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Abstract
Background  Copy number variation (CNV) is a type of structural variation, which is a gain or loss event with 
abnormal changes in copy number. Methods to predict the pathogenicity of CNVs are required to realize the 
relationship between these variants and clinical phenotypes. ClassifyCNV, X-CNV, StrVCTVRE, etc. have been trained 
to predict the pathogenicity of CNVs, but few studies have been reported based on the deleterious significance of 
features.

Results  From single nucleotide polymorphism (SNP), gene and region dimensions, we collected 79 informative 
features that quantitatively describe the characteristics of CNV, such as CNV length, the number of protein genes, 
the number of three prime untranslated region. Then, according to the deleterious significance, we formulated 
quantitative methods for features, which fall into two categories: the first is variable type, including maximum, 
minimum and mean; the second is attribute type, which is measured by numerical sum. We used Gradient Boosted 
Trees (GBT) algorithm to construct dbCNV, which can be used to predict pathogenicity for five-tier classification and 
binary classification of CNVs. We demonstrated that the distribution of most feature values was consistent with the 
deleterious significance. The five-tier classification model accuracy for 0.85 and 0.79 in loss and gain CNVs, which 
proved that it has high discrimination power in predicting the pathogenicity of five-tier classification CNVs. The binary 
model achieved area under curve (AUC) values of 0.96 and 0.81 in the validation set, respectively, in gain and loss 
CNVs.

Conclusion  The performance of the dbCNV suggest that functional deleteriousness-based model of CNV is a 
promising approach to support the classification prediction and to further understand the pathogenic mechanism.
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Background
Copy number variation (CNV) is a type of structural 
variation, which is a gain or loss event with abnormal 
changes in copy number involving DNA fragments, typi-
cally longer than 50  bp [1]. Based on a high-resolution 
CNV map constructed using publicly available data, 
CNVs cover 4.8–9.5% of the genome [2]. CNVs involve 
coding genes and important functional elements, and can 
affect gene dosage and gene expression, with significant 
implications for phenotypic variation and disease [3, 4]. 
CNVs have been shown to increase the risk of autism 
spectrum disorders, developmental delays and other neu-
rodevelopmental disorders [5–7]. Therefore, it is neces-
sary to explore the pathogenicity of CNV. However, the 
pathogenicity classification and phenotypic analysis of 
CNVs are time-consuming and difficult tasks, requiring 
experienced experts to analyze and integrate genomic 
information. Concurrent with the technical advances in 
CNV identification, the method of machine learning pro-
vides convenient and fast conditions for predicting the 
pathogenicity of CNVs. Most importantly, it can realize 
the comparison of the results in different laboratories 
and promote the consistency of test results.

Approaches of machine learning for predicting CNV 
pathogenicity can be divided into two categories: (1) 
implementing heuristics based on reference medical 
guidelines the American College of Medical Genetics and 
Genomics (ACMG) and the Clinical Genome Resource 
(ClinGen) [8], the results of each item are evaluated 
according to the content of the guidelines, and then the 
standard five-tier classification (pathogenic, likely patho-
genic, uncertain significance, benign, likely benign) is 
used to judge the pathogenicity of CNV, such as Clas-
sifyCNV [9] and AutoCNV [10]. The implementation of 
the guidelines relies heavily on individual competence. 
Clinical and genetic expertise are required, the lack of 
which affects the accuracy of the prediction and thus lim-
its its application for large-scale DNA sequencing data. 
The advent of these tools has addressed this issue. Clas-
sifyCNV is a command line program that discriminates 
multi-class CNV and is not user-friendly to clinical appli-
cations. AutoCNV is a standard-based semiautomated 
tool for CNV interpretation that is previously available 
in a web version to encourage user submissions. How-
ever, the bulk upload capability of AutoCNV should be 
developed for CNV interpretation. (2) Supervised learn-
ing method predicted the pathogenicity of CNVs, which 
is a method to construct model and perform automatic 
classification based on extensive functional annotation 
and training datasets. Although functional annotation of 
CNVs has been considered in genome-wide annotation 
and the calculation of feature values has been done by 
counting or taking the mean, no statistics based on the 
deleterious significance of features have been presented. 

