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Abstract

Paragangliomas (PGL) of the adrenal (also known as pheochromocytomas) or extra-
adrenal neural crest-derived cells are highly heritable tumors, usually driven by single 
pathogenic variants that occur mutually exclusively in genes involved in multiple 
cellular processes, including the response to hypoxia, MAPK/ERK signaling, and WNT 
signaling. The discovery of driver mutations has led to active clinical surveillance with 
outcome implications in familial PGL. The spectrum of mutations continues to grow and 
reveal unique mechanisms of tumorigenesis that inform tumor biology and provide 
the rationale for targeted therapy. Here we review recent progress in the genetics and 
molecular pathogenesis of PGLs and discuss new prospects for advancing research with 
new disease models and ongoing clinical trials presented at the recent International 
Symposium of Pheochromocytomas and Paragangliomas (ISP2022) held in October 2022 
in Prague.

Introduction

The sixth International Symposium on 
Pheochromocytoma (ISP2022) took place in Prague, 
Czech Republic, from 19 to 22 October 2022, 5 (and 
not the usual 3) years after the previous edition held 
in Sydney, Australia, in 2017, due to delays caused by 
the COVID-19 pandemic. In the intervening years, two 
international meetings related to pheochromocytomas 
(PCC) and paragangliomas (PGL) took place, Multiple 
Endocrine Neoplasia Workshop 2019 (in Houston) 
and 2021 (virtual). In 2019, the session dedicated to 
the metastatic forms of PCC and PGL was reported in 
a special issue of Endocrine-Related Cancer (Dahia et  al. 

2020). Here we summarize some key insights on the 
genetics of these tumors published or presented over the 
past years, along with our predictions for future progress 
in this active field of research.

New WHO classification

The World Health Organization (WHO)/The International 
Agency for Research on Cancer (IARC) has historically 
defined PCC and PGL as distinct entities. The fifth 
series of the WHO classification of endocrine and 
neuroendocrine tumors published in 2022 describes 
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clearly PCC as part of the PGL family of tumors by defining 
PCC as a neuroendocrine neoplasm that originates from 
chromaffin cells of the adrenal medulla and as an intra-
adrenal PGL (Mete et  al. 2022). A sympathetic PGL is 
defined as a neuroendocrine neoplasm that develops from 
neural crest-derived progenitors in paraganglia associated 
with the prevertebral and paravertebral sympathetic 
chains, sympathetic nerve plexuses, and sympathetic 
nerve fibers. Parasympathetic PGLs are well differentiated 
non-epithelial neoplasms derived from paraganglion cells 
of the autonomic nervous system. In this review, we will 
adopt this new nomenclature.

In the absence of clear features that can predict 
metastatic behavior, all patients with PGL are currently 
considered to have a lifelong risk of metastases; therefore, 
conceptually all PGLs of any location are considered 
potentially metastatic. On the other hand, it is worth noting 
that the identification of metastases is especially complex 
in patients with germline predisposition syndromes, 
as multiple lesions may represent multifocal primary 
tumors rather than metastatic spread. The review also 
notes that even the identification of PGL tissue in unusual 
locations such as the lung or liver does not necessarily 
imply the diagnosis of metastases, as these may be primary 
paraganglial locations. The value of sustentacular cells 
and Ki67 labeling as prognostic features is also discussed 
in this new classification. A TNM staging system for PGLs 
(adrenal and extra-adrenal sympathetic PGLs), introduced 
in the eighth edition of the AJCC Cancer Staging Manual, 
has now been included in the WHO classification. From a 
molecular perspective, WHO experts report that germline 
mutations in SDHB confer the highest risk of metastasis 
and that mutations in ATRX, or SETD2, high total somatic 
mutation burden, MAML3 fusion genes, altered WNT 
pathway, and TERT activation have also been associated 
with increased metastatic risk (Mete et al. 2022).

