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Abstract 

In recent years, tumor immunotherapy has made significant progress. However, tumor immunotherapy, particularly 
immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors), benefits only a tiny proportion of patients in solid cancers. 
The tumor microenvironment (TME) acts a significant role in tumor immunotherapy. Studies reported that tumor-
associated macrophages (TAMs), as one of the main components of TME, seriously affected the therapeutic effect of 
PD-1/PD-L1 inhibitors. In this review, we analyzed TAMs from epigenetic and single-cell perspectives and introduced 
the role and mechanisms of TAMs in anti-programmed death protein 1(anti-PD-1) therapy. In addition, we summa-
rized combination regimens that enhance the efficacy of tumor PD-1/PD-L1 inhibitors and elaborated on the role of 
the TAMs in different solid cancers. Eventually, the clinical value of TAMs by influencing the therapeutic effect of tumor 
PD-1/PD-L1 inhibitors was discussed. These above are beneficial to elucidate poor therapeutic effect of PD-1/PD-L1 
inhibitors in solid tumors from the point of view of TAMs and explore the strategies to improve its objective remission 
rate of solid cancers.
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Background
Since the US Food and Drug Administration approved 
ipilimumab (anti-CTLA-4) for the treatment of meta-
static melanoma in 2011 [1], several checkpoint-block-
ing therapies targeting the PD-1/PD-L1 axis have been 
approved for the treatment of multiple tumor types. 
A good understanding of the impact of the tumor 
microenvironment(TME) on tumor immunotherapy 
is essential for effectively integrating immunotherapy 
with chemotherapy, targeted therapy, and other immu-
notherapies. Studies have shown that tumor-associated 
macrophages (TAMs) act a crucial role in tumor immu-
notherapy [2]. TAMs affect the therapeutic effect of 
PD-1/PD-L1 inhibitors through various mechanisms, 
including regulating the expression of PD-L1 in tumor 
cells and secreting a variety of cytokines to produce 
tumor-promoting TME [3–5]. Chemotherapy, targeted 
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therapy, and radiotherapy effectively remodel TME, espe-
cially TAMs, and transform them from pro-tumor to 
antitumor [6–8].

In this review, we summarized the currently approved 
immune checkpoint inhibitors (ICIs) (Table  1) and the 
role of TAMs in anti-PD-1/PD-L1 treatment for solid 
cancers [9–16]. We described the synergistic effects of 
anti-PD-1/PD-L1 therapy in combination with targeted 
therapy, chemotherapy, radiotherapy, and other immu-
notherapies. The mechanism of the impact of TAMs 
on immunotherapy in different solid cancers was also 
concluded. Furthermore, the clinical application value 
of TAMs for the solid cancer treatment of PD-1/PD-L1 
inhibitors is proposed based on the vital role of TAMs in 
immunotherapy.

TAMs and TME
TME contains not only tumor cells but also innate and adap-
tive immune cells, fibroblasts, endothelial cells, pericytes, 
and non-cellular components such as extracellular matrix 
and soluble signals that infiltrate the tumor [17, 18]. TME 
is reportedly deeply associated with tumor tissue forma-
tion, survival, and metastasis [19, 20]. TAMs are the most 
plasticity and the highest proportion of immune cells in the 
TME [21]. TAMs were generally classified into two main 
phenotypes: classical activation (M1-like macrophages) and 
alternating activation (M2-like macrophages) [22]. M1-like 

macrophages are low in mannose receptor (CD206) and 
high expression of MHCII. M1-like macrophages are char-
acterized by increased expression of inducible nitric oxide 
synthase (iNOS), tumor necrosis factor-α(TNF-α), and 
co-stimulatory molecules such as CD40, CD86, and vari-
ous pro-inflammatory cytokines such as IL6, IL1b, IL12a, 
IL12b. M1-like macrophages induce antitumor immune 
responses through their T cell stimulating activity [23, 24]. 
TAMs were polarized to the M2 type under the induction 
of a variety of mediators, including IL-4, IL-10, transform-
ing growth factor-β (TGF-β), and macrophage colony-
stimulating factor (M-CSF) [24, 25]. Unlike M1, CD163+ is 
characteristic of M2-like macrophages, which express high 
mannose receptors and low levels of MHC II and release 
immunosuppressive cytokines such as vascular endothelial 
growth factor (VEGF) and arginase 1 (Arg-1), IL-10, TGF-β, 
indolamine 2,3-dioxygenase (IDO). In terms of cell function, 
M2-like macrophages promote tumor immune evasion, 
angiogenesis, tumor growth and metastasis [26–32].

Increasing evidences suggest that TAMs play a signifi-
cant role in tumor development. TAMs directly com-
municate with tumor cells. On the one hand, TAMs 
affect tumor cells through exosome metastasis of sub-
stances like some non-coding RNAs(ncRNAs) [33]. 
TAMs-derived miR-223 is vital for breast cancer pro-
gression. Similarly, both miR-21-5p and miR-155-5p act 
essential roles in the migration and invasion processes 

Table 1  The approved immune checkpoint inhibitors in the globe

Abbreviations: ASPS Alveolar soft part sarcoma, BCC Basal cell carcinoma, BTC Biliary tract cancer, CC Cervical cancer, CRC​ Colorectal cancer, CSCC Cutaneous squamous 
cell carcinoma, EA Esophageal adenocarcinoma, ESCC Esophageal squamous cell carcinoma, ES-SCLC Extensive-stage small cell lung cancer, GC Gastric cancer, GEJC 
Gastroesophageal junction cancer, HCC Hepatocellular carcinoma, HL Hodgkin lymphoma, HNSCC Head and neck squamous cell cancer, MCC Merkel cell carcinoma, 
MPM Malignant pleural mesothelioma, NPC Nasopharyngeal carcinoma, NSCLC Non-small cell lung cancer, PMBL Primary mediastinal B cell lymphoma, RCC​ Renal cell 
carcinoma, SC Skin cancer, SCLC Small cell lung cancer, TNBC Triple-negative breast cancer, UC Urothelial carcinoma

Target Active Ingredients First 
approval 
time

Company Application(approved in the globe)

PD-1 Nivolumab 2014 Bristol Myers Squibb Melanoma, NSCLC, MPM, RCC, HL HNSCC, UC, CRC, HCC, Esopha-
geal Cancer, GC, GEJC, EA

Pembrolizumab 2014 Merck Sharp Dohme Melanoma, NSCLC, HNSCC, HL, PMBCL, UC, CRC, GC, Esophageal 
cancer, CC, HCC, MCC, RCC, Endometrial carcinoma, CSCC, TNBC

Cemiplimab 2018 Regeneron Pharmaceuticals CSCC, BCC, NSCLC

Toripalimab 2018 Shanghai Junshi Biosciences Co., Ltd. Melanoma, UC, NPC, ESCC

Sintilimab 2018 Innovent Biologics, Inc NSCLC, HL, HCC, ESCC, GC, GEJC

Camrelizumab 2019 Jiangsu Hengrui Medicine Co.,Ltd. NSCLC, HL, HCC, ESCC, NPC

Tislelizumab 2019 Beigene, Ltd. NSCLC, HL, UC, HCC, NPC, ESCC, CRC​

Zimberelimab 2021 Guangzhou Gloria Biosciences Co., Ltd. HL

Prolgolimab 2020 Biocad. Melanoma, SC

Dostarlimab 2021 GSK Plc Endometrial carcinoma

PD-L1 Atezolizumab 2016 Genetech Inc Melanoma, NSCLC, SCLC, HCC, ASPS

Durvalumab 2017 AstraZeneca NSCLC, ES-SCLC, BTC, HCC

Avelumab 2017 EMD Serono Inc UC, MCC, RCC​

CTLA-4 Ipilimumab 2011 Bristol Myers Squibb Melanoma, RCC, CRC, HCC, NSCLC, MPM, Esophageal cancer
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of colon cancer cells [34]. In addition, lncRNA SBF2-
AS1 absorbed by pancreatic cancer cells also promotes 
tumor proliferation, invasion, and migration [35]. Paral-
lelly, the TAMs-derived VEGF and miR-501-3p directly 
mediate the angiogenesis in the tumor tissues [36, 37]. 
Furthermore, the miR-365 exosomes inhibit the effects 
of gemcitabine by upregulating pyrimidine metabolism 
and increasing nucleotide triphosphate levels in can-
cer cells [38]. On the other hand, TAMs secrete various 
cytokines that act on tumor cells. For example, TNF, IL-6, 
and IFN- γ upregulate PD-L1 expression in tumor cells. 
Indirect effects of TAMs on tumor cells are achieved by 
influencing other immune cells to regulate the TME. 
TAMs directly inhibit CD8+ T-cell proliferation through 
the metabolism of L-arginine via Arg-1, iNOS, and oxy-
gen radicals [39, 40]. TAMs also induce T cell inhibi-
tion by the immune checkpoint through upregulation 
of PD-L1 expression. Moreover, TAMs recruit Tregs 
through CCL22 to further inhibit the antitumor immune 
response of T cells [41]. M2-polarized TAMs release a 
variety of anti-inflammatory cytokines (e. g., TGFB1) and 
chemokines (e. g., CCL22) that inhibit dendritic cell mat-
uration and thus limit antigen presentation [41].