Several tools have been developed, but few of these tools 
predicted the pathogenicity of the five-tier classification 
of CNVs, such as X-CNV [11], ISV [12], StrVCTVRE 
[13] and TADA [14]. X-CNV is an approach to integrate 
diverse human genome information toward a quantitative 
measure of pathogenicity of CNVs on the whole genome-
scale. To quantitatively measure the relationship between 
CNV and pathogenicity, X-CNV developed a meta-vot-
ing prediction (MVP) score. The area under the curve 
(AUC) values of MVP score in discriminating benign 
and pathogenic CNVs were 0.76 and 0.83. ISV achieved 
more than 98% prediction accuracy on both loss and gain 
variants when discriminating between benign and patho-
genic CNVs, while also allowing CNVs being assigned 
“uncertain” significance in predictions. StrVCTVRE is 
a model that focuses on exon boundaries to distinguish 
benign rare SVs from pathogenic rare SVs. StrVCTVRE 
performed well of accuracy (91%) on clinical SVs and 
achieved AUC of 0.83. TADA is a tool that focuses on 
functional regions to distinguish between pathogenic and 
non-pathogenic variants. The authors trained a classifier 
utilizing features describing coding regions, enhancers, 
TAD boundaries, and CTCF binding site. The AUC val-
ues for the pathogenic and benign ClinVar sets were 0.89 
and 0.84, which were improvement over the performance 
X-CNV and StrVCTVRE.

In this manuscript, we constructed dbCNV to pre-
dict the pathogenicity of CNVs based on the deleteri-
ous significance of features. The quantitative evaluation 
of features was based on their pathogenicity levels in 
CNVs of different classifications. As shown in Fig. 1, we 
described the feature annotation process, the generation 
of train and test sets from multiple databases, the model 
construction and the validation process. Finally, a better 
AUC was achieved on five-tier classification model, and a 
higher accuracy was obtained in the clinical validation of 
binary classification model.

Result
Distribution of feature values in different classification 
CNVs
In feature annotation, we made quantification based on 
the deleterious significant of the features, and finally 
divided feature values annotation into four types: maxi-
mum, minimum, mean and count. To verify whether 
this quantification method was reasonable, we selected 
one feature description from each of the four annota-
tion types. We selected Episcore_max, LOEUP_min, 
GHIS_mean, and three_prim_UTR_num for statistics. 
Since features were typically not regularly distributed, 
the nonparametric Mann-Whitney U test was used to 
evaluate their significance. Using the benign group as a 
reference, it was confirmed whether the feature values of 
other pathogenic groups were significantly different from 
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those of the benign group. Ultimately, the other patho-
genic groups of these four features were all statistically 
different from the benign group. (p-value < 0.05) (Fig. 2). 
Episcore_max and LOEUP_min showed a significant 
progressive trend conformed to the score of deleterious 
significance. Although GHIS_mean and three_prim_
UTR_num did not have significant propensity to prog-
ress, the values of the features can distinguish between 
benign and pathogenic. We also used the Kruskal-Wallis 
H Test and post hoc Pairwise Comparisons on these four 
features, the results showed that the histogram judgment 
of the overall distribution shape of the feature values in 
each group was not consistent, and the difference was 
statistically significant (p < 0.05). Post hoc pairwise com-
parisons using Bonferroni corrected significance levels 
found statistically significant differences between benign 
and pathogenic groups. However, not all differences in 
the likely benign, likely pathogenic, and uncertain sig-
nificance groups were statistically significant (see supple-
ment Table 3).

Genomic element features of CNVs in database
We classified CNVs according to the percentage of 
various genomic elements located within the variation 
region. The genomic elements consist of pseudogene, 
OMIM gene, Morbid gene, RNA gene and protein-coding 

gene. In benign CNVs, the number of pseudogenes from 
different databases accounted for 40–60% of genomic 
elements, which was the most in gnomAD and the least 
in DECIPHER. On the contrary, the involvement of 
pseudogenes was slightly in contrast to benign CNVs, 
in which pathogenic CNVs accounted for less than 17%. 
OMIM and Morbid genes in benign CNVs accounted for 
8% of the genomic elements, whereas them accounted 
for 30% of the pathogenic CNVs. However, same trends 
emerged for RNA gene features in benign and pathogenic 
CNVs, with percentages ranging from 17 to 20% in both 
(Fig. 3A-B). The differences were confirmed in the Clin-
Var database, where the percentages of pseudogenes, 
OMIM and Morbid genes in benign and pathogenic 
CNVs were significantly different (Fig. 3C-D). The num-
ber of RNA genes and protein-coding genes were roughly 
equal in percentage in the five-tier classification. Only the 
benign CNVs from the gnomAD database had the small-
est number of protein-coding genes, which is 13% of all 
various genomic elements. Similar trends were observed 
in the loss and gain CNVs separately.

