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SUMMARY Nucleotides are at the heart of the most essential biological processes in
the cell, be it as key protagonists in the dogma of molecular biology or by regulating
multiple metabolic pathways. The dynamic nature of nucleotides, the cross talk between
them, and their constant feedback to and from the cell’s metabolic state position them
as a hallmark of adaption toward environmental and growth challenges. It has become
increasingly clear how the activity of RNA polymerase, the synthesis and maintenance
of tRNAs, mRNA translation at all stages, and the biogenesis and assembly of ribosomes
are fine-tuned by the pools of intracellular nucleotides. With all aspects composing pro-
tein synthesis involved, the ribosome emerges as the molecular hub in which many of
these nucleotides encounter each other and regulate the state of the cell. In this review,
we aim to highlight intracellular nucleotides in bacteria as dynamic characters perma-
nently cross talking with each other and ultimately regulating protein synthesis at vari-
ous stages in which the ribosome is mainly the principal character.
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THE DIVERSE AND DYNAMIC NATURE OF NUCLEOTIDES

Nucleotides play central roles in all domains of life, be it as major carriers for chemi-
cal energy, as triggers for protein switches, secondary messengers, regulators of

transcription, translation, and protein function, and as information storage in the form
of DNA or mRNA. Equally important is their role as modulators of protein activity and
RNA function. Thus, nucleotides and their metabolism are at the functional heart of liv-
ing cells, and the underlying mechanistic principles that enable this are universally
conserved.
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A nice depiction of how dynamic nucleotides are at their core is evidenced through-
out the growth curve of Escherichia coli, where nucleotide pools vary as a function of
the physiological state of the cell (1) (Table 1). One key difference is that purines sus-
tain millimolar intracellular levels, while pyrimidines remain consistent around midmi-
cromolar levels. During the exponential phase, ATP levels peak at 2 mM and then
decline ;3-fold upon transitioning into the stationary phase. A sudden rebound of
ATP occurs during early stationary phase, after which its levels slowly decrease as cells
enter a later growth stage (1). GTP levels follow a similar trend. In the case of the pyri-
midines, UTP shows the same decline while entering early stationary phase, after which
it progressively increases along the rest of the growth curve, while CTP seems to keep
its levels relatively constant throughout (1). An interesting observation is that despite
cells dividing at a maximal rate during the mid-log phase (2), the decreased levels of
ATP, GTP, and UTP tune down this rate as nutrients start to slowly become limited at
this stage. In other words, the fidelity between nucleotide levels and environmental
conditions is sufficiently robust to ultimately provide feedback back to the cell and reg-
ulate its metabolic state accordingly. The fundamental extent of such an interplay is so
important in determining the cell’s fate that when certain bacteria recognize invading
plasmids or phage DNA, short prokaryotic Argonaute (pAgo)-based complexes trigger
endogenous NAD(P)1 or NAD1 depletion to promote cell death and prevent infected
cells from propagating within cell cultures (3, 4). Along the same line, it was recently
discovered that bacterial viperins catalyze the conversion of CTP to ddhCTP, thus favor-
ing transcription termination and inhibiting viral transcription, offering an additional
mechanism of defense against phage infections (5, 6).