The PGL genetic testing in routine practice 
changes the patients’ outcome

In 2020, the working group on endocrine hypertension 
of the European Society of Hypertension clearly stated 
that genetic studies should be considered for any patient 
diagnosed with PGL because these tumors carry the highest 
known heritability rate of any human neoplasm and 
because genetic alterations currently explain almost 80% 
of all cases. Regarding the latter, approximately 40–50% 
of the cases are explained by germline mutations in one 
PGL susceptibility gene identified in patients affected by 
a hereditary form of the disease, and 40–60% of them by 

somatic mutations identified in the tumor(s) of patients 
with the sporadic disease (Lenders et al. 2020).

The impact of the knowledge of the genetic status at 
the time of the first PGL diagnosis was evaluated by Buffet 
and collaborators in a retrospective multicentric study 
(Buffet et al. 2019). The study compared the management 
and outcome of 221 patients diagnosed with PGL carrying 
mutations in SDHx or VHL who were informed of their 
positive genetic status either within the first year or more 
than 7 years after the initial diagnosis of PGL. Fewer patients 
were lost to follow-up in the group who received their 
genetic result in the first year after diagnosis compared to 
those who were tested later (9.6 vs 72%, respectively), and 
during follow-up, the former group developed smaller new 
PGLs with lower metastatic spread. In addition, patients of 
this group who developed metastases had a better 5-year 
survival rate than patients who did not undergo genetic 
testing at diagnosis (Buffet et al. 2019). That study showed 
for the first time the positive impact of early knowledge 
of genetic status, especially for those with SDHB variants, 
as this diagnosis triggers a specialized active surveillance 
screening program for the management of mutation 
carriers. This impact on the prognostic value of SDHB-
related PGL was illustrated in the MAPP-Prono study (169 
patients with metastatic PGL) whereby the identification 
of an SDHB mutation lost its significance as a prognostic 
factor of worse overall survival in these closely monitored 
individuals, supporting the value of active surveillance in 
these patients (Hescot et al. 2019).

The impact of genetic screening was recognized, among 
other recommendations, as relevant for the management 
of metastatic and unresectable PGLs by a multidisciplinary 
panel convened by The North American Neuroendocrine 
Tumor Society (Fishbein et al. 2021).

New PPGL susceptibility genes

Over the years, new genes related to the susceptibility to 
develop PGL have been identified. In this regard, it is worth 
highlighting the power of massive sequencing platforms, 
which, together with the genomic characterization of 
these tumors, have made it possible to recognize the 
genetic drivers of an additional percentage of patients, 
whose families will now be able to benefit from appropriate 
genetic counseling and clinical surveillance.

DNA methyltransferase 3 alpha (DNMT3A) gene

DNMT3A encodes one of the two de novo DNA 
methyltransferases, DNMT3A and DNMT3B, and is 
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responsible for establishing DNA methylation patterns 
during embryonic development and gametogenesis 
in mammals (Bestor 2000). The implication of this 
epigenetic modifier in the development of PGL was first 
demonstrated by Remacha and colleagues (Remacha 
et al. 2018), who described a de novo germline mutation 
in DNMT3A in a 22-year-old woman diagnosed 
with nine head and neck (H&N) PGLs. Functional 
characterization of the variant detected in this 
patient, c.896A>T; p.Lys299Ile and detailed analysis 
of the genomic characteristics of the available PGLs 
supported an impact of this mutation in DNMT3A 
function. Overall, these experiments suggested a 
gain-of-function effect, which was consistent with 
the hypermethylated profile observed in the tumors 
with this variant. A second study confirmed the role 
of DNMT3A in the susceptibility to develop H&N PGL 
(Table 1). The patient presented with multiple clinical 
features, a finding that suggested a heterogeneous 
phenotypic spectrum related to DNMT3A germline 
variants (Mellid et al. 2020).