Important features of the model
To enhance the explain ability of models, we depicted 
the SHapley Additive exPlanations (SHAP) summary 
plot of the top twenty features in five-tier classification 

Fig. 1  Workflow of dbCNV training and validation. The model was trained based on the XGBoost algorithm using 79 features of CNVs. The five-tier clas-
sification model and binary classification model were constructed based on CNVs from multiple databases. Features were quantified by variable type and 
attribute type methods
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model for gain and loss (Fig. 4A-B). Feature values were 
indicated by a spectrum with purple representing the 
highest value. According to the constructed model, the 
higher the SHAP value of a feature, the more likely it 
was to classify the pathogenicity of CNVs. Features were 
ranked according to the sum of absolute SHAP values 
over all CNVs, and the distribution of the impact of each 
feature on the full model output was shown. There was a 
difference between the SHAP values of the loss and gain 
CNVs features (Fig. 4A-B). In SHAP value plot of the loss 
CNVs, length, Polyphen2_HVAR_pred and Polyphen2_
HDIV_pred were the most important features for distin-
guishing the pathogenicity of CNVs. However, in the gain 
CNVs, LRT_pred, length and dELS were the most impor-
tant features.

To confirm the efficacy of all annotated features in dis-
criminating pathogenicity of CNVs, we performed an 
analysis of all features. We performed differential expres-
sion analysis only for benign and pathogenic CNV fea-
tures in the loss and gain CNVs separately. To eliminate 
the influence of extreme values, we normalized all the 
feature values by a log10 transform. The top ten features 

from the differential analysis were selected, and CNVs 
with all feature values of 0 were removed. Finally, 2,231 
benign CNVs and 965 pathogenic CNVs were shown 
in the loss heat map, and 2,048 benign CNVs and 9,764 
pathogenic CNVs in the gain heat map (Fig.  4C-D). As 
shown in figure, benign and pathogenic CNVs have sig-
nificant difference of features expression.

Performances of five-tier classification model and binary 
classification model in test sets
The performances of the dbCNV in predicting the patho-
genicity of CNVs were measured by the accuracy and 
AUC values. In discriminating among different patho-
genicity CNVs in test set of the five-tier classification 
model, the accuracy of the loss (0.85) was higher than 
the gain CNVs (0.79). We found that benign (0.91) had 
the same AUC in both types of CNVs separately. The loss 
CNVs yielded higher AUC values in pathogenic (0.90) 
and likely benign (0.92) than the gain CNVs. Moreover, 
likely pathogenic and uncertain significance had higher 
AUC (i.e., likely pathogenic 0.88, uncertain significance 
0.88) in the gain CNVs (Fig.  5A-B). Furthermore, the 

Fig. 2  Distribution of Episcore_max (A), LOEUF_min (B), GHIS_mean (C) and three_prime_UTR_num (D) in loss CNVs. Distribution of Episcore_max (E), 
LOEUF_min (F), GHIS_mean (G) and three_prime_UTR_num (H) in gain CNVs. (*, p < 0.05; **, p < 0.01; ***, p < 0.001)
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binary classification model yielded a higher AUC for gain 
CNVs (0.97) compared with loss CNVs (0.92) (Fig.  5C), 
and accuracy were 0.90 and 0.97 in loss and gain CNVs.

Validation of manually classified datasets in the model
To assess whether the model performed well on an inde-
pendent database, we evaluated our method on a set of 
CNVs determined by two clinicians (see Supplementary 
Table  2). These CNVs were obtained from our internal 
dataset. The AUC values of gain CNVs (0.96) in the vali-
dation set was higher than loss CNVs (0.81) (Fig. 5D).