Nucleotides come in all shapes and sizes (Fig. 1), and their individual levels can be
finely tuned as cells respond and adapt to fluctuating environmental conditions. This
highly concerted regulation in turn dictates how a cell allocates its metabolic capacities
to efficiently adapt to any given circumstance. The levels of nucleotides such as GDP
39-diphosphate (ppGpp) and GTP 39-diphosphate (pppGpp), collectively known as (p)
ppGpp, become particularly important when bacteria face growth-limiting conditions
(7). When amino acids are scarce, reminiscent of the entry into stationary phase, an
increase in the levels of uncharged tRNAs binding to the ribosomal A site and stalling
translation triggers the stringent response (8–10). During this process, RelA/SpoT homo-
logue (RSH) proteins catalyze the transfer of the b- andg -phosphates from ATP to the 39
hydroxy group of GDP or GTP to increase the levels of ppGpp or pppGpp, respectively
(11). These alarmones are then able to reprogram the cellular metabolism by modulating
DNA replication, transcription, translation, nucleotide metabolism, and pathogenicity,
among other biological processes (12–14). Upon transitioning into the stationary phase,
the levels of (p)ppGpp increase roughly up to 0.8 mM (15) (Table 1), significantly above
the dissociation constants (Kds) of ribosome biogenesis and translation-associated
enzymes and at sufficiently high levels at which enzymes associated with carbon metab-
olism and fatty acid biosynthesis can be targeted (14). As important as it is to bring the
levels of (p)ppGpp up, it is equally important to bring them down once the environmen-
tal challenge is surpassed and other nucleotide pools (e.g., ATP/GTP) need to be
restored. For this reason, intricate regulatory mechanisms governing the alarmone syn-
thetases/hydrolases keep a tight control on the levels of (p)ppGpp at all times (16–20).
We would also like to mention the recent discovery of (p)ppApp, a stress molecule syn-
thesized by Pseudomonas aeruginosa via a type VI secretion effector known as Tas1 (21).
This enzyme is delivered into competitor cells and pyrophosphorylates other adenosine
nucleotides at a high catalytic rate, depleting ATP pools and ultimately inducing cell
death. Interestingly, it has been shown that the small alarmone hydrolase (SAH) of P. aer-
uginosa can hydrolase (p)ppGpp and (p)ppApp, adding a layer of protection against
Tas1 during biofilm formation and interbacterial competition (22).

Despite being discovered in 1966 (23), the triggering factors leading to the accumulation
of the ubiquitous dinucleoside polyphosphates (NpnNs; where N represents adenine, uridine,
or cytosine and n is the number of phosphates) and the physiological processes affected by
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them remain mostly enigmatic. Whether NpnNs are mere side products originating from the
back reaction of tRNA charging or actually function as alarmones has been a topic of debate
(24), albeit the latter seems to be more convincing based on previous (25–27) and recent
data (28, 29). For example, when E. coli is exposed to lethal concentrations of aminoglycoside
antibiotics such as kanamycin, the levels of Ap4A increase by 20-fold (28). An even bigger
increase was observed when these cells were treated with hydrogen peroxide, an inducer of
oxidative stress. Interestingly, when the naturally occurring hydroxyl radicals produced by
the kanamycin treatment were quenched, the Ap4A levels were significantly reduced, sug-
gesting that the levels of Ap4A functioned as a metabolic signal of aminoglycosides and/or
oxidative stress in bacteria (28). A similar role was seen in the human pathogen Salmonella
enterica serovar Typhimurium, in which a wide variety of heavy metal ions present in the
growth media led to the accumulation of Ap3-4A and Ap3-4G to different extents (25). In addi-
tion, exposure to oxidative or osmotic stress in Myxococcus xanthus cultures increased the

FIG 1 Chemical structure of key nucleotides discussed in this review. (A) Adenosine triphosphate (ATP); (B) adenosine diphosphate (ADP); (C)
diadenosine tetraphosphate (Ap4A); (D) cyclic adenosine monophosphate (cAMP); (E) guanosine triphosphate (GTP)/guanosine diphosphate
(GDP); (F) GTP 39-diphosphate (pppGpp)/GDP 39-diphosphate (ppGpp).
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intracellular levels of Ap4A and Ap5A by 3.4- and 2.3-fold, respectively (26). Altogether, it
seems that the levels of ApnA and perhaps other dinucleoside polyphosphates function as
reporters of a wide variety of stresses that ultimately are related to the ability of bacteria to
appropriately synthesize proteins. Whether these nucleotides are mere reporters of such
stresses or can indeed physically interact and regulate enzymes involved in bacterial metab-
olism merits further investigation.