Evidently, TAMs create a TME suitable for tumor 
growth by suppressing the antitumor activity of immune 
cells. Inversely, when TAMs are polarized to M1, they 
directly mediate cytotoxicity to kill tumor cells. In this 
case, macrophages release tumor-killer molecules, such 
as reactive oxygen species (ROS) and NO, which have 
cytotoxic effects on tumor cells [42]. The other is anti-
body-dependent cell-mediated cytotoxicity killing of 
tumor cells that requires the involvement of antitumor 
antibodies [43]. At the same time, the effect of TAMs 
on cancer cells is not unidirectional. Tumor cells also 
regulate TAMs to exert an immunosuppressive function 
through multiple mechanisms. For example, colony-
stimulating factor 1 (CSF1) secreted by tumor cells favors 
the recruitment of monocyte-derived macrophages to 
the TME and polarizes them to the M2-like manner [44]. 
Moreover, lactate produced due to the high metabolism 
of tumor cells promotes M2 polarization of TAMs [45]. 
Consequently, TAMs build a complex immune regula-
tory network through various signaling mechanisms and 
other cells in the TME (Fig. 1).

ICIs of cancer therapy
In the 90s of the twentieth century, immune checkpoint 
molecules were discovered, and two representative 
checkpoint pathways were cytotoxic T lymphocyte-asso-
ciated protein 4 (CTLA-4) and PD-1 [46, 47]. Under 
physiological conditions, immune checkpoints inhibit 
the overactivation of T cells and prevent autoim-
mune responses, which is an essential mechanism for 

maintaining the immune balance in the body. Among 
them, CTLA-4 is induced to be expressed on activated T 
cells, competing with CD28 to inhibit CD80/CD86-medi-
ated synergistic stimulation signals. In addition, antigen-
stimulated T cells upregulate the expression of PD-1 to 
bind to their ligand PD-L1 or programmed death ligand 
2 (PD-L2), inhibiting T cell overactivation [48–50]. How-
ever, the mechanism of maintaining immune balance has 
become an accomplice to the tumor in the tumor state. 
The reason of the above is that some cancer cells strongly 
express ligands of immune checkpoint molecules, such 
as PD-L1 and PD-L2. These ligands bind to PD-1 in acti-
vated T cells, specific B cells, natural killer cells (NKs), 
dendritic cells (DCs), and macrophages. The interaction 
between PD-1 and PD-L1 significantly inhibits the anti-
tumor immunity of cytotoxic T cells, producing immu-
nosuppressive effects and thus causing the immune 
escape phenomenon of tumors [51–53]. By contrast, 
PD-1 is expressed more widely in various immune cells 
than CTLA-4, which is limited to T cells, meaning that 
PD-1 may play a broader role in immunomodulation.

ICIs eliminate the suppressive signals of T cell acti-
vation, consequently enabling tumor-reactive T cells 
to overcome regulatory mechanisms and producing a 
potent antitumor response [54]. To date, all approved 
ICIs are monoclonal antibodies (Table  1) that block 
CTLA-4, PD-1, or PD-L1, essential drugs for activating 
T cells to promote their immune function [54]. However, 
the efficacy of ICIs is often limited and transient, reflect-
ing the complexity of antitumor immunity [55, 56]. For 
example, ICIs are less effective in treating cancers of 
microsatellite stability of wild gene abnormalities which 
don’t induce cancer antigen-specific T cells. Further-
more, immunosuppressive TME also affects the clinical 
effect of ICIs. Meanwhile, the effectiveness of immuno-
therapy is affected by various resistance mechanisms, 
including immune rejection, immunoediting, antigen 
presentation reduction, and immunosuppression of 
soluble cellular [57, 58]. Notably, TAMs are key to these 
mechanisms. Because TAMs are an important induc-
ing factor for inhibitory TME and a fundamental reason 
for the resistance to ICIs. Specifically, TAMs capture 
anti-PD-1/PD-L1 through Fcg receptors present on the 
cell surface [59]. In addition, TAMs upregulate PD-L1 
expression in tumor cells and other immunosuppres-
sive cells by secreting cytokines and metabolites [60, 61]. 
Furthermore, TAMs directly express PD-L1 under the 
influence of TME state, and induce CD8+ T cell inactiva-
tion and apoptosis through PD-1 binding on the surface 
of CD8+ T cells [62]. In this case, treatment with anti-
PD-1/PD-L1 will be less effective. In this state, if TAMs 
can be prevented from expressing PD-L1, it will be ben-
eficial to the therapeutic effect of ICIs.



Page 4 of 23Zhang et al. Molecular Cancer           (2023) 22:58 

Analysis of TAMs from epigenetic perspectives
Epigenetics refers to heritable changes in gene function with-
out altering the DNA sequence of a gene. Its mechanisms 
of action include, but are not limited to, DNA methylation, 
histone modification and ncRNAs [63]. Studies have shown 
that the epigenetic regulation of TAMs is essential for their 
differentiation and functional programming [64, 65].

Effect of DNA methylation
DNA methylation refers to silencing gene transcription 
and is characterized by the transfer of methyl groups to 
the cytosine ring of DNA (forming 5-methylcytosine) by 
DNA methyltransferases (DNMTs) [66]. DNA methyla-
tion is removed by another set of enzymes known as ten-
eleven translocation proteins [67]. Studies have shown 

Fig. 1  The role of TAMs in TME. Exosomes derived from TAMs deliver various molecules into tumor cells, which contributes to tumor development. 
Exosomal lncRNA SBF2-AS1 facilitates tumor cell proliferation. Exosomal miR-223 and miR-21-5p promote the metastasis of tumor cells from the 
primary tumor to the distal organs. Exosomal miR-501-3p promotes the angiogenesis of tumors. Exosomal miR-223 and miR-365 help tumor cells 
develop resistance to chemotherapy. TAMs express ligand receptors for PD-1 and CTLA-4, inhibiting the cytotoxic function of T cells, NK cells, and 
NK cells upon activation. TAMs express chemokine CCL22, etc., to recruit Treg cells. TAMs secrete VEGF to promote angiogenesis in TME. TAMs 
release a variety of anti-inflammatory cytokines to inhibit dendritic cell maturation, thereby limiting antigen presentation. In addition, tumor cells 
affect TAMs polarization by releasing exosomes, cytokines and their metabolites
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that DNMT3b knockdown induces M2 polarization and 
increases the expression of M2-like macrophages mark-
ers, such as Arg-1 and mannose receptor type C. Moreo-
ver, overexpression of DNMT3b inhibits the expression 
of IL-4-induced Arg-1 in macrophages. This suggests 
that DNMT3b is a vital factor in inhibiting macrophage 
polarization to M2 [68].

Effect of histone modification
Common histone modifications include histone acety-
lation-regulated histone acetylation and histone meth-
yltransferase-mediated histone methylation [69].

Histone acetylation promotes gene transcription, 
which is mediated by histone acetyltransferase (HATs) 
and removed by histone deacetylase (HDACs). Both of 
them play an integral role in gene expression regulation. 
For example, autocrine IFN-β–Jak–STAT loops induced 
by Toll-like receptor (TLR) ligands and TNF are crucial 
links in M1 activation. The response of molecules down-
stream of IFN is strongly dependent on HDAC3 [25, 70]. 
A similar situation occurs in the mechanism of action 
of CCCTC-binding factor (CTCF). CTCF is a crucial 
transcription factor in TAMs. CTCF forms a complex 
with PACERR (an antisense LncRNA) to recruit HAT 
to the promoter region of its downstream gene PTGS2 
(a tumor-promoting M2 gene). HAT induces histone 
acetylation and chromatin accessibility, promoting their 
expression and ultimately affecting M2 differentiation. 
Meanwhile, HAT enhances the pro-tumor metastasis 
effect of M2-like macrophages [71]. Similarly, HDAC is a 
negative regulator of M2 polarization, and HDAC9 dele-
tion leads to the downregulation of inflammatory genes 
and M2 polarization [72]. Furthermore, HDAC6 inter-
vention reduces the anti-inflammatory phenotype of 
TAMs. M2 polarization was inhibited after the inhibition 
of HDAC6 enzyme activity with the drug and increased 
M1 polarization [73].