Performances comparison of dbCNV with other models
Our five-tier classification model outperformed Clas-
sifyCNV in three performance metrics, i.e., balance 
accuracy, sensitivity, and specificity. For example, the 
accuracy of gain CNVs for the pathogenic of the model 
was 0.90, improving 80% over ClassifyCNV (Table 1). The 

ClassifyCNV yielded the highest sensitivity of uncertain 
significance CNVs (i.e., loss 0.95, gain 0.98). For the com-
parison of binary classification models, our model out-
performed StrVCTVRE. dbCNV can accurately classify 
pathogenic CNVs with a sensitivity of 1 for duplication 
and deletion (Table 2).

Discussion
Although several models have been developed to predict 
the pathogenicity of CNVs, specifically in binary classi-
fication model, the calculation of feature values and the 
distribution of feature values in different pathogenic-
ity still need to be studied. For example, in X-CNV, the 
deleterious prediction scores were calculated for CNVs 
by dividing the sum of the scores of the variants falling 
within the CNV region by the covered CNV length, and 
the deleterious significance of the features to the disease 
is not considered. We aimed to construct an automated 

Fig. 3  The proportion of genomic element features in different databases. A The proportion of genomic element features of benign and pathogenic loss 
CNVs in different databases. B The proportion of genomic element features of benign and pathogenic gain CNVs in different databases. C The proportion 
of genomic element features of loss CNVs in ClinVar database. D The proportion of genomic element features of gain CNVs in ClinVar database
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method for quantifying and annotating scores based on 
the deleterious significance of features to predict the 
pathogenicity of CNVs. The method required only basic 
information about the location and type of a CNV, i.e., 
the genomic coordinates and whether genomic region 
had been loss or gain. The features quantification of 
CNVs can be divided into two categories: (1) variable 
type features, (2) attribute type features. The model 
created a curated benchmark CNV list by combining 
publicly available CNV resources to generate a compre-
hensive list of CNV pathogenicity annotated by features. 
We constructed dbCNV to predict pathogenicity of the 
five-tier classification and binary classification CNVs. 
dbCNV has a unique ability to integrate feature informa-
tion into quantitative annotation of CNV pathogenicity 
based on deleterious significance. This particular method 
was proved to be suitable by analyzing the distribution of 
feature values, the proportion of genomic elements, and 

SHAP analysis. Furthermore, dbCNV achieved better 
performances compared to a state-of-the-art technique 
on datasets, in which loss typically appeared to be more 
challenging to classify than gain CNVs. Finally, for the 
classification of pathogenic CNVs in the verification set, 
our binary classification model got perfect results.

In order to observe whether the values of feature were 
reasonable, we drew boxplots of the features according to 
the pathogenicity of CNVs. The range of the distribution 
of all feature values changed as the degree of pathogenic-
ity increased, and the variable type changed more sig-
nificantly than the attribute type. In addition, we found 
that the feature values partially overlapped in the two 
groups: benign and likely benign, pathogenic and likely 
pathogenic. Moreover, most of the uncertain significance 
overlapped with likely benign and likely pathogenic. 
However, there was a slight overlap in the feature values 
of benign and pathogenic CNVs. It indicated that our 

Fig. 4  SHAP summary plot of the top 20 features of the model. The x axis measures the impact on the model output (right positive, left negative). Taking 
the feature of length as an example, purple points are on the right. This means prediction effect will be positive when CNVs have a long level of length. 
SHAP summary plot of the top 20 features of the five-tier classification model for loss (A) and gain (B) CNVs. Differential expression analysis for pathogenic 
and benign CNVs features. ​The classes of pathogenic and benign CNVs were shown separately in red and blue. Heat map of the differential analysis in 
loss (C) and gain (D) CNVs
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feature quantification method worked well at discrimi-
nating between benign and pathogenic CNVs. In ClinVar 
database, CNVs were classified by manual review, which 
included genetic data, evidence of allele or genotype 
consistent with the practice guidelines, and the support 
of other literature, etc. [15]. Therefore, the judgment of 
pathogenicity of CNVs was supported by clinical phe-
notypes, and the distribution of feature annotation val-
ues in different classifications correspond to the results 
of manual classification. Moreover, the nonparametric 
Mann-Whitney U test was used to evaluate the signifi-
cance of feature values for different pathogenicity CNVs. 
Virtually all the features with p value lower than 0.001. 

However, the range of LOEUF_min values almost over-
lapped between likely pathogenic and pathogenic indi-
cated that the feature failed to classify the two classes 
CNVs. In contrast, we found that the degrees of progres-
sive of variable type features were more significant than 
that of attribute type features in different pathogenicity 
CNVs. We suspected that the methods used to quantify 
attribute type features did not fully demonstrate the del-
eterious significance.