USE OF MODIFIED NUCLEOTIDES OR DINUCLEOTIDES BY RNAP

The RNA polymerase (RNAP) is the core enzyme responsible for the transcription of
genetic information from DNA to RNA using canonical nucleotides (ATP, UTP, GTP, and
CTP) as building blocks. Binding of the RNAP to specific sequences known as promoters
on the double-stranded DNA sets the stage for the initiation of transcription. The RNAP
unwinds the DNA duplex to form the transcription bubble, a process referred to as open
complex formation (30, 31). Interestingly, the concentrations of the initiating nucleotide
can differentially alter the transcription initiation rates of multiple promoters in bacteria.
Consequently, this could potentially also alter protein synthesis rates by changing the
abundance of the templates for protein synthesis. For example, short-lived open com-
plexes, such as those found in rRNA and some tRNA and mRNA promoters, show a higher
dependency on the initiating nucleotide (32–35). This regulation is nicely depicted in
Bacillus subtilis, where the promoter activity from rRNA genes is highly dependent on
ppGpp and GTP levels since these promoters initiate exclusively with GTP (36, 37).

Recent efforts have widened our knowledge on the vast repertoire of molecules that can
be incorporated onto the nascent transcript during transcription initiation in Gram-positive
and -negative bacteria and how these can uniquely influence the transcript’s processing, sta-
bility, localization, and translation efficiency (38, 39). It was demonstrated that the RNAP of E.
coli can use NAD (NAD1) and dephospho-coenzyme A (dp-CoA) in vitro and in vivo as an ini-
tiating nucleotide provided that the nucleotide at the 11 position encodes ATP (40).
Moreover, in vitro studies showed that RNAP is also able to use flavin adenine dinucleotide
(FAD), UDP-glucose, and UDP-N-acetylglucosamine to initiate transcription, although the fea-
sibility and relevance of this phenomena in vivo remains uncertain (41, 42). Interestingly,
NAD1 and dp-CoA 59 RNA caps were found in 10 to 15% of bacterial transcripts of.200 nu-
cleotides, with the former being 2-fold higher in the stationary phase than in the exponential
phase (40, 43, 44). Furthermore, the realization that most 59 NAD-linked RNAs are associated
with pathways revolving around cellular metabolism and various stress responses (45) sup-
ports the notion that the incorporation of these noncanonical molecules is not arbitrary and
could prove essential when facing specific environmental challenges or growth conditions.

It has been reported that after treating E. coli with CdCl2, an inducer of disulfide
stress, dinucleoside tetraphosphates rapidly accumulate and trigger the widespread
use of ApnNs as 59 RNA caps (Fig. 2) (46). Surprisingly, not only E. coli’s RNAP but also
the lysyl-tRNA synthetase were able to catalyze this capping reaction. Additionally, it
was shown that increased levels of Np4Ns inhibit ApaH, the main Np4A hydrolase in
bacteria, leading to a further enrichment in Np4-capped RNAs whose stability is
increased as evidenced by a lengthened half-life. The incorporation of Np4Ns into the
nascent transcript seems to be considerably more efficient than ATP given that the nu-
cleotide at position21 of the template strand is a purine (47).

Whether regulation of gene expression from Np4-capped transcripts is sufficient to
explain the cellular effects observed after increased levels of dinucleoside tetraphosphates
or instead is due to key direct targets of these molecules remains to be determined.
Nonetheless, the implications of alternative molecules functioning as noncanonical sub-
strates for the RNAP add an elegant, albeit still obscure, layer of regulation of gene expres-
sion that further highlights the unprecedented chemical diversity of RNA species.

SYNTHESIS ANDMAINTENANCE OF TRANSFER RNAS

Since transfer RNAs (tRNAs [75 to 90 bases]) are the intermediate molecules between
the nucleotide and amino acid alphabets, it is very relevant to observe how the changes in
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the intracellular levels of different nucleotides affect tRNA abundance and their chemical
modifications. The accumulation of (p)ppGpp and consequent inhibition of the RNAP ac-
tivity affect the synthesis of different families of RNAs, such as ribosomal RNAs (rRNAs),
messenger RNAs (mRNAs), and tRNAs (48, 49). Regardless of RNAP regulation, increased
levels of (p)ppGpp also interfere with RNA and DNA synthesis by inhibiting enzymes ena-
bling the de novo synthesis of purines and the purine salvage pathway, such as PurF, GsK,
Hpt, PpnN, and Gpt (50). Furthermore, (p)ppGpp interacts with the transcriptional factor
PurR, which downregulates the transcription of several components of the aforemen-
tioned pathways (51). This is remarkable in the context of bacterial stress since different