Histone methylation is facilitated by histone methyl 
transferases and removed by histone demethylase. 
H3K27 methylation is a mark for transcription repres-
sion. After IL-4 treatment, H3K27 me2/3 was signifi-
cantly reduced at the promoter of the M2 marker gene 
(i.e., Arg-1). Meanwhile, H3K27me2/3-specific demethyl-
ase Jmjd3 was significantly elevated under IL-4 induction. 
Jmjd3 helps keep the M2 marker gene in active state [74].

Effect of ncRNAs
NcRNAs play a significant role in the post-transcrip-
tional control of gene expression [75]. The epigenetic 
remodeling by ncRNAs regulates macrophage acti-
vation and functional programming. Among them, 
ncRNAs that play a key role are mainly divided into 
three categories: microRNA (miRNA), circular RNA 

(circRNA), and long noncoding RNA (lncRNA). 
Firstly, miRNAs are small regulatory RNA molecules 
that modulate the expression of their target genes 
[76]. MiRNAs play a huge regulatory role in the gene 
expression and polarization processes of macrophages. 
Some of them induce an antitumor immune microen-
vironment. For example, miR-98 regulates macrophage 
polarization from M2-like macrophages to M1-like 
macrophages in hepatocellular cancer (HCC) by tar-
geting IL-10 and induces elevated expression levels of 
M1-like macrophages marker cytokines, such as TNF-
α, IL-1β, and IL-12 [77]. Similarly, miR-101 directly 
targets DUSP1 to regulate MAPKs activation and sub-
sequent pro-inflammatory cytokines production [78]. 
In addition, miR-17a and miR-20a also induce M1 
polarization and activate M1-like macrophages [79]. 
In addition, some miRNAs inhibit M2 polarization 
through various pathways, such as miR-155, miR-720, 
MiR-23a, and miR-127etc [80–83]. Moreover, unlike 
the above miRNAs, some miRNAs induce immuno-
suppressive microenvironments. For example, miR-
146a facilitates M2-like macrophages marker genes 
expression and restricts M1-like macrophages marker 
gene expression [84].

Secondly, circular RNAs (circRNAs) are a class of ncR-
NAs that do not contain a 5′ end cap and a 3′ end poly 
tail [83]. It is widely involved in the regulation of tumor 
cell proliferation, differentiation, invasion, migration, and 
the formation of TME [85, 86]. For example, circCdyl 
promotes M1 polarization by inhibiting interferon regu-
latory factor 4 entry into the nucleus [87]. In addition, 
circPPM1F promotes lipopolysaccharide (LPS)-induced 
M1-like macrophages activation by enhancing the NF-κB 
signaling pathway [88]. It is different from the above two 
circRNAs, overexpression of hsa_circ_0005567 inhibited 
M1 polarization and promoted M2 polarization via the 
miR-492/SOCS2 axis [89].

Finally, long noncoding RNAs (lncRNAs) are a new 
class of RNA that is longer than 200 nucleotides and does 
not have protein-coding capabilities [90]. Some lncRNAs 
are involved in tumorigenesis and progression by regulat-
ing the TME. LncRNA-cox-2 inhibits tumor growth and 
immune evasion of HCC cells by inhibiting M2 polari-
zation and promoting M1 polarization in macrophages 
[91]. LncRNA-CASC2c inhibits M2 polarization and 
tumor growth by inhibiting the expression and secretion 
of coagulation factor X [92]. LncRNA-TUC339 is highly 
expressed in M2-like macrophages and less expressed in 
M1-like macrophages. It is involved in the polarization 
of M2-like macrophages [93]. The epigenetic mecha-
nisms that control macrophage polarization are complex. 
Enzymes and ncRNAs which play an essential role in 
gene modification, are expected to become new tumor 
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markers and potential targets, providing new directions 
for tumor diagnosis and targeted therapy.

Analysis of TAMs at the single‑cell level
As mentioned earlier, TAMs have a wide range of plas-
ticity and heterogeneity. However, traditional sequencing 
methods often mix a group of cells together for sequenc-
ing, making it difficult to capture possible heterogeneity 
between cells. Individual cell mutations in tumor pro-
gression cannot be accurately tracked [94]. To a large 
extent, the single-cell RNA sequencing (scRNA-seq) 
technology can solve this problem.

Introduction of scRNA‑seq
ScRNA-seq is a single-cell transcriptome analysis tech-
nique. The workflow typically includes sample col-
lection, cell dissociation, single-cell capture, reverse 
transcription, cDNA amplification, library preparation, 
and sequencing and analysis [95]. ScRNA-seq enables 
quantitative analysis of gene expression profiles of dif-
ferent types of cells at the single-cell level, enabling 
unprecedented detail to characterize cell diversity and 
heterogeneous phenotypic status [96, 97]. This technique 
overcomes the shortcomings of traditional sequencing 
technology that cannot detect cell-cell heterogeneity and 
is an effective tool for studying gene expression patterns.

Research advance of scRNA‑seq technology for TAMs
The use of scRNA-seq for TAMs research mainly focuses 
on the following aspects: Firstly, identification of differ-
ent macrophage subsets; Secondly, construction of the 
TME maps; Thirdly, identification of potential prognostic 
markers; Fourthly, analysis of intercellular interactions in 
TME; Finally, Interpretation the mechanisms of TAMs in 
tumor treatment and drug resistance (Table 2).

ScRNA-seq technology is used to identify differ-
ent macrophage subsets and construct TME maps. In 
the analysis of macrophages in various tumors using 
scRNA-seq, macrophages are found to rely on differ-
ent activation stimuli to obtain heterogeneous pheno-
types. There are significant changes in gene expression 
in macrophages in TME compared to normal tis-
sue [114–116]. For example, in a study of single-cell 
sequencing and protein activity of monocytic mac-
rophages in kidney cancer tissues and adjacent tissues, 
a population of CD11C+ /CD163+ macrophages was 
identified to be higher than normal tissues in tumor 
tissues [100]. Compared to other cell populations and 
non-tumor macrophages, TAMs have unique differen-
tially expressed genes (C1QA-C, APOE, and TREM1) 
and differentially active proteins (LILRB5, APOE, and 
TREM2) [117, 118]. Furthermore, scRNA-seq tech-
nology is used to construct TME maps. Single-cell 

transcriptome analysis of tumor tissue allows the char-
acterization of heterogeneous tumor cells, adjacent 
stromal cells, and immune cells [102]. For example, 
M2-like macrophages, epithelial cells, and Treg were 
predominant in ErbB pathway mutation tumors [101]. 
In addition, the composition of TME varies at different 
stages of the tumor. The study found that microglia-
derived TAMs dominate in newly diagnosed tumors. 
However, they are overtaken by monocytes-derived 
TAMs after tumor recurrence [103]. A good under-
standing of the TME maps of different tumor subtypes 
helps develop effective treatment strategies.

ScRNA-seq technology is used to identify potential 
prognostic markers. Different subpopulations of TAMs 
have unique marker genes that are sometimes linked to a 
patient’s prognosis [119]. Studies have reported that sex-
specific gene expression in glioma-activated microglia 
(e.g., genes encoding MHCII complexes) may be associ-
ated with morbidity and outcomes in patients with glio-
mas [104]. Reliable prognostic markers guide physicians 
to understand disease trends and make rational clinical 
decisions.

ScRNA-seq technology is used to analyze cell-cell 
interactions in TME. As the central node of the cell-cell 
interaction network, TAMs play a vital role in the sig-
nal communication of TME. When tumors progress, 
FOLR2+ TAMs acquire the ability to activate naïve CD8+ 
T cells. FOLR2+ TRMs prime naive CD8+ T cells into 
polyfunctional effectors [99]. Understanding cell-cell 
communication networks helps us to use appropriate 
strategies to reshape TME.