Graphical interpretation of CNV feature values from 
different databases, we strongly recommend computing 
and plotting cumulative bar diagram. We have previously 
shown that the proportion of genomic element features 

Fig. 5  ROC curves for the test and validation sets. A AUC values for the test set of loss CNVs. B AUC values for the test set of gain CNVs. C AUC values for 
the test set of binary classification model. D AUC values for the validation set of binary classification model
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can be used to estimate the pathogenicity of CNV. For 
pathogenic CNVs, similar trends were observed in Clin-
Var, dbVar and ClinGen databases. However, for benign 
CNVs, the proportion of features were different across 
five databases. Based on the above, we suspected that the 
databases had consistent classification criteria for patho-
genic CNVs, but the classification of benign CNVs was 
controversial. Therefore, data from multiple databases 
should be taken into account when the model was trained 
to reduce the bias caused by differences. In ClinVar data-
base, although the proportions of genomic element 
features significantly differed in the performances of clas-
sification of benign and pathogenic CNVs, the propor-
tions data were challenging for the classification of likely 
benign, likely pathogenic and uncertain significance. 
Therefore, a comprehensive evaluation of CNVs was 
needed to improve the accuracy of model predictions.

We have shown that the SHAP values can interpret 
the inner workings of model. Despite SHAP values were 
calculated theoretically by observing the effect each fea-
ture contributes to the final prediction, the concordance 
between feature values and their SHAP values were not 
perfect. In other words, the magnitudes of the feature 
values were not consistent with the influence of the fea-
ture on pathogenicity. This means that the same values of 
the features in different CNVs will have different impacts 
on the final predictions. We visualized the SHAP values 
for individual features, which can be used to understand 
how individual features affect the output of the predic-
tion model. However, the influence of the extreme values 
of some attribute type features caused most of the values 
to cluster. For example, in the length SHAP dependency 
plot, the feature values range from 0 to 1 × 106 bp and the 
distribution range of SHAP values was wide (Fig. 6A-B). 
When the feature value was greater than 1 × 106  bp, the 
SHAP values were greater than 0, which shown a posi-
tive effect on the pathogenicity model prediction. There-
fore, we suggested that the longer length of CNV, the 
more likely it was to cause pathogenic. This was consis-
tent with the result that the length of pathogenic CNVs 
were larger than that of benign CNVs in X-CNV. In LRT_
pred_D SHAP dependency plot of gain CNVs, most of 
the feature values were in the range of 0-50000 and the 
SHAP values were greater than 0, which had a positive Ta
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Table 2  Model performance of dbCNV and StrVCTVRE on 
ClinVar set
metrics dbCNV StrVCTVRE

loss gain loss gain
Balance accuracy 0.80 0.95 0.79 0.84

Sensitivity 1 1 0.78 0.91

Specificity 0.60 0.91 0.80 0.77

F1 score 0.67 0.83 0.87 0.92
precision 0.50 0.71 0.99 0.94
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effect on the model prediction (Fig.  6D). As seen from 
the SHAP dependency plot of GERP_RS_max in Fig. 6E-
F, the SHAP values were smaller than 0 when the feature 
values were smaller than 5 and larger than 0 when the 
feature values were larger. We found that virtually all the 
GERP_RS_max values less than 5 were benign CNVs, but 
the other pathogenic feature values were not distinctive 
(Fig. 6G). Based on the above findings, we suspected that 
GERP_RS_max value of 5 was the threshold to discrimi-
nate benign CNVs.

We also found that the top three features contributing 
to the model were different in the SHAP analysis of gain 
and loss CNVs, separately. In the SHAP value plot of loss 
CNVs, the most important feature to the model was the 

length of CNV. But in gain CNVs, the most important 
feature was LRT_pred_D, which counted the number 
of LRT categorical predictions as “Deleterious” in CNV. 
When the LRT_pred_D values were greater than 50,000, 
the SHAP values were around 0 for the loss CNVs and 
greater than 0 for the gain CNVs (Fig. 6C-D). This sug-
gested that features in different types of CNVs had dif-
ferent effects on predicting pathogenicity. According 
to the Society of Obstetricians and Gynaecologists of 
Canada (SOGC)-Canadian College of Medical Geneti-
cists (CCMG) guideline, to minimize the reporting of 
uncertain findings, it is recommended that variants of 
unknown significance (VOUS) smaller than 500 Kb loss 
or 1  Mb gain not be routinely reported [16]. It follows 