Dihydrolipoamide S-succinyltransferase (DLST) gene

DLST encodes the E2 subunit of the mitochondrial 
α-ketoglutarate (αKG) dehydrogenase complex, 
which catalyzes the overall conversion of αKG to 
succinyl-CoA and CO2 in the tricarboxylic acid (TCA) 
cycle. Mutations in DLST cause the PGL7 tumor 
predisposition syndrome (OMIM 618475) and have 
been found in 0.6–3% of PPGL patients. All DLST-
related patients described so far were diagnosed with 
multiple tumors in the thoracoabdominal region, 
without mutations in other PPG-related genes 
(Remacha et  al. 2019, Buffet et  al. 2021) (Table 1). 
PGLs harboring these DLST mutations display altered 
methylation and transcriptional profiles similar to 
those observed in EPAS1-mutated tumors, suggesting a 
connection between DLST functional abrogation and 
pseudohypoxia.

Succinate-CoA ligase GDP-forming subunit beta 
(SUCLG2) gene

Succinyl-CoA ligase is a TCA cycle enzyme which catalyzes 
the reversible conversion of succinyl CoA and adenosine 
diphosphate (ADP). It is composed of a heterodimer 
comprising a subunit encoded by SUCLG1 and an ATP-
forming encoded by SUCLA2 or a GTP-forming subunit 
encoded by SUCLG2. Among 352 patients with PGL, 

1 frameshift and 7 missense variants were recently 
identified in the SUCLG2 gene (Hadrava Vanova et  al. 
2022), but this first report suffered limitations (no 
familial aggregation, two SUCLG2 variants classified as 
benign or likely-benign variants due to their frequency 
in gnomAD, incomplete functional studies and lack 
of evidence for loss of heterozygosity, etc), which were 
described in the editorial accompanying the paper (Ney 
& Stewart 2022). Thus, additional studies are still needed 
before considering SUCLG2 as a new PGL susceptibility 
gene (Table 1).

News from ‘old’ PGL susceptibility genes

Kinesin family member 1B (KIF1B) gene

The KIF1B gene has been suspected to be a PGL 
susceptibility gene in few reports, but its involvement 
is still debated. Cardot-Bauters and collaborators 
published in 2008 a family carrying a KIF1B missense 
variant but without a second mutation in the other 
allele or loss of heterozygosity at the somatic level (Yeh 
et al. 2008). They recently extended their study because 
one brother of the proband, who did not carry the 
KIF1B variant, developed a bilateral PCC at 31 years. 
A MAX variant was identified in the germline DNA 
of that patient but also in all his relatives affected by 
PCC suggesting that the genetic susceptibility to PCC 
is linked to the MAX variant rather than to the KIF1B’s 
one in this family (Cardot-Bauters et  al. 2008). While 
evidence for the role of KIF1B in neural crest-related 
tumorigenesis and in neuroblastomas seems to be 
supported in independent studies (Fell et al. 2017), the 
Cardot-Bauters et  al. report further strengthens the view 
that KIF1B is probably not a PGL susceptibility gene.

Table 1 Genetic and clinical characteristics of new genes or 
new presentations of known genes associated with PGL 
development.

Gene Inheritance Locus
Associated tumors/
features

DNMT3A Autosomal 
dominant

2p23.3 Gain-of-function 
mutations: H&N PGL

DLST Autosomal 
dominant

14q24.3 PGL (multiple) >> PCC

SUCLG2a ND 3p14.1 PCC >>>> pPGL
MAML3 fusions Sporadic 4q31.1 PCC
RET fusions Sporadic 10q11.21 PCC

aMore evidence are needed before considering it as a susceptibility gene.
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Endothelial PAS domain protein 1 (EPAS1) gene

Somatic mutations of the EPAS1 gene, encoding for the 
hypoxia-inducible factor 2α (HIF2α) transcription factor, 
are highly prevalent in PGLs. Notably, these mutations 
are detected in patients with congenital cyanotic heart 
disease at a higher than 10-fold rate compared with the 
frequency of EPAS1 mutations in sporadic PGL (~90% 
vs ~6–7%), suggesting that these mutations are under 
selective pressure in the specific clinical/environmental 
conditions experienced by these patients (Vaidya et  al. 
2018, Ogasawara et  al. 2022). Of high translational 
relevance, the first description of a sustained therapeutic 
response was recently reported in a patient with 
polycythemia and multiple inoperable PGL caused by 
a mosaic germline EPAS1 variant who was treated with 
belzutifan, a selective small-molecule inhibitor of HIF2α 
(Kamihara et al. 2021). This experience should encourage 
molecular geneticists to investigate such variants in 
tumoral DNA and also in the germline DNA (in search 
for mosaicism) by deep sequencing or digital droplet PCR 
and should prompt the design of new trials to determine 
the efficacy of this drug for EPAS1-mutated states (Toledo 
et al. 2022).