ScRNA-seq technology is used to interpret the mecha-
nisms of TAMs in tumor treatment and drug resist-
ance. TAMs are one of the effector cells in various tumor 
treatment options. One of the mechanisms of action of 
many drugs to treat tumors is to alter TME by influenc-
ing TAMs. For example, after anti-CD47 treatment, the 
proportion of macrophages decreased while the propor-
tion of lymphocytes increased, significantly reducing 
tumor growth [110]. TAMs also play an essential role in 
non-drug antineoplastic therapy. Radiofrequency ablation 
(RFA) is an effective local therapy approach for treating 
solitary tumors [120]. RFA treatment reduced the pro-
portion of immunosuppressive cells, including TAMs, 
while increasing the percentage of functional T cells in 
distant non-RFA tumors [113]. Furthermore, TAMs also 
act a huge role in tumor drug resistance. Tumor vessel co-
option is a resistance mechanism against anti-angiogenic 
therapy. Studies have shown that Matrix-remodeling 
macrophages might assist invasive cancer cells to co-opt 
vessels [112]. Clarifying the mechanism of action and 
resistance of drugs help guide the rational use of drugs in 
clinical practice and maximize the benefits for patients.
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Table 2  Application of scRNA-seq in tumor-associated macrophages (TAMs)

Research Field Cancer Findings References

Identification of different macrophage subsets Small cell lung cancer This study identified a profibrotic, immunosuppressive 
monocytes/macrophage population that is particularly 
associated with a PLCG2 high small cell lung cancer 
subpopulation.

[98]

Breast cancer ScRNA-seq reveals two subsets of APOE+ macrophages: 
the TREM2+ macrophages and the FOLR2+ mac-
rophages. FOLR2+ macrophages are tissue-resident 
cells.

[99]

Renal tumor The study found a novel, tumor-specific sub-population 
of macrophages and differentially expressed genes (i.e., 
C1QA-C, APOE, and TREM2).

[100]

Construction of the tumor microenvironment maps Gallbladder cancer M2-like macrophages, epithelial cells, and Treg were 
predominant in ErbB pathway mutation tumors.

[101]

Breast cancer Most of the non-cancer cells are immune cells, with 
three distinct clusters of T lymphocytes, B lymphocytes 
and macrophages. Macrophages have an M2 pheno-
type that expresses many M2 genes, such as CD163, 
MS4A6A, and TGFBI, as well as genes known to promote 
tumor progression and angiogenesis, such as PLAUR13 
and IL-8, exhibit immunosuppressive signatures.

[102]

Glioma Microglia-derived TAMs dominate in newly diagnosed 
tumors. However, they are overtaken by monocytes-
derived TAMs after tumor recurrence, particularly in 
hypoxic tumor settings.

[103]

Identification of potential prognostic markers Glioma Sex-specific gene expression in glioma-activated 
microglia (e.g., genes encoding MHCII complexes) may 
be associated with morbidity and outcomes in patients 
with gliomas.

[104]

Breast cancer FOLR2+ macrophages positively correlate with better 
prognosis.

[99]

Renal tumor TREM2/APOE/C1Q+ macrophages infiltration is a poten-
tial prognostic biomarker for clear cell renal carcinoma 
recurrence.

[100]

Analysis of intercellular interactions in TME Gallbladder cancer High levels of midkine, expressed by the ErbB pathway 
mutation tumor cells, interact with the receptor LRP1 
of tumor-infiltrating macrophages and promote 
immunosuppressive macrophage differentiation. The 
crosstalk between CXCL10 secreted by macrophage and 
its receptor CXCR3 on Tregs was induced in gallbladder 
cancer with ErbB pathway mutations.

[101]

Breast cancer FOLR2+ macrophages interact with tumor-infiltrating 
CD8+ T cells.

[99]

Metastatic ovarian cancer Macrophages in stress-high samples exhibited signifi-
cantly higher expression of immunosuppressive features 
(C1QA, C1QB, C1QC, APOE, and TREM2), wherein TREM2 
is functionally associated with T cell exhaustion.

[105]

Head and neck tumors The main contributors of PD-L1 in the TME were den-
dritic cells and macrophages. PD-1-PD-L1 interactions 
appeared to be primarily mediated by macrophages. 
PD-L1+ macrophages spatially associate with CD8+ T 
cells in the head and neck squamous cell carcinoma 
microenvironment.

[106]

Gastric cancer This study uncovered macrophages may contribute to 
HLA-E-KLRC1/KLRC2 interaction with cytotoxic CD8+ T 
cells and natural killer cells.

[107]

Colon cancer In tumors, TAMs and dendritic cells, as the core of the 
predictive network harbor the most connections with 
other cell types.

[108]
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Interaction effect of TAMs and PD‑1/PD‑L1 
inhibitors in TME
Effects of TAMs on PD‑1/PD‑L1 expression and TME
As mentioned earlier, macrophages affect PD-L1 
expression through various signaling pathways medi-
ated by multiple cytokines. For example, TGF-β 
upregulates tumor cell and TAMs PD-L1 expression 
through the AKT/NF-kB or AKT/β-catenin (β-catenin 
plays a critical role in polarizing macrophages to 
TAMs, resulting in epithelial-mesenchymal transition 
and tumor progression) pathway after binding to its 
receptor [121, 122]. IFN-γ, a factor that promotes the 
transcription of new PD-L1 mRNAs by activating the 
transcription factor STAT1, facilitates PD-L1 transcrip-
tion and translation rather than shifting PD-L1 stored 
intracellularly to the cell surface [123]. Under the action 
of pro-inflammatory factors such as LPS, IL-1β, and 
TNFα, TAMs synthesize large amounts of PGE2 [124]. 
PGE2 inhibits T cell activation and function by increas-
ing PD-L1 expression. As a downstream of cyclooxy-
genase 2 (COX-2), PGE2 levels in TAMs are regulated 
by the expression of COX-2 and microsomal PGE2 

synthase 1 [125]. In ovarian cancer cells, PGE2 upreg-
ulates the PD-L1 expression of tumor cells by activat-
ing the PI3K/ Akt/ mTOR pathway [126]. Osteopontin 
(OPN) is expressed in both tumor cells and TAMs. 
OPN-expressing macrophages upregulate PD-L1 
expression via regulating the NF-kB/p65 pathway and 
aggravate tumor progression [127]. Interleukins of 
TAMs, such as IL-1a, IL-10, IL-27, IL-6, etc., also sig-
nificantly influence the expression of PD-L1. Among 
them, IL-1a and IL-27 induce the transcription of new 
PD-L1 mRNA, thereby increasing the expression of 
PD-L1. The combined application of IL-1a/ IL-10 and 
IFN-γ enhances the expression of PL-L1, indicating 
synergy between different signaling pathways. There is 
no combined enhancement effect for IL-27 [128]. IL-1a 
signaling drives PD-L1 protein expression through p65, 
while IL-27 signaling drives PD-L1 protein expres-
sion through STAT1. IL-6 promotes PD-L1 expression 
in macrophages by regulating protein tyrosine phos-
phatase, receptor type O (PTPRO), either directly or 
indirectly through an IFN- γ -dependent mechanism. 
PTPRO is a negative regulator of the JAK2/STAT3 

Table 2  (continued)

Research Field Cancer Findings References

Explore the mechanisms of drug intervention Colon cancer Two distinct TAMs subsets show differential sensitivity to 
CSF-1R blockade treatment with anti-CSF-1R preferen-
tially depletes macrophage populations with an inflam-
matory signature but spare macrophage subset that 
expresses proangiogenic and tumorigenic genes.

[108]

Pan-cancer Anti-PD-1 therapy decreases the number of Arg-1+ 
TAMs while increasing Arg-1-TAMs. On a local scale, a 
new cell subpopulation rich in chemotaxis and inter-
feron response genes is formed.

[109]

Pancreatic cancer Anti-CD47 treatment led to changes in TME with 
increased pro-inflammatory macrophages, while 
reduced anti-inflammatory macrophages.

[110]

Metastatic lung cancer Macrophages demonstrated an inversion in relative 
abundance during tumor response and resistance to 
treatment.

[111]

Explore the mechanisms of drug resistance Metastatic ovarian cancer Stress-associated cancer cells strongly associate with 
a shift toward immunocompromised states within 
macrophages and CD8+ T cells. This stress-associated 
state provides cancer cells with adaptation, promoting 
chemoresistance.

[105]

Pan-cancer Tumor vessel co-option is a resistance mechanism 
against anti-angiogenic therapy. Matrix-remodeling 
macrophages might assist invasive cancer cells to co-
opt vessels. An M1-like macrophage subtype may keep 
vascular cells quiescent.

[112]

Explore the mechanisms of non-drug interventions Pancreatic cancer After radiofrequency ablation, the percentage of 
Mac_s5 lacking mature markers decreased significantly; 
The proportion of Mac_s1 with anti-inflammatory gene 
expression profiles was also significantly reduced, and 
the proportion of Mac_s2 and Mac_s3 cells with anti-
tumor functions increased.

[113]

Abbreviations: TAMs Tumor-associated macrophages



Page 9 of 23Zhang et al. Molecular Cancer           (2023) 22:58 	

signaling pathway that induces immunosuppression. 
MiR-25-3p reduces transcription and protein expres-
sion by targeting the 3’UTR of PTPRO in macrophages. 
IL-6 upregulates miR-253p in tumor cells by STAT3/c-
MYC signaling [129]. Furthermore, previous studies 
have shown that miR-25-3p secreted by tumor cells 
promotes IL-6 secretion in TAMs through exosomes 
[129] (Fig. 2).