Fig. 6  The SHAP dependence plot of the features. SHAP dependence plot for length (A), LRT_pred_D (C) and GERP_RS_max (E) values of the loss CNVs. 
SHAP dependence plot for length (B), LRT_pred_D (D) and GERP_RS_max (F) values of the gain CNVs. G Distribution of GERP_RS_max values for five-tier 
classification CNVs. The quartile values are indicated with a vertical bar
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that the threshold for gain CNVs was larger than that for 
loss. Therefore, the feature of length weas more impor-
tant in predicting pathogenicity of CNVs in the loss than 
in gain CNVs. Study had shown that gain CNVs less 
than 1  Mb in length of uncertain significance have lim-
ited effect on improving diagnostic yield [17]. Addition-
ally, the features that contributed most to the model in 
this study were different from those in other studies. In 
TADA, the most relevant features were the predicted 
haploinsufficiency of the closest gene and the HI Log 
Odds score. In ISV, the number of morbid genes turned 
out to be one of the most important features together 
with regulatory elements in both gain and loss CNVs. 
The inconsistency between the results of our study and 
those of other studies may be due to the differences in the 
methods used to quantify features and the fact that some 
features were not considered by other studies.

Despite dbCNV performs well as a machine learning 
model on both test and validation sets, there are limita-
tions that need to be addressed in the future. dbCNV 
had two main shortcomings: (1) the features annotation 
is not comprehensive. We did not consider functional 
elements and regional features, such as: TAD boundary 
[18], constrained coding region (CCR) [19], enhancer 
and especially CNV breakpoint [20]. The assessment of 
the pathogenicity of breakpoints in genes was discussed 
in accordance with the ACMG guidelines, but similar to 
other tools did not consider the effect of breakpoints on 
the pathogenicity of CNV. (2) The results of binary clas-
sification model were not perfect in our internal dataset. 
This may be due to the fact that the validation set was 
classified as pathogenic and non-pathogenic in manual 
judgment by two clinicians, but dbCNV classified the val-
idation set as pathogenic and benign. However, the actual 
pathogenicity of CNVs predicted as benign may be likely 
benign, likely pathogenic and uncertain significance. This 
error led to unsatisfactory results.

Conclusion
In summary, dbCNV is able to predict the pathogenic-
ity of CNVs based on the deleterious significance of the 
feature annotations, which can further explore the patho-
genicity mechanism of CNVs. We believe that the predic-
tive power of dbCNV has the potential to assist in clinical 
diagnosis.

Methods
Datasets
To annotate CNVs with relevant features, we downloaded 
CNV data from several publicly available databases, 
including ClinVar [21], dbVar [22], ClinGen [23], Data-
base of Genomic Variants (DGV) [1], DECIPHER [24], 
gnomAD [25]. In ClinVar database, CNVs were retained 
if they fulfilled all the following requirements: (1) type of 

copy number gain, copy number loss, deletion or duplica-
tion; (2) clinical significance of pathogenic, likely patho-
genic, benign, likely benign or uncertain significance; 
(3) review status as “criteria provided, multiple submit-
ters, no conflicts”, “criteria provided, single submitter”, 
“reviewed by expert panel” or “practice guideline”. dbVar 
database was restricted to copy number gain, copy num-
ber loss, deletion or duplication variants, with labelled as 
“Pathogenic”, “Likely pathogenic” or “pathogenic/likely 
pathogenic”. ClinGen database was restricted to dosage 
sensitive regions. A haploinsufficiency/triplosensitivity 
score 3 of the regions to be dosage sensitive for a loss/
gain associated with clinical phenotype was regarded as 
pathogenic CNVs. A haploinsufficiency/triplosensitivity 
score 40 was regarded as benign CNVs. DGV database 
was collected from DGV Gold Standard Variants. CNVs 
with total number of samples tested less than 2000 were 
filtered. In DECIPHER database, the filtering criteria for 
CNV were: “observations” > 0 and frequency > 1%. gno-
mAD variants were restricted to those with SVTYPE 
equal to “DEL” or “DUP”, FILTER equal to “PASS”, allele 
frequency (AF) > 1% and allele number (AN) > 2000. Due 
to selection, we expect pathogenic variants to occur at 
low frequencies, while more frequent variants should be 
benign or less harmful.

