinical set-
tings. In Fig. 6, we showed that, in both SMC-CRC and 
TCGA-COAD datasets, NAT-derived transcriptomes are 
more informative in differentiating CRC prognosis than 
tumor-derived transcriptome, by showing that the pro-
portion of genes with significant HR estimated using Cox 
regression is significantly greater in NAT-derived tran-
scriptome than in tumor-derived transcriptome.

Unexpectedly, three other cancer types including 
LUAD, BRCA, and LIHC, i.e., cancer types in TCGA 
with relatively large numbers of NATs, did not reiterate 
the conclusion made by CRC dataset in the present work 
(Fig.  6E–G). In other words, tumor-derived transcrip-
tomes rather than NAT-derived transcriptomes have sig-
nificantly more genes with significant HR in these three 
types of cancers. One possible cause for this observation 
could be that the numbers of genes that have alterations 
in gene expressions or the sizes of the alterations in the 
NATs of these cancers may be smaller than the number 
or the size of alterations in gene expression in the NAT 
of CRC. Given that previous studies in breast cancers and 
liver cancers have already shown that gene expressions in 
NATs harbor information reflecting the cancer prognosis 
[5, 37, 70], it should not be wrong to expect that the sce-
nario based on CRC is applicable to other cancer types. 
A possible cause for the inconsistency would be related 
to the distance of the NATs from the edge of the resected 
tumor, which varies across cancer types. The NATs from 
relatively close to the tumor tissue are expected to show 
greater alterations in gene expressions. Another possible 
cause may be related to the extent to which each cancer 
type harbor alterations in gene expressions, as suggested 
by Aran et al. [1] that NATs in different cancer types tend 
to carry different degrees of alterations in gene expres-
sion, and the NATs of CRC harbor more shifted tran-
scriptomic profiles toward tumor than other cancers.

Conclusions
Our study investigated, for the first time, the value of 
NAT-derived transcriptomes compared to tumor-derived 
transcriptome in predicting clinical prognosis for CRC 

patients. By building elastic net-based machine-learning 
models, we found that NAT-based models outperformed 
tumor tissue-based models in predicting the recurrence 
states of CRC patients. We validated our models using 
independent transcriptome data from the TCGA-COAD 
cohort, showing that NAT-based model effectively pre-
dicted the survival of CRC patients, even when applied to 
tumor-derived transcriptomes. Additionally, Cox regres-
sion analysis confirmed that the proportion of genes 
with significant hazard ratios was higher in NATs than in 
tumors in CRC. While the NATs are believed to harbor a 
tumor-supportive microenvironment, in transcriptome-
based studies thus far, NATs are often used as a proxy for 
non-malignant or healthy control. Our study clearly chal-
lenges this assumption and highlights the importance of 
using NAT-derived transcriptome data for understanding 
oncogenesis, tumor aggressiveness, and therapy response 
in CRC.

Methods
Tissue samples
This study was performed in accordance with the prin-
ciples of the Declaration of Helsinki and was approved 
by the ethics committee of SMC in South Korea (No. 
SMC-2018-04-074-004). A total of 160 tissue samples 
collected from 80 Korean CRC patients (Table  1) were 
retrieved from the biobank at SMC. Tumor tissue sam-
ples and matched normal tissues had been originally col-
lected from patients who signed a consent form for the 
donation of specimens for research purposes and under-
went surgery for CRC at SMC from Jan 2011 to Dec 2013. 
Patients diagnosed with stage I-III colorectal cancer 
and monitored for recurrence at least three years were 
included. Among the 80 patients, 48 were retrospectively 
characterized as CRC with nonrecurrence states and 25 
as CRC with recurrence states based on the recurrence 
of during the follow-up period. The tissue samples at 
the SMC biobank were collected and stored in the vapor 
phase of liquid nitrogen.

RNA sequencing
Total RNA was then isolated using an AllPrep DNA/
RNA kit (Qiagen, Santa Clarita, CA, USA) according 
to the manufacturer’s protocol. To access the quality of 
RNA, RNA integrity number (RIN) was measured using 
a 2200 TapeStation Instrument (Agilent Technologies, 
Santa Clara, CA, USA). Samples with an RNA integrity 
number (RIN) less than seven were excluded from sub-
sequent library preparation. We created libraries using 
a TruSeq kit (Illumina, San Diego, CA, USA). For each 
sample, 500 ng of total RNA was used to generate librar-
ies with different indexing adaptors in one sequenc-
ing run according to the manufacturer’s protocol. The 



Page 12 of 15Kim et al. Journal of Translational Medicine   (2023) 21:209  

library was purified with AMPure beads and quantified 
using a Qubit 2.0 Fluorometer with a dsDNA HS Assay 
Kit (Thermo Fisher Scientific, Waltham, MA, USA). The 
size distribution was analyzed using a 2200 TapeSta-
tion Instrument (Agilent Technologies). Based on DNA 
concentration and average fragment size, libraries were 
pooled and denatured as previously described [71]. The 
libraries were sequenced on a HiSeq 2500 system using 
100-bp paired-end sequencing (Illumina) to generate 
approximately 50–80 million reads per sample.