Effect of PD‑1/PD‑L1 on macrophages
Plenty of stimuli upregulate PD-1 expression. The 
upregulated PD-1 inhibits the Janus N-terminal-linked 
kinase signaling pathway and PI3K/Akt pathway by re-
recruiting SHP-2. And then, PD-1 affects the function 
of macrophages and downregulates the expression of 
co-stimulatory molecules, such as CD86, MHC I, and 
II proteins [130]. Studies have reported that PD-1+ 
TAMs have a reduced phagocytic capacity compared 
to PD-1- TAMs [131]. Moreover, the PD-L1 exosomes 

secreted by tumor cells have a positive feedback effect 
on the expression of PD-L1 in macrophages, which 
leads to M2 polarization of TAMs [132]. In addi-
tion, PD-1 has been shown to be associated with the 
apoptosis of macrophages. The expression of PD-1 
in macrophages after hydrogen peroxide treatment 
is increased. Moreover, PD-1 negatively regulates the 
activation of the survival-promoting AKT pathway in 
macrophages through the PD-1-SHP-2 signaling axis, 
ultimately leading to increased macrophage apoptosis 
[133].

Effect of anti‑PD‑1/PD‑L1 therapy on macrophages
Studies have shown that anti-PD-1/PD-L1 therapy 
promotes macrophage maturation. After anti-PD-L1 
treatment, the number of cell subsets lacking classic 
macrophage maturity markers such as Mertk in tumors 
decreases, while the number of Mertk-expressing cell 
subsets increases significantly. This increase is reflected 

Fig. 2  The release of multiple cytokines through TAMs affects PD-L1 expression. TGF-β upregulates tumor cell and PD-L1 expression of TAMs 
through the AKT/NF-kB or AKT/β-catenin pathway. IFN-γ upregulates PD-L1 expression by activating the transcription factor STAT1. PGE2 
upregulates tumor cell PD-L1 expression by activating the PI3K/Akt/mTOR pathway. ILs upregulate PD-L1 expression in tumor cells through 
different pathways
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in subpopulations and the overall number of mac-
rophages [134, 135]. Furthermore, anti-PD-L1 therapy 
activates macrophages by upregulating the expression of 
the co-stimulatory molecules CD86 and MHC II. In addi-
tion, anti-PD-L1 treatment reduces the level of M2-like 
macrophages markers, such as Arg-1, on TAMs by pro-
moting the production of IFN-γ in CD8 T cells. Mean-
while, anti-PD-L1 therapy increases the levels of M1-like 
macrophages markers such as iNOS, MHC II, and CD40 
and promotes polarization of macrophages towards the 
pro-inflammatory phenotype. In addition, anti-PD-L1 
therapy enhances the phagocytic ability of macrophages 
and the ability of macrophages to promote T cell activa-
tion and proliferation, increasing tumor clearance [136]. 
Meanwhile, it inhibits the polarization of macrophages 
to anti-inflammatory and immunosuppressive mac-
rophages that promote tumor growth. The effect of this 
complex polarization is manifested both in changes of 
the function and molecular markers and in changes of 
genome-wide expression levels. Changes in genome-wide 
expression levels are mainly reflected in increased gene 
and protein expression of antigen presentation mecha-
nisms. These include a variety of gene sets consisting of 
MHC molecules and phagocytosis-related Fcγ recep-
tors, downstream IFN-γ, pro-inflammatory signaling, 
chemokine expression, TLR/NF-kB, and autophagy path-
way upregulation [136].

Effect of PD‑1/PD‑L1 inhibitor therapy combining 
with targeted agents/chemotherapy agents 
in solid cancers
As mentioned earlier, immune checkpoints induce 
immunosuppression. In addition to abnormal angio-
genesis, immunosuppressive immune cells or cytokines, 
cancer-associated fat cells, and overactive cancer-associ-
ated fibroblasts modulate cancer immunity and promote 
immune tolerance [137–139]. On the one hand, studies 
have shown that removing the pre-existing immunosup-
pressive environment of TME enhances the efficacy of 
anti-PD-1/PD-L1 and helps to overcome primary drug 
resistance in cancer patients [140, 141] (Fig.  3). On the 
other hand, enhancing positive factors also improve the 
anti-PD-1 effect of PD-L1 therapy, such as immuno-
genic cancer cell death, immune support cytokines, and 
specialized antigen-presenting cells [142]. ICIs suppress 
the immune checkpoints and improve immunosuppres-
sion, while sometimes, a single ICI does not effectively 
activate the immune response. Traditional treatment 
options such as small molecule targeted drugs, chemo-
therapy, and radiation therapy improve immunosup-
pressive TME. Therefore, combining PD-1/PD-L1 
inhibitors with these conventional therapies may improve 

the sensitivity to activate the antitumor immune response 
and the response rate of patients.

Combining with targeted therapy
Targeted agents are mainly divided into antiangiogenic 
agents (bevacizumab, ramucirumab, or aflibercept) 
or anti-epidermal growth factor receptor (anti-EGFR) 
agents (cetuximab or panitumumab) according to differ-
ent targets and other agents [143].

Antiangiogenic agents
Angiogenesis abnormalities and immunosuppression 
in TME are two significant barriers to effective cancer 
immunotherapy [144, 145]. VEGF promotes the growth 
and survival of vascular endothelial cells. However, 
excessive angiogenesis may affect the maturation pro-
cess of neovascularization and promote the formation 
of immunosuppressive TME [137, 138, 146]. In addition, 
cancer cells and stromal cells are reported to produce 
VEGF. VEGF upregulates the expression levels of PD-1 
and other inhibitory checkpoints involved in CD8+ T cell 
failure and leads to non-response to anti-PD-1 therapy 
[147, 148]. Anti-VEGF receptor (anti-VEGFR) therapy 
relieves intraneoplastic hypoxia and immunosuppression 
by modulating abnormal tumor vessels. These above sug-
gests that immunotherapy in combination with antian-
giogenic agents may improve therapeutic outcomes [6, 
149]. Lenvatinib is a multi-receptor tyrosine kinase inhib-
itor that suppresses its immunomodulatory function by 
targeting VEGFR with fibroblast growth factor signal-
ing. Meanwhile, lenvatinib reduces the number of low-
ered M2-like macrophages in TAMs and increases the 
M1/M2 ratio. And lenvatinib increases the percentage 
of activated CD8+ T cells secreting IFN-γ and granzyme 
B (granzyme B is described as a critical soluble medium 
for cytotoxicity). In addition, lenvatinib upregulates 
plasmacytoid dendritic cell, the number of nuclear cells, 
especially CD8+ T cells, and their cytotoxic activity. Anti-
tumor activity of lenvatinib plus anti-PD-1 combination 
therapy depends on lenvatinib’s activation of the IFN-γ 
signaling pathway [150]. In addition, lenvatinib alone and 
in combination therapy reduces the number of allogeneic 
tumor blood vessels, which may be another mechanism 
of lenvatinib combined with anti-PD-1 antitumor activity 
[150]. Apatinib is a small molecule targeted agent against 
VEGFR-2 that exhibits a dose- and time-dependent pat-
tern for abnormal angiogenesis conditions. Low doses of 
apatinib plus anti-PD-L1 create a better immune support 
environment with more CD8+ T cells and fewer TAMs. 
Meanwhile, a more favorable pro-inflammatory micro-
environment for immunotherapy appears 2 weeks after 
treatment [151].
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Anti‑EGFR agents
EGFR is a transmembrane tyrosine kinase receptor 
involved in tumor cell proliferation, invasion, and meta-
static angiogenesis [152]. Tyrosine kinase inhibitors 
(EGFR-TKIs) inhibit EGFR and alter the tumor immune 
microenvironment [153]. Cetuximab is a chimeric IgG1 
monoclonal antibody that inhibits the EGFR intracellular 
signaling pathway by binding to the extracellular domain 
of EGFR [154]. Cetuximab binds to receptors on NK 
cells, causing NK cell activation and inducing their lytic 
activity against tumor cells. Tumor antigens are released 
after the lysis of tumor cells, which are then presented 
to CD8+ T cells via DC. Therefore, the effect of cetuxi-
mab is to increase the invasion of cytotoxic CD8+ T cells 
into tumors, enhancing the antitumor effect. However, it 
also induces upregulation of PD-L1 expression on tumor 
cells through negative feedback effects [155, 156]. It can 
be inferred from these mechanisms that the combination 

of anti-PD-1/PD-L1 and cetuximab may work through 
complementary mechanisms of action. The reason is that 
cetuximab is able to activate the immune system for ave-
lumab therapy by recruiting CD8+ T cells into TME. And 
PD-1/PD-L1 inhibitors block the PD-1/PD-L1 signaling 
pathway.