FIG 2 Schematic of the 59 terminal Ap4A cap. Shown are the canonical 59 end of bacterial mRNA (A) uncapped
and (B) capped by Ap4A.
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stress conditions that trigger the accumulation of (p)ppGpp also converge in the genera-
tion of oxidative stress. This redox imbalance mainly affects purines such as guanosine due
to their low oxidation potential, leading to the formation of 8-hydroxyguanosine (52, 53).
A similar regulation has recently been reported for the Ap4A dinucleotide, which restricts
the biosynthesis of guanosine nucleotides (i.e., GMP, GDP, and GTP) in B. subtilis, by influ-
encing the oligomerization state and activity of inosine-59-monophosphate dehydrogen-
ase (IMPDH) (29).

In bacteria such as E. coli, the tRNA genes are often arranged in operons that pro-
duce transcripts that contain more than one tRNA sequence, which is subject to further
processing and modification steps in order to mature the functional tRNAs (54). For
transcripts encoding more than one tRNA, smaller tRNA precursors are generated by
the endonucleolytic activity of RNase E and RNase III downstream of the CCA terminus
(55). Subsequent cleavage of the 59 end by RNase P is a common step for all pre-tRNAs
(54). Some authors have reported that the genes rnpA and rnpB, which encode the sub-
unit C5 and the catalytic RNA subunit M1 RNA, respectively, of RNase P, are downregu-
lated during the stringent response, which could strongly affect the global processing
of tRNA (49, 56). This transcriptional regulation should significantly modulate the levels
of RNase P due to the stability of the holoenzyme (half-life [t1/2] of;60 min). However, it
decreases dramatically (t1/2 of ;5 min) with the loss of the C5 subunit, becoming a
potential checkpoint on the regulation of tRNA levels under some stress conditions (57).
Final trimming of the 39 end is performed by a combination of exonucleases such as
RNase II, polynucleotide phosphorylase (PNPase), RNase P, RNase PH, and RNase T,
depending on the size of the remaining 39 end (58, 59). Some of these RNases also con-
tribute to the global regulation of RNA metabolism, participating in mRNA decay. An
interesting example is PNPase, which has been shown to be part of a ribonucleoprotein
complex with two direct O2 sensors, DosC (direct O2-sensing cyclase) and DosP (direct
O2-sensing phosphodiesterase). These two proteins adjust the levels of c-di-GMP, which
ultimately targets and modulates PNPase activity (60). However, the impact of c-di-GMP
on the population of tRNAs processed by PNPase has not been reported.

The different groups of tRNAs require posttranscriptional modifications of some
of their nucleotides to fine tune their functionality in accordance to cellular require-
ments. Thus, we find more than 100 chemical modifications that generate derivatives
from the nucleosides adenosine, guanosine, cytidine, and uridine. When observing
the distribution of these modifications along the tRNAs in E. coli, their high frequency
and diversity stand out in positions 34 and 37, corresponding to the neighborhood
of the anticodon involved in codon recognition and reading frame maintenance (59,
61). One example is the lysidine modification of cytosine 34 (K2C) by the enzyme TilS,
a modification that occurs in the anticodon region of tRNAIle2. K2C is required to
maintain translational fidelity since, without this modification, the methionyl tRNA
synthetase can recognize tRNAIle2, promoting misacylation of tRNAIle2 with a noncog-
nate amino acid (62, 63).