Quantifying mRNA and identifying DEGs
The STAR [72] and HTSeq [73] bioinformatics pipelines, 
respectively, were used to map and count the raw reads. 
In brief, quality control of the raw reads was performed 
with the FastQC program (https://​www.​bioin​forma​tics.​
babra​ham.​ac.​uk/) [74]. Subsequently, Trimmomatic 
(v0.38) [75] was applied to remove contaminating adap-
tor sequences and unpaired reads. The ‘genomeGener-
ated’ option of STAR v020201 was then used to index the 
reference genome, GRCh38.p12. After the clean reads 
in the FASTQ file were aligned to the index genome, 
‘htseq-count’ was used to count the aligned reads. To 
annotate the names of mRNAs, the GTF file of Ensembl 
(GENCODE v29) was used. We removed genes with zero 
counts in more than 70% of samples. The DESeq2 [76] R 
package was used to identify DEGs after the read counts 
were normalized.

ssGSEA of ‘dormancy’, ‘premetastatic niche’, 
and ‘proliferation’ signatures.
Each signature was collected from the literature search 
on PubMed and named it as following; ‘D_1’ (i.e., dor-
mancy study_1) signature was retrieved from [75]. All 
signatures prefixed with ‘D_2’ (i.e., dormancy study_2), 
i.e., signature genes that are all related to dormancy, 
were defined and collected by the single cell analysis of 
[77]: ‘D_2_C’, a classical dormancy signature that con-
tains well-known dormancy-associated genes; ‘D_2_SC’, 
dormancy-related genes revealed by the single cell anal-
ysis; ‘D_2_HIPPO’, ‘D_2_TGF’, and ‘D_2_WNT’, genes 
associated with the Hippo pathway, TGF-beta pathway, 
and WNT signaling pathway, respectively. All ‘prem-
etastatic niche (prefixed with PN)’ signatures were from 
the review of Liu and Cao (2016) [78]: ‘PN_ST_d’ and 
‘PN_T_d’, ‘premetastatic niche’-associated genes defined 
from the studies using stroma and tumor samples, 
respectively; ‘PN_T_ST_d’, genes associated with premet-
astatic niche in both tumor and stroma samples. Finally, 
‘CP_GO’, signature genes were obtained from ‘CELL_
PROLIFERATION_GO_0008283’ (http://​amigo.​geneo​
ntolo​gy.​org/​amigo/​term/​GO:​00082​83) of the Molecu-
lar Signatures Database (MsigDB) [79–81]. ssGSEA was 

then performed by the ‘gsva’ function of GSVA R package 
[82] for these signature genes in NAT- and tumor-derived 
transcriptomes. Enrichment scores (ES) of all sample are 
z-scores normalized per each signature, resulting in nor-
malized ES (NES).

Processing of TCGA RNA‑seq data
After we obtained the raw count data of tumor samples 
and matched normal samples of six different cancer types 
(COAD, LUAD, BRCA, LIHC, PRAD (i.e., prostate can-
cers), and THCA (i.e., thyroid cancers)) from the TCGA 
repository (https://​portal.​gdc.​cancer.​gov/), the transcrip-
tomes from four cancer types including COAD, LUAD, 
BRCA, and LIHC were used for further analyses after two 
cancer types lacking the numbers of NATs, PRAD and 
THCA, were excluded. Genes with zero counts in more 
than 70% of samples were removed. To ensure that the 
sample normalization was applied to all samples, both 
the gene expression data of the tumor and NAT samples 
of the SMC cohort and the TCGA cohort were placed in 
one basket and then read count values were normalized 
using DESeq2. To eliminate the sequencing center-origi-
nated gene expression difference, the transcriptome data 
were again divided into the original cohorts and tissue 
groups and then standardized at the gene level.

Construction of prediction models and evaluation 
of model accuracy
The elastic net algorithm, an algorithm that is particularly 
useful when predictor variables outnumber the samples 
because it regularizes the model by giving an appropri-
ate penalty to large coefficients, was chosen to construct 
prognostic machine learning models using NAT-DEGs 
and tumor-DEGs. The type and degree of penalty were 
adjusted by the cross-validation method. The alpha value 
to adjust the balance between the L1 and L2 norms was 
tested from 0.1 to 1.0 in increments of 0.1. For each alpha 
value, the lambda value that minimized the misclassifi-
cation error was determined. Predictor variables were 
selected from the identified DEG sets. Seven different 
elastic net-based models were built for each of the NAT 
and tumor conditions (i.e., 14 models in total) using dif-
ferent numbers of DEGs (n = 16, 20, 24, 28, 32, 36, and 
40), which were chosen based on statistical significance. 
Then, each of the 14 predictive models was used to ana-
lyze the 450 TCGA-COAD samples to estimate the 
recurrence risk scores for each individual. Subsequently, 
the recurrence risk score was subjected to logistic regres-
sion to test its association with survival time in the 
TCGA-COAD dataset; in this analysis, the patients with 
data in the TCGA-COAD dataset were dichotomized 
into good and poor prognosis groups as the response var-
iable. Patients censored within three years were excluded.

https://www.bioinformatics.babraham.ac.uk/
https://www.bioinformatics.babraham.ac.uk/
http://amigo.geneontology.org/amigo/term/GO:0008283
http://amigo.geneontology.org/amigo/term/GO:0008283
https://portal.gdc.cancer.gov/
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Statistical analysis
All statistical analyses were performed using the R pro-
gramming language (version 4.0.3) [83]. Various plots 
were constructed using the ‘ggplot2’ R package (version 
3.3.3) [84]. GO analysis was done using the Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID) tool [85]. Elastic net analysis was performed 
using the ‘glmnet’ R package (version 4.1) [86], and logis-
tic regression analysis were performed using the ‘stats’ R 
Base package. The forward selection for logistic regres-
sion model and the calculation of AIC values were done 
by ‘MASS’ R package (version 7.3.55) [87]. The batch 
effect between SMC cohort and TCGA cohort was cor-
rected by the ‘sva’ R package (version 3.40.0) [88]. HR was 
estimated from the survival analysis by Cox-regression 
using the ‘survival’ R package (version 3.3.1) [89, 90]. 
Kaplan–Meier plot was drawn using the ‘survminer’ R 
package (version 0.4.9) [91].
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