Anti‑TGF‑β agents
Dysregulation of TGF-β signal transduction pathways 
impairs multiple processes of the anticancer immune 
response, including antigen presentation, T cell infiltra-
tion, and tumor-killing activity. When anti-PD-1/PD-L1 
alone does not work well in mouse colorectal tumor mod-
els, TGF-β blockers enhance the therapeutic efficacy of 
anti-PD-1/PD-L1. Blocking TGF-β1 and TGF-α2 signifi-
cantly increased the Th1 immune response, upregulated 
IFN-γ production, and increased T-bet expression, a key 
transcription factor determining Th1 cell differentiation 

Fig. 3  Combination therapy reverses M2-like macrophages into M1-like macrophages and activates T cells, promoting antitumor effects. Radiation 
therapy and chemotherapy induce tumor cell death and the release of tumor-associated antigens. Tumor-associated antigens are administered 
to T cells and activate T cells through antigen-presenting cells. Macrophages are re-recruited by tumor-associated antigens and radiation-induced 
cytokines. M1 polarization induced by chemotherapy drugs, radiation therapy, and targeted agents enhances immunotherapy sensitivity
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in tumor-infiltrating CD8+ T cells. An increasing number 
of Th1 cells promotes the polarization of TAMs towards 
M1-like macrophages and enhances the antitumor effect 
[157].

Anti‑transcription factors
Bromodomain containing 4 (BRD4), a member of the 
bromodomain and extraterminal protein family, inter-
acts with the acetylated lysine residues of histone tails 
on chromatins. Oncogenic transcription factors (such as 
c-MYC) are amplified by recruiting transcription mecha-
nisms or indirectly by binding to enhancers, contributing 
to cancer cell proliferation [158]. AZD5153 is an inhibitor 
of BRD4, which depolarizes M2-like macrophages. MAF 
is a critical TF in regulating macrophage phenotypes 
associated with ovarian cancer. AZD5153 significantly 
reduces the binding of BRD4 to MAF-TF in mouse high-
grade serous ovarian cancer. By inhibiting the expression 
of M2-like macrophages-related genes, the proportion of 
M2-like macrophages is reduced without reducing the 
total number of TAMs, for that TAMs are polarized to 
M1-like macrophages [159].

Nanotherapy
Cargo-free polymer nanoparticles (NPs) have a highly 
negative surface charge. When innate immune cells 
internalize NPs through scavenger receptors, including 
MARCO, they have an impact on the function of them-
selves. NP increases the production of TNF-α in tumor-
bearing mice and reduces the expression of monocyte 
chemotaxis protein 1. The application of NP drugs 
reduces the aggregation of myeloid-derived suppressor 
cells at the tumor and metastatic sites. The combina-
tion of anti-PD-1/PD-L1 agents enhances this effect and 
promotes the efficacy of anti-PD-1/PD-L1 therapy [160]. 
Ginseng-derived nanoparticles (GDNPs) are isolated 
from Panax ginseng C.A. Mey. The expression of Ccl5 
and Cxcl9 transcripts in M2-like macrophages increased 
significantly after GDNPs treatment. This promotes 
CCL5 and CXCL9 secretion, recruiting T lymphocytes 
to enhance tumor suppression. In addition, combination 
therapy with PD-1 monoclonal antibodies and GDNP 
reduced the M2/M1 ratio in tumors [161].

Anti‑ILT4
Immunoglobulin-like transcript-4 (ILT4) is an inhibi-
tory receptor of the immunoglobulin superfamily. ILT4 
is mainly expressed in myeloid cells, including DCs, 
granulocytes, monocytes, macrophages, and platelets 
[162]. EGFR activation induces ILT4 in non-small cell 

lung cancer (NSCLC) cells. ILT4 migrates TAMs to TME 
by promoting the secretion of CCLs (chemokine (C-C 
motif ) ligands), such as CCL2 and CCL5. In addition, 
ILT4 induce M2 polarization, upregulating its markers 
including CD163, CD206, IL-10, and Arg-1, and down-
regulating M1-like markers in TAMs, including CD80, 
CD86, IL-12, and TNF-α. And ILT4 directly reduces the 
proliferation vitality and killing ability of T cells. ILT4 
blockades inhibit the above functions of ILT4. The com-
bination therapy of ILT4 blockades and PD-L1 inhibi-
tors showed synergistic effects. The combination therapy 
not only significantly inhibits the migration of TAMs to 
TME and the expression of its surface markers but also 
increases the proliferation of T cells [163].

Combining with chemotherapy
Chemotherapy mainly kills cancer cells and delays tumor 
growth by blocking the cell cycle, inhibiting DNA rep-
lication, interfering with cell metabolism, or inhibiting 
microtubule assembly. After cancer cell death, tumor 
antigens are presented by antigen-presenting cells, 
which leads to subsequent T cell recruitment, promotes 
the activation of the immune system, and thus pro-
motes a highly effective antitumor immune response [8, 
164, 165]. Induction of immunogenic cell death (ICD) 
is a critical way chemotherapy drugs work and can be 
induced by some anticancer drugs such as oxaliplatin. 
ICD requires cell surface CRT exposure, induction of 
EIF2α-dependent reticulum stress, HMGB1 and ATP 
release, and expression of type 1 IFNs (IFNα1 and IFNβ1) 
and chemokines (Cxcl9 and Cxcl0) [8, 165, 166]. The 
released molecules bind with its receptor to induce DC 
aggregation and enhance its antigen extraction ability, 
stimulating the adaptive antitumor immune response. In 
addition, chemotherapy drugs, such as gemcitabine and 
paclitaxel, increase the number of M1-like macrophages 
while reducing the number of M2-like macrophages 
and promote TAMs from M2-like macrophages to M1 
repolarization [167]. 5-Fluorouracil (5-FU) selectively 
depletes bone marrow-derived suppressor cells in the 
body. 5-FU combined with oxaliplatin induces ICD in 
MSS colon cancer models and improves the efficacy of 
anti-PD-1, suggesting the possibility of using a combina-
tion of anti-PD-1 and chemotherapy to reverse immu-
notherapy resistance in MSS colon cancer [168–170]. 
Gemcitabine combined with anti-PD-1 antibody ther-
apy increased CD8+ T cell infiltration compared with 
untreated and anti-PD-1 monotherapy. The same effect 
was observed in the treatment of pemetrexed. Chemo-
therapy exerts immunomodulatory effects by inducing 
immunogenic cell death, eliminating immunosuppressive 
cells, and enhancing effector cell function. Consequently, 
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the TME modified by chemotherapy drugs favors anti-
PD-1 antibody therapy.

Radiotherapeutic effect on therapeutic sensitivity 
of PD‑1/PD‑L1 inhibitor through modulating TAMs 
in solid cancers
The mechanism of action of radiotherapy is similar to 
that of some chemotherapy drugs. Radiation therapy 
(RT) induces double-stranded DNA damage and leads to 
cell death through apoptosis, necrosis, autophagy, mito-
sis catastrophe, or replicating aging. Then, after death, 
tumor cells release tumor-associated antigens, trigger-
ing and stimulating immune responses. Radiotherapy 
provides a supportive local immune microenvironment 
for antitumor immunity and enhances systemic antitu-
mor immunity, resulting in the regression of unirradiated 
distant tumors [171–174]. When combined with immu-
nomodulatory drugs, irradiation may enhance changes in 
infiltrating immune cells [175]. This combination therapy 
of RT and PD-1/PD-L1 inhibitor improved the long-
term survival in preclinical studies and mouse models of 
melanoma, colorectal cancer, breast cancer, and NSCLC 
[175–177], while also preventing tumor recurrence. It 
has also shown good promise in some clinical trials: 1. 
RT increases the effectiveness of PD-L1 inhibition, and 2. 
In combination with PD-L1 inhibitors, RT increases the 
patients’ survival [178, 179].