Among the enzymes that carry out such modifications, many of them require nucleotide
cofactors, such as ATP, GTP, NADPH, S-adenosyl-L-methionine (SAM), and/or NADP1 (Table
2). This is especially important when considering the nucleotide population as a dynamic
element in terms of abundance and diversity. As an example, we can analyze the case of
ATP, whose intracellular concentration can fluctuate between ;1 and 10 mM (Table 1). In
addition, we must consider the concentration of ADP and changes in the ATP/ADP ratio, a
nucleotide that is in constant competition for the same ATP-binding sites. Furthermore, the
accumulation of nonhydrolyzable ATP analogs like Ap4A, which can also compete for some
ATP-binding sites, leads to a scenario where these ATP-dependent enzymes are also de-
pendent on all ATP analogs. Nucleotide cross talk is also important in the evolution of nu-
cleotide-binding sites in enzymes that require cofactors. TrmD is an essential SAM-depend-
ent methyltransferase, highly conserved in all three domains of life, that catalyzes the
methylation of G37. It has been reported that in the TrmD of Firmicutes bacteria, such as
Staphylococcus aureus, cAMP competes for the pocket-binding substrate and inhibits its
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activity. It is important to note that adenylate cyclase enzymes responsible for cAMP forma-
tion are absent in this group of bacteria. However, TrmD from cells encoding adenylate
cyclases, such as E. coli, which produces cAMP as a molecule that regulates energy metabo-
lism, has adapted the binding substrate to provide a high specificity for SAM (64).

Altogether, the synthesis of mature tRNAs alone does not guarantee obtaining the
necessary aminoacylated tRNAs as a functional substrate for translation. This is due to
some synthetases such as E. coli isoleucyl-tRNA synthetase having their activity upregu-
lated by ppGpp and inhibited by cAMP, which can ultimately affect the aminoacylated
fraction of tRNAIle (65, 66).

HOW REGULAR AND ALTERNATIVE NUCLEOTIDES ARE INVOLVED IN THE FLOW
OF THE TRANSLATION MACHINERY
Initiation

At the onset of translation, an mRNA-programmed 30S ribosomal subunit recruits
three translation initiation factors (IF1 to IF3) and the initiator fMet-tRNAfMet to assemble
the preinitiation complex (PIC) (for an exhaustive review of translation initiation in pro-
karyotes, see reference 67) (Fig. 3). IF2 controls the fidelity of translation initiation by spe-
cifically enhancing the docking of the initiator tRNA via interactions with the formyl
group. This translation factor then enhances the decoding of the transcript’s start codon
within the ribosomal P site of the small subunit, allowing the formation of a 30S initiation
complex. The association of the 50S ribosomal subunit is then accelerated by the ribo-
some-bound IF2 acting as an anchor for subunit joining or by favoring an optimal ribo-
somal arrangement, leading to the 70S initiation complex (68). This immediately triggers
the GTPase activity of IF2 which changes the environment of IF1 within the ribosome,
promotes IF3 dissociation, releases and accommodates the initiator tRNA into the P site,
and finally forces IF2 and IF1 out of the ribosome (69). All these highly concerted events
allow the binding of elongation factor Tu (EF-Tu)-GTP-aminoacylated tRNA (aa-tRNA)
(known as the ternary complex) to promote dipeptide synthesis and the formation of an
elongation-competent 70S initiation complex (69).

IF2 has been defined as a metabolic sensor during translation initiation able to detect
the status of the cell and either favor or preclude translation, depending on the nucleo-
tide bound to it (68, 70). This is particularly important when we consider that during the
stringent response, the levels of GTP fall from 0.7 to 1.1 mM to;0.3 mM, while the levels

TABLE 2 Nucleotide modifications in E. coli tRNAs and nucleotide dependence

Position Modification(s) Enzyme(s)a
Nucleotide
dependence

8 S4U IscS, ThiI1 ATP (134)
13 W TruD No
16,17 D DusA2, DusB2, DusC2 NADPH (135)
18 Gm TrmH3 SAM (136)
20 D DusA2, DusB2, DusC2 NADPH (135)
32 S2C, Cm, Um,W IscS, TtcA1, TrmL3, RluA ATP (137), SAM (138)
34 I, k2C, ac4C, Um, Cm, Q, GluQ, mnm5U,

cmcm5Um, cmnm5U, mnm5s2U,
cmnm5s2U, mnm5se2U, mcmo5U, cmo5U

TadA, TilS1, TmcA1, TrmL3, FolE4, QueDCEF, Tgt, QueA3,
QueG, YadB, MnmC13, MnmC23, MnmE4, GidA4, CmoA3,
CmoB3, AroB, aroD, aroE5, aroK1, aroL1, aroA, aroC

ATP (62, 139, 140), SAM
(138), GTP*, NADP1

37 m1G, m6A, m2A, i6A, ms2i6A, t6A, m6t6A TrmD3, TrmN6, MiaA, MiaB, IscS, IscU, TsaC, TsaD, TsaB,
TsaE