In order to merge CNVs from different databases into 
a non-redundant dataset, the data were processed as 
follows: (1) the length of CNVs ranging from 50  bp to 
5 × 106 bp were retained; (2) CNVs with a reciprocal over-
lap greater or equal to 70% and conflicting pathogenicity 
were removed; (3) the CNVs had multiple pathogenicity 
significance were removed. After the above procedures, 
the following CNVs were filtered: 3,472 CNVs from Clin-
Var, 4,444 CNVs from dbVar, 42 CNVs from DECIPHER, 
315 CNVs from DGV, 11 CNVs from gnomAD, 38 CNVs 
from ClinGen.

CNV feature annotation
From single nucleotide polymorphism (SNP), gene and 
region dimensions, we collected important features of 
CNV, and then these features derived some other relevant 
features from different ways of expression quantification. 
Finally, 79 features were collected for annotation  (see 
Supplementary Table 1). The features quantification of 
CNVs can be divided into two categories: Variable type 
features and Attribute type features.

Variable type features
Variable type features included various functional delete-
riousness scores from ANNOVAR, a software of annota-
tions for variant sites. Since the scores were calculated at 
locus-level or gene-level, we then calculated these scores 
for CNVs by comparing the size of the scores with del-
eterious significance of the variants falling within the 
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CNV regions. Those features could be grouped into four 
aggregation methods: (1) when the deleterious signifi-
cance of the features is that the higher scores are more 
deleterious, the maximum of scores as the feature value. 
Such features include Probability of Loss-of-function 
intolerant (pLI) score [26], Rare Exome Variant Ensem-
ble Learner (REVEL) score [27], Genome Evolutionary 
Rate Profiling ++ (GERP++_RS) score [28], Episcore [29], 
etc. The pLI score is the probability that a given gene 
falls into the Haploinsufficient category, and therefore is 
extremely intolerant of loss-of-function variation. Genes 
with high pLI scores (pLI ≥ 0.9) are extremely LoF intol-
erant, whereby genes with low pLI scores (pLI ≤ 0.1) are 
LoF tolerant. REVEL score is predicting the deleterious-
ness of each nucleotide change in the genome. The score 
for an individual missense variant can range from 0 to 1, 
with higher scores reflecting greater likelihood disease-
causing. Genomic Evolutionary Rate Profiling (GERP) 
is a method for producing position-specific estimates of 
evolutionary constraint using maximum likelihood evo-
lutionary rate estimation. Constraint intensity at each 
individual alignment position is quantified in terms of a 
“rejected substitutions” (RS) score. Episcore is a compu-
tational method (Episcore) to predict haploinsufficiency 
leveraging epigenomic data from a broad range of tissue 
and cell types by machine learning methods. (2) Lower 
scores are more deleterious, these score of features were 
calculated the minimum as feature value, includes Loss-
of-function Observed / Expected Upper bound Frac-
tion (LOEUF) score [30], Sort intolerated from tolerated 
(SIFT) score [31], Functional Analysis Through Hidden 
Markov Models (FATHMM) score, etc. LOEUF score 
range from 0 (most depleted/evolutionarily constrained) 
to 9 (not depleted/constrained). Each gene was also ana-
lyzed by using the pLI score. SIFT score is a normalized 
probability of observing the new amino acid at that posi-
tion, and ranges from 0 to 1. A value of between 0 and 
0.05 is predicted to affect protein function. FATHMM 
score predicts the functional consequences of cancer-
associated amino acid substitutions using a model 
weighted for inherited disease mutations. (3) Calculated 
the mean score of variants as feature value if no biologi-
cal significant: genome-wide haploinsufficiency score 
(GHIS), which score evaluates the haploinsufficiency 
[32]. (4) Others. The length of CNV was calculated by the 
end position minus start position.