Macrophages, which show a high degree of plasticity 
under immune stimulation, are a critical direct effec-
tor cell in combination therapy [180, 181]. Radiotherapy 
upregulates chemo-attractant stromal cell-derived fac-
tor 1 (SDF-1) and CSF1as well as CXCR4 to enhance the 
infiltration of TAMs in tumors [182, 183]. Studies have 
shown that radiotherapy increases the phagocytosis of 
TAMs, which is consistent with a significant decrease 
in PD-1 expression of TAMs after low irradiation doses 
(PD-1 inhibits the phagocytosis of TAMs and changes 
in M1 polarization). Meanwhile, compared with unirra-
diated TAMs, irradiation promotes the ability of TAMs 
antigen presentation. This is the ability of CD86 expres-
sion in the irradiation group to increase significantly and 
polarize towards M1-like macrophages [131, 181]. After 
radiotherapy, the proportion of HLA-DR high expres-
sion in TAMs was increased considerably. And the low 
expression of HLA and human MHC was associated with 
poor clinical results. Meanwhile, RT promoted the secre-
tion of cytokines such as IL-23 p19 and IL-12 p70, and 
the changes in cytokine profile had an essential impact 
on the polarization of TAMs [181, 184].

In addition, irradiation has conflicting effects on mac-
rophage phenotypes. In some studies, low-dose irradia-
tion (2 Gy) reduces the number of M2-like macrophages 
and induces repolarization of M2-like macrophages to 

M1-like macrophages by increasing the expression ofi-
NOS, enhancing antitumor effects [181, 185]. In some 
other studies, irradiation was reported to lead to an 
increase in CD68+CD163+ M2-like macrophages around 
the tumor in NSCLC patients. The mechanism might 
be the release of ATP caused by RT-induced cancer 
cell death, which in turn was decomposed into adeno-
sine. The accumulation of extracellular adenosine leads 
to the polarization of TAMs to M2-like macrophages 
[186–188]. In addition, RT induces ROS production. 
ROS-induced oxidation in the latency-associated peptide 
further activates TGF-β. TGF-β directly promotes the 
M2 polarization of TAMs. And TGF-β also upregulates 
the expression of immunosuppressive genes in M2-like 
macrophages, such as genes encoding IL-17 receptors 
(IL-17RB), to promote the development of Th17 cells. 
TGF-β also increases the expression of the outer nucleo-
tides CD73 and CD39 of Th17 cells by down-regulating 
zinc finger protein growth factor independent-1 and 
inducing STAT3 expression, respectively. The overall 
manifestation is an increase in the number of Th17 cells 
and the expression of genes in Th17 cells responsible for 
converting ATP to adenosine [189]. HIF-1α has been 
shown to cause radiation resistance in endothelial cells, 
causing angiogenesis and tumor progression by promot-
ing the expression of VEGF-A [190, 191]. RT stabilizes 
HIF-1α in cancer cells and thus increases cell content 
directly. RT also indirectly stabilizes HIF-1α by increas-
ing TAMs [190].

The effectiveness of radiation therapy depends on 
several aspects. Tumor type and histotype: preop-
erative radiotherapy induces upregulation of PD-L1 in 
patients with cervical gland/adenosquamous cell carci-
noma and soft tissue sarcom. While more patients with 
NSCLC or rectal cancer have decreased PD-L1 expres-
sion [181, 192–194]; Different combination regimens: 
a retrospective analysis of patients with metastatic 
melanoma reported a response rate of 64% in patients 
treated with both stereotactic radiosurgery and anti-
PD-1 antibodies, higher than the 44% response rate in 
patients treated sequentially [195]; Irradiation dose: RT 
also modulates the immune system and TME in a dose-
dependent manner. In some studies, low-dose RT pro-
motes antitumor immunity. For example, low-dose RT 
of rectal cancer tissue differentiates TAMs towards the 
pro-inflammatory M1-phenotype, and high-dose RT 
at doses of 12–18 GY has also been shown to weaken 
the effect of antitumor immunity [181, 196]. In gen-
eral, RT induces both immune activation and immu-
nosuppression. When the impact of RT on TME is to 
enhance antitumor immunity, it will undoubtedly pro-
mote the effect of immunotherapy. If RT induces immu-
nosuppressive effects, such as upregulating PD-L1, the 
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combination of anti-PD-1/PD-L1 antibodies alleviates 
this immunosuppression. In addition, simultaneous 
administration helps increase the response rate and the 
effect of aspirin. These above suggests that the combina-
tion of radiotherapy and immunotherapy is promisingly 
more valuable [195, 197, 198].

Effect of listeria vaccine on cancer therapeutic 
efficiency of PD‑1/PD‑L1 inhibitors by regulating 
macrophages
As mentioned earlier, the low antigenicity of can-
cer cells and poor penetration and accumulation of 
immune cells in the TME are important reasons for the 
poor response to immune checkpoint therapy [199]. 
Cancer vaccines enhance immunogenicity, activate 
the patient’s immune system, and improve the effect 
of immune checkpoint treatment [200]. Cancer vac-
cines are another representative strategy for cancer 
immunotherapy, mainly divided into two main catego-
ries: preventive and therapeutic. Prophylactic vaccines 
induce immune memory by vaccinating healthy people 
to prevent the occurrence of specific cancers. The role 
of therapeutic vaccines is to strengthen or activate a 
patient’s immune system to treat cancer patients [201]. 
The development of cancer vaccines is based on the 
clinical phenomenon that patients with some infec-
tious diseases are less likely to develop cancer than the 
general population [202]. For example, some specific 
antibodies produced by people with mumps reduce the 
incidence of ovarian cancer, and BCG vaccines used to 
prevent tuberculosis are now doing well in bladder can-
cer treatment [202, 203]. The mechanism of cancer vac-
cine treatment of tumors is to artificially stimulate and 
induce tumor antigen-specific T cells by using foreign 
antigens. As a result, TME is optimized, which induces 
cancer-specific immune responses [204].

However, immunosuppressive TME makes cancer 
vaccines less effective alone. The advantages and dis-
advantages of cancer vaccines and anti-PD-1/PD-L1 
immunotherapy complement each other to a certain 
extent. Studies have shown that a Listeria-based HCC 
vaccine (Lmdd-MPFG), an oncology vaccine based 
on Listeria monocytogenes, elicits a strong anti-HBV-
associated HCC immune response [205]. Its combi-
nation therapy with anti-PD-1/PD-L1 therapy has 
exerted a huge synergistic effect. There have been some 
changes in TME after vaccination. At the cellular level: 
Lmdd-MPFG vaccine is a potent macrophage polar-
izer. Lmdd-MPFG vaccine activates the NF-kB pathway 
via the TLR2 and MyD88 pathways and upregulates 
autophagic proteins, such as Atg16L1, Beclin1, LC3-
II, p62, to enhance the autophagy process in M0 or 

M2-like macrophages. As a result, TAMs were repolar-
ized from M2-like to M1-like macrophages. And CD8+ 
T cells with antitumor effects and DCs infiltration 
were significantly increased, while Treg cells (CD4+, 
CD25+, FoxP3+) were significantly reduced. The result 
is T cells resensitization to immune checkpoint block-
ing therapy [205]. At the cytokine level: an increase in 
M1-like macrophages were accompanied by an increase 
in gene expression of M1-like macrophages-related 
cytokines and chemokines, such as IFN-γ, iNOS, IL-23, 
CCl2, IL-1b, TNF-α. Meanwhile, the level of M2-like 
macrophages markers, such as IL-10, Arg-1, CD206, 
Fizz, TGF-β, Mgl-2, PDCD1LG2, and Ym-1 are reduced 
[205]. However, Lmdd-MPFG induces upregulation of 
PD-L1 expression levels in tumor tissue, while com-
bined PD-1 antibodies enhance T cell responses by 
eliminating overexpression of PD-L1 in tumor tissues 
that may be induced by vaccines.

Roles of TAMs in immune therapy of PD‑1/PD‑L1 
inhibitors for different solid cancers
In different solid cancer types, TAMs often affect the 
expression of PD-1/PD-L1 through different pathways, 
which in turn affects the efficacy of PD-1/PD-L1 inhibi-
tors (Fig. 4).

Pancreatic cancer
In pancreatic cancer, PD-L1 expression is correlated with 
CD163+ TAMs. TNF-α significantly increases the expres-
sion of PD-L1 mRNA, compared with other cytokines 
secreted by TAMs, such as IL-1a, IL-1b, IL-4, IL-6, IL-7, 
etc. The specific mechanism is that TNF-α increases the 
phosphorylation level of NF-kB. And real-time PCR con-
firms a clear positive correlation between PD-L1 pro-
tein expression and TNF-α mRNA level in PDAC tissues 
[206].