Refined methodology to improve genetic 
variant identification

Over the past few years, technical advances in next-
generation sequencing methods applied to germline 
and tumoral DNA associated with the decreased cost of 
sequencing have allowed the introduction of whole exome 
or genome sequencing in research and also in routine 
practice. Non-classical pathogenic variants and rare 
genetic variants became more easily accessible and were 
reported in patients for whom the causative germline or 
tumoral variant was still unknown (Ben Aim et  al. 2022). 
For instance, the diagnosis of germline mosaicism in PGL 
susceptibility genes became possible in the same assay, 
by identification of a variant in a minority of reads in 
germline DNA and in the majority of reads in its matched 
tumoral DNA. Whereas a minor peak on electropherogram 
of Sanger sequencing can be misinterpreted as an artifact, 
droplet digital PCR allows to precisely quantify a low 
level of mosaicism in DNA extracted from leukocytes or 
other tissues. In this way, the first case of constitutional 
mosaicism of SDHB mutation was reported in a young 
patient with a norepinephrine-producing extra-adrenal 
PGL (Cardot-Bauters et al. 2019).

Intronic deep mutations were reported in PGL 
susceptibility genes. An international effort from the US 
and Europe brought new evidence for the pathogenicity 
of deep intronic variants in the VHL gene in a cohort 
reassembling 1167 patients with previous negative genetic 
testing. Six different genetic variants were discovered in 
a cryptic exon of VHL, named E1’, which was previously 
identified in deep intronic sequence but not usually 
included in the target gene panels (Buffet et  al. 2020). A 
study from Australia demonstrated the activation of an 
exonic splicing enhancer by a genetic variant located in 
the +74 position of the SDHC gene (De Sousa et al. 2020). 
Other deep intronic pathogenic variants would likely be 
more detected and involved in PGL pathogenesis in the 
upcoming years. Synonymous variants at non-canonical 
splice sites but which may nonetheless impair splice, such 
as in the case of the VHL gene, were demonstrated as being 
pathogenic in patients affected by a von Hippel Lindau 
disease or familial erythrocytosis (Lenglet et al. 2018, Flores 
et al. 2019, Liu et al. 2020, Buffet et al. 2020).

Incidental genetic findings were also discovered due 
to these highly sensitive technologies. This was the case in 
two recently published case reports: the first described the 
simultaneous identification of germline mutations both 
in SDHB and in TP53 in a patient with metastatic PCC 
(Gniado et  al. 2020), and the second reported germline 
mutations in the FLCN and SDHB genes in a patient 
with metastatic renal cell carcinoma (Boland et al. 2020). 
Noteworthy, these discoveries raise new challenges for the 
practice of genetic counseling and recommendations on 
the surveillance of patients and relatives.