Attribute type features
The following features associated with CNV were 
counted to assess: (1) the number of genes or regions 
reciprocal overlap in queried CNV: protein-coding genes, 
UTR regions, non-coding RNA genes, pseudogenes, and 
downloaded from Ensembl; (2) the number of categori-
cal predictions of deleteriousness scores that overlap in 

queried CNV: SIFT-pred, LRT_pred and PolyPhen2_
pred, etc. Likelihood ratio test (LRT) score ranges from 
0 to 1 and a larger score signifies that the codon is more 
constrained or a nonsynonymous SNP is more likely to 
be deleterious [33]. PolyPhen2 (Polymorphism Pheno-
typing v2) is a tool which predicts possible impact of an 
amino acid substitution on the structure and function of 
a human protein using straightforward physical and com-
parative considerations [34]. The categorical predictions 
are measured by “D: Deleterious”, “B: benign”, “T: Toler-
ated”, etc. (3) The number of the Registry of candidate 
cis-Regulatory Elements (cCREs) reciprocal overlap in 
queried CNV: CTCF-bound, CTCF-only, dELS, DNase-
H3K4me3, pELS, PLS. cCREs are the subset of represen-
tative DNase hypersensitivity sites (rDHSs) supported by 
either histone modifications (H3K4me3 and H3K27ac) or 
CTCF-binding data. Many uses of cCREs are based on 
the regulatory role associated with their biochemical sig-
natures [35]; (4) the number of haploinsufficiency (HI) / 
triplosensitivity (TS) genes with score of 0/1/2/3/40/NA 
(available from ClinGen); (5) the number of OMIM/Mor-
bid genes (available from Online Mendelian Inheritance 
in Man) in CNV [36].

As a quality control, the coordinates of features regions 
were recalculated based on GRCh37/hg19 by using the 
UCSC genome browser liftOver tool [37], and only those 
that remained the same length, without splitting into 
discontinuous genomic intervals after this process were 
retained. In the features annotating process, we found 
apart of feature values were missing value, which might 
affect the accuracy of model construction. We used 
median to fill them.

CNV model constructed
Ultimately, we collected 89,104 CNVs from six several 
publicly available databases for model training and test-
ing. We constructed five-tier classification and binary 
classification model, and loss and gain types of CNVs 
were considered separately. The datasets of dbCNV were 
randomly split into training and test cohorts with a 7:3 
ratio. Multi-class classification model was trained on 
57,523 benign, 339 likely benign, 7,678 uncertain sig-
nificance, 19,650 pathogenic and 3,913 likely pathogenic 
CNVs. Binary classification model was trained by 57,523 
benign and 19,650 pathogenic CNVs. dbCNV was con-
structed with two categories features based on Gradient 
Boosted Trees (GBT) classification algorithm, a stochas-
tic gradient boosting classification model (XGBoost). 
To determine the optimal performance, the hyperpa-
rameters of model were optimized by using the Bayes-
ian optimization tool Optuna in 10-fold-cross validation 
setting. The hyperparameters eta, gamma, max_depth, 
min_child_weight, subsample and nrounds were tuned to 
control overfitting and enhance the better performance. 
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For the other hyperparameters, we used the default val-
ues. The hyperparameters that gave the best performance 
were chosen for the training of the final XGBoost model.

Validation
The binary classification model was validated using CNVs 
from our internal database. To ensure that the validation 
dataset did not reciprocal overlapped, CNVs with overlap 
of at least 70% and conflicting pathogenicity annotations 
were filtered. For any pair of CNVs that share a recip-
rocal overlap of at least 90% of their respective lengths 
based on genomic coordinates, we selected the shorter 
of the two. Because the length was limited during the 
features annotation process, we only selected length of 
CNVs ranging from 50 bp to 5 × 106 bp. After the filter-
ing described above, the CNVs of validation dataset were 
identified by two clinicians and classified as pathogenic 
or benign. The sensitivity, specificity, Receiver operating 
characteristic (ROC) analysis and AUC value were calcu-
lated to evaluate the discrimination ability.

Comparative analysis of other models
Since dbCNV can be used to predict pathogenicity for 
five-tier classification and binary classification of CNVs, 
ClassifyCNV and StrVCTVRE were chosen for perfor-
mance comparison, respectively. For performance com-
parison, the models were run in Windows environment. 
The default parameters were used for the models. CNVs 
used for model comparison were obtained from ClinVar 
database. The performance metrics to evaluate the five-
tier model are balance accuracy, sensitivity, and specific-
ity, and the binary model are balance accuracy, sensitivity, 
and specificity, F1 score and precision.
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