Liver cancer
In liver cancer, IL-1b, secreted by TAMs, upregulates 
the expression of SLC7A11 through the IL-1R1 path-
way. SLC7A11 reduces the level of α-ketoglutarate by 
transferring intracellular glutamic acid to the extracel-
lular, thereby reducing the degradation of HIF-1α and 
increasing its content in the cell. At the same time, 
SLC7A11 activates the AKT pathway and induces 
HIF-1α expression under low oxygen conditions [207]. 
HIF-1α, as a critical positive regulator of PD-L1 expres-
sion, binds with the HIF-1α binding site on the PD-L1 
promoter, thereby upregulating PD-L1. In addition, 
SLC7A11 overexpression promotes the infiltration of 
TAMs in tumors through the CSF1 receptor (CSF-1R) 
axis [207, 208].
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Gastric cancer
When co-cultured with gastric cancer cells, the expres-
sion of TNF-α and IL-6 in TAMs increased significantly. 
Cytokines of IL-1 and IL-1b do not have this trend. 
TNF-α and IL-6 induced PD-L1 expression through 
NF-kB and STAT3 signaling pathways [209].

Lung cancer
Studies have shown that in lung cancer, TAMs produce 
IFN-γ, IL 6, TNF-α, and IL 10 to induce A549 to express 

PD-L1. And IFN-γ induces tumor cells to express PD-L1 
more effectively than other cytokines. It is the primary 
molecule induced by PD-L1 by TAMs in lung cancer. The 
mechanism that TAMs increase the secretion of IFN-γ is 
achieved by upregulating the JAK/STAT3 and PI3K/AKT 
signaling pathways [61].

Breast cancer
Compared with cytokines such as IL-6, IL-8, IL-1, 
and TNF-α secreted by macrophages, upregulates the 

Fig. 4  The effect of TAMs in different solid cancers. In pancreatic cancer, TAMs promote PD-L1 expression in cancer cells through TNF-α/NF-kB 
pathway. In liver cancer, TAMs promote PD-L1 expression in cancer cells through the IL-1β/ERK pathway. In gastric cancer, TAMs promote PD-L1 
expression in cancer cells through IL-1/STAT and TNF-α/NF-kB pathways. In lung cancer, TAMs promote PD-L1 expression in cancer cells through 
IFN-γ/PI3K/AKT and IFN-γ/STAT3 pathways. In breast cancer, TAMs promote PD-L1 expression in cancer cells through TNF-α/IKK pathway. In ovarian 
cancer, TAMs promote PD-L1 expression in cancer cells through IFN-γ/PI3K/AKT and IFN-γ/ERK1 pathways
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expression of PD-L1 protein through non-transcrip-
tional regulatory mechanisms (such as post-translational 
regulation) without increasing mRNA expression. The 
specific mechanism is that TNF-α binds to its ligand 
to activate IKKb-kinase, which induces a nuclear shift 
downstream p65. p65 interacts directly with COPS5, the 
promoter encoding CSN5, transcriptionally upregulat-
ing its expression. CSN5 is a subunit with deubiquitinase 
activity in the COP9 signaler. It interacts with PD-L1 and 
deubiquitinates it to stabilize it [210].

Ovarian cancer
In ovarian cancer, TAMs-derived IFN-γ, TNF-α, IL-10, 
and IL6 increase PD-L1 expression, and the density 
of membrane PD-L1 is positively correlated with high 
TAMs infiltration. The expression of PD-L1 was induced 
through IFN-γ via the PI3K pathway. And TNF-α 
induced the expression of PD-L1 through the ERK1/2 
pathway [211].

Overall, existing evidence suggests that PD-L1 may be 
differentially regulated with respect to specific signaling 
pathways and transcription factors in different cell types. 
This provides guidance for the precise treatment of vari-
ous cancers.

The clinical application value of TAMs in solid 
cancer therapy
In ICIs-mediated therapy, TAMs play a very impor-
tant bifacial role, antitumor and pro-tumor. Because of 
this, targeting macrophage synergistic ICIs is a prom-
ising combination protocol. At present, macrophage-
centred therapeutic strategies mainly divide into four 
aspects.

Reduces the recruitment of macrophages
CSF1and CCL2 play a crucial role in monocyte recruit-
ment and TAMs generation [212]. For example, blocking 
CCL2/CCR2 restricts monocytes from entering the tumor 
[213, 214]. Inhibition of CSF1 reduces TAMs invasion as 
well as tumor proliferation and migration [215]. In addi-
tion to the CCR2-CCL2 signaling axis, CXCR4-CXCL12 
(also known as stromal cell-derived factor-1, SDF-1) inter-
action is another signaling axis involved in the recruitment 
of monocytes/macrophages and implicated in the promo-
tion of tumor invasiveness/regrowth [183]. Treatment with 
a CXCR4 inhibitor (AMD3100) inhibits its effect.

Depletion of existing macrophages in the TME
CSF-1R is a tyrosine kinase receptor expressed on mono-
nuclear phagocytes [216]. After binding to CSF1, CSF-1R 
promotes the proliferation, function, and survival of mac-
rophages. CSF-1R antibodies deplete TAMs by blocking 

the function of CSF-1R [216]. Certain drugs, such as Bis-
phosphonate, also induce apoptosis after being swallowed 
up by TAMs [217]. Mannose receptor (CD206) is over-
expressed on M2-like macrophages, which is also one of 
the most commonly targeted receptors of macrophages 
[218]. Chimeric antigen receptor T-cell (CAR-T) immu-
notherapy specifically kills target cells. Construction of 
CAR-T specific against immunosuppressive subsets in 
TAMs reduces the number of TAMs in TME [219, 220].

Repolarization of existing macrophages in the TME
Multiple means polarize the TAMs to the M1 type. For 
example, immunomodulators, especially monoclo-
nal antibodies, are widely used as monotherapy and as 
adjuvants conditioning TME for combinatorial treat-
ments. An anti-MARCO (A pattern recognition scav-
enger receptor) induces anti-tumor activity in multiple 
tumor models by reprogramming the TAMs popula-
tion into a pro-inflammatory phenotype and increasing 
tumor immunogenicity [221]. LILRB4 is a LILRB family 
receptor that is widely expressed on immune cells and 
enriched on TAMs [222]. After treatment with anti-
LILRB4 antibodies, TAMs transitions to a less inhibitory 
phenotype [223]. In addition, as mentioned earlier, radio-
therapy, targeted therapy and a variety of chemotherapy 
drugs have a similar effect [73, 150, 151, 167].

Macrophage cell therapy
Engineered receptors are used to arm monocytes to treat 
tumors. Based on the ability of macrophages to infiltrate 
tumors and their unique ability in TME, the method 
of genetically engineering macrophages with CARs to 
enhance their ability to kill tumors has great potential 
[224, 225]. While killing tumor cells, CAR macrophages 
(CAR-Ms) also inhibit the M2 polarization of TAMs and 
promotes M1 transformation. In addition, the expression 
of the CAR structure reverses the M2 polarized mac-
rophages to the M1-like macrophages [225].

Monocytes are used as vehicles to deliver cytokines or 
nanoparticles to TME. Tie2-expressing monocytes have 
tumor-homing ability. It is used as a vehicle to deliver the 
anti-tumor cytokine IFNα to TME, which inhibits tumor 
angiogenesis and activates innate and adaptive immune 
cells [226].

Conclusions
As previously mentioned, TAMs are essential in treating 
solid tumors through multiple mechanisms. TAMs can 
regulate the expression of PD-L1 molecules in tumor cells 
through various pathways. Meanwhile, TAMs are signifi-
cant targets of PD-1 / PD-L1 inhibitors and critical cells 
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in mediating the role of traditional therapeutic options 
such as radiotherapy, chemotherapy, and targeted ther-
apy. The above functions of TAMs are a critical basis for 
combining immunotherapy with conventional treatment 
regimens. However, the understanding of TAMs needs to 
be further improved. The urgent problems to be solved 
include 1. What are the key factors driving the pheno-
typic changes of TAMs in TME? 2. How to distinguish 
TAMs into subgroups with different functions and iden-
tify a subset of the required functions? Many studies have 
shown that combination therapy based on PD-1 / PD-L1 
inhibitors with other traditional treatment regimens can 
synergistically benefit tumor patients. However, com-
bination treatment regimens not only increase patient 
medical costs but also reduce the low toxicity of patients. 
Optimizing the combination treatment regimen, includ-
ing drug, dose, timing, and order is a significant difficulty 
in developing combination treatment.

In conclusion, further studies on the classification and 
function of TAMs will help to improve the responsiveness 
of cancer patients to immune checkpoint therapy. More-
over, based on the immunosuppressive effects of TAMs, 
the development of drugs targeting TAMs to reduce the 
recruitment to TME and the clearance and repolariza-
tion of existing TAMs in TME are also hot research fields. 
Developing a good combination application program will 
also greatly promote the development of the tumor treat-
ment field for the benefit of cancer patients.
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