Fusion genes

Recombinant fusions have only recently begun to be 
recognized and evaluated in PGL. Rare fusion genes, 
involving MAML3, BRAF, NGFR, and NF1, were first 
discovered by RNA sequencing in The Cancer Genome 
Atlas PPGL study (Fishbein et al. 2017). Fusions recurrently 
involving the MAML3 transcription factor, especially 
the UBTF::MAML3 fusions, were associated with a novel 
molecular cluster that had not been previously recognized 
in PGL oncogenesis. The UBTF::MAML3 fusion leads to 
the expression of Wnt targets and appears to be associated 
with an aggressive phenotype (Alzofon et  al. 2021). 
UBTF::MAML3, but also EWSR1::CREM fusion gene, which 
was recently reported in a patient with a metastatic PGL 
should be further investigated as prognostic biomarkers 
(Javaid et al. 2023).
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The RET gene is a well-established PGL susceptibility 
gene as part of Multiple Endocrine Neoplasia type 2A and 
type 2B syndromes, and less commonly as a somatically 
mutated oncogene, but only recently was it detected as part 
of recombinant fusion in PGLs (Mweempwa et  al. 2021, 
Estrada-Zuniga et al. 2022). These fusions are distinct from 
conventional RET rearrangements detected in epithelial 
cancers such as lung and thyroid (Grieco et al. 1990, Kohno 
et  al. 2012, Santoro et  al. 2020) in the positioning of the 
fusion partners. In PGLs, RET is the 5′ partner of the fusion, 
while in epithelial tumors, it is invariably positioned 
as the downstream partner of the fusion. Despite this 
distinct recombination architecture, RET fusions in PGLs 
share other features of the more typical RET recombinant 
proteins: they lead to constitutive activation of RET and its 
downstream effectors, endow target cells with oncogenic 
phenotypes (Ou & Zhu 2020, Santoro et al. 2020, Estrada-
Zuniga et al. 2022), and are responsive to highly selective, 
clinical grade RET inhibitors selpercatinib and pralsetinib 
(Subbiah et  al. 2018, Wirth et  al. 2020, Mweempwa 
et  al. 2021, Thein et  al. 2021, Estrada-Zuniga et  al. 2022). 
These findings suggest that the identification of gene 
fusion involving the RET gene should open the way to 
treatment with RET inhibitors in patients with metastatic 
or inoperable PGL. Due to its prognostic and therapeutic 
value, the search for fusion genes in PGL at the tumor level 
by transcriptome or whole genome sequencing should be 
added to the genetic testing arsenal of PGLs that remain 
without a recognizable driver event, especially those 
belonging to the kinase cluster.

New tools for accurate variant’s classification

Nowadays, the major challenge for the molecular 
geneticists in charge of PGL diagnosis remains to correctly 
classify molecular variants identified by NGS. In 2017, 
the NGS in PPGL (NGSnPPGL) Study Group (ENS@T/
PRESSOR) published standardized recommendations and 
initiated an international effort to collect, annotate, and 
classify variants in order to develop gene-centric curated 
database of PGLs (The NGS in PPGL (NGSnPPGL) Study 
Group et  al. 2017). Following this initiative, 223 SDHB 
variants from 737 patients were collected worldwide 
and manually curated by a panel of experts from the 
NGSnPPGL Study Group who established a consensus 
classification. This curation reduced by half the variants 
initially classified as variants of unknown significance 
(Ben Aim et al. 2022). The SDHB variants classified by these 
experts are now freely available and publicly accessible 

via the Leiden Open Variation Database (LOVD) system 
(https://databases.lovd.nl/shared/genes/SDHB).

There have also been advances in our annotation of 
TMEM127 variants. Recent structure-functional studies 
revealed additional features of TMEM127, including a 
fourth transmembrane domain and an endocytic domain 
(Flores et  al. 2020). These findings provided the basis for 
preliminary evaluation of a new classification of variant 
pathogenicity in 111 carriers and support the location of 
nonconserved missense mutations in transmembrane 
domains as a likely feature of pathogenic variants 
(Armaiz-Pena et al. 2021) Most of these variants have been 
deposited in LOVD (https://databases.lovd.nl/shared/
genes/TMEM127).

New insights for asymptomatic mutation carriers

An international panel of experts has established a 
consensus statement in following the Delphi method 
focused on the management of SDHx asymptomatic 
mutation carriers detected by familial genetic testing. 
An algorithm for screening and follow-up was proposed 
during adulthood and childhood. The experts proposed 
first screening at an earlier age (6–10 years old) for 
asymptomatic SDHB mutation carriers than for carriers of 
mutations in the other SDHx genes (10–15 years old) and 
recommended using magnetic resonance imaging as first-
line imaging in children. If a SDHx mutation carrier never 
developed any tumor related to SDH deficiency, screening 
tests could be delayed to every 5 years after 70 years of age 
and follow-up could be stopped at 80 years of age (Amar 
et  al. 2021). A retrospective multicentric study reported 
249 asymptomatic SDHx mutation carriers who benefited 
from at least 1 imaging work-up. Imaging screening 
detected tumors in 20% of asymptomatic SDHx mutation 
carriers with a median age of 41 years old (11–86) (Saie et al. 
2021). Similar proportions have been reported in other 
two independent multicenter studies (Greenberg et  al. 
2020, Davidoff et  al. 2022), demonstrating that current 
SDHx screening protocols are effective at identifying 
SDHx-related tumors. The benefits of surveillance of 
asymptomatic mutation carriers starting in childhood have 
been reported by Vibert and collaborators in the context of 
the von Hippel-Lindau disease, for which genetic testing is 
recommended starting at 5 years of age. In a small series of 
16 children diagnosed as VHL mutation carriers, follow-up 
examinations performed in a specialized expert network 
detected 11 tumors in 6 children but all had a favorable 
outcome (Vibert et al. 2022).
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ISP2022 highlights in approaches and models for 
PGL research

A recent multi-institutional research effort led by Richard 
Tothill examined a group of 30 PGLs carrying mutations in 
various susceptibility genes at single nuclei transcriptome 
resolution (Zethoven et  al. 2022). Different expression 
subgroups were identified corresponding to former 
recognized transcriptomic clusters driven by genotype: 
C1A (SDHx), C1B1 (VHL), C1B2 (EPAS1), C2A (Kinase), 
C2B1 (MAX), and C2B2 (MAML3). In addition, VHL, SDH, 
and EPAS1-mutated groups were enriched in stromal cells 
and tumor nuclei and showed enhanced hypoxia-related 
signaling. Intriguingly, tumors with MAML3 fusions, often 
linked to aggressive outcomes, showed a high expression 
of VEGFA and EPAS1 suggesting a HIF-pathway activation 
by still unknown mechanisms. Metastatic SDHx-related 
PGLs displayed an increase in proliferation markers and 
a reduced number of Schwann-cell-like cells. The orphan 
receptor GPR139 emerged as one of the overexpressed genes 
in metastatic tumors and should be further investigated as 
a potential target for treatment.

The scarcity of experimental models in PGLs has been 
an important unmet need in research. New and promising 
research models were presented at ISP2022, including two 
new Sdhb-deficient mouse strains (Armstrong et  al. 2022, 
Gupta et  al. 2022). Another emerging model of patient 
tumor-derived organoid cultures that may be amenable 
to drug screens may provide interesting information on 
the therapeutic profile of PGLs (Dahia, Soragni et  al., 
unpublished observations). Follow-up work in these 
models is highly anticipated.

Future of clinical trials in PGL

Lastly, the next big frontier in PGL research will come 
from new therapies based on strong biological rationale 
and which are being tested in new clinical trials. The 
results of the first international randomized study in 
metastatic progressive PGL (FIRSTMAPPP, NCT01371201) 
investigating sunitinib (37.5 mg/day) or placebo were first 
presented during European Society of Medical Oncology 
Congress 2021 and at ISP2022. The median PFS was 8.9 
months in the sunitinib arm vs 3.6 months in the placebo. 
This academic double-blind trial, in which 78 patients 
were enrolled, provided the highest level of evidence 
available thus far and established sunitinib as the first-line 
option for affected patients with progressive metastatic 
PGL (Baudin et  al. 2021). On the heels of its approval by 

the FDA for the treatment of VHL-related tumors (Jonasch 
et  al. 2021), an international, multi-institutional phase 2 
clinical trial of belzutifan was launched for patients with 
locally advanced or metastatic PPGLs (NCT04924075). 
This trial recently completed its recruitment, and the PGL 
field expects with great anticipation the results of this and 
other trials grounded by preclinical research to guide the 
future of PGL treatment.
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