SAM

38 W TruA No
39 W TruA No
40 W TruA No
46 m7G TrmB3 SAM (141)
54 rT TrmA3 SAM (142)
55 W TruB No
65 W TruC No
67 W TruD No
aIn the “Enzymes” column, the superscript number indicates the corresponding cofactor: 1, ATP; 2, NADPH; 3, SAM; 4, GTP; 5, NADP1.
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of ppGpp increase up to ;0.8 mM (Table 1). Since the nucleotide-binding site of IF2 is
shared by GTP and ppGpp and the dissociation constants of both ligands are compara-
ble (1.6 and 2.8 mM, respectively), whichever is more abundant at any given point will
most likely outcompete the other and hence determine the fate of translation (70–72)
Fig. 3). On a mechanistic level, when ppGpp is present, the amount of fMet-tRNAfMet

binding to the 30S decreases mainly due to the lower affinity of IF2-ppGpp for the ribo-
some compared to IF2-GTP. This in turn leads to a lower rate of dipeptide formation, by
hampering the ability of IF2 to accommodate the initiator tRNA and consequently causes
a decrease in the overall translation rate (70).

Nevertheless, the regulation of translation by (p)ppGpp seems to be more complex
than previously expected, with recent data showing that during the stringent
response, the translation of certain transcripts is affected by ppGpp levels to different

FIG 3 Diverse involvement of nucleotides throughout the complete cycle of mRNA translation. As previously
described, translation initiation starts with the formation of the 30S preinitiation complex (PIC) and the recognition of
the codon-anticodon, with IF2 being regulated by (p)ppGpp levels. Upon the arrival of the next aminoacylated tRNA
into the ribosomal A site with the help of elongation factor Tu, the elongation of translation begins and is also
modulated by (p)ppGpp affecting EF-Tu’s function. The translocation of the P/A site tRNAs into the E/P configuration
mediated by EF-G is additionally affected by the levels of (p)ppGpp. Once a stop codon is recognized in the ribosomal
A site, RF1/RF2 will be recruited into the ribosome and with the aid of RF3, which will also be tuned by (p)ppGpp
pools, terminates translation and releases the polypeptide chain from the ribosome. Finally, EF-G and RRF, both
targets of (p)ppGpp, induces the ribosome to be recycled back into the pool of free subunits. HflX, also a (p)ppGpp
binder, could potentially be aiding with the recycling of a special subset of terminated/arrested ribosomes. The
precise positioning of YchF (a black dashed circle indicates its putative location) within the ribosome, its potential
regulation by (p)ppGpp/(p)ppApp, and the specific translation stage or stages affected by cNMPs require further
investigation.
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extents (73). Structural features found within the 59 untranslated region of specific
mRNAs increased the affinity of GTP for IF2, increased the inhibitory concentration of
ppGpp, and favor a 30S IC-like conformation, ultimately leading to a set of transcripts
that can be translated at physiological concentrations of ppGpp (73). Remarkably, it
was shown that pppGpp does not necessarily partake in the inhibitory nature of the
stringent response as ppGpp does and allows IF2 to recruit the initiation tRNA and pro-
mote the formation of the 30S initiation complex. Whether the structural features that
confer an advantage in translation during (p)ppGpp accumulation are characteristic of
a certain set of mRNAs required during stress conditions, whether there are other cis-
and trans-regulatory factors also affecting the translation efficiency of such mRNAs,
and whether the IF2-dependent regulation of pppGpp provides another layer of trans-
lational control all remain to be answered. In addition, it was recently shown that in E.
coli, the universally conserved ATPase YchF seems to act as a stress-mediated regulator
of leaderless mRNA translation by interacting with the 30S small subunit and modulat-
ing the antiassociation activity of IF3 (74). What makes YchF intriguing is that it is a P-
loop GTPase that preferentially hydrolyses ATP and whose levels drop during stress
conditions (75). A differential regulation of YchF by GTP/ATP or its stress-induced coun-
terparts (p)ppGpp/(p)ppApp is plausible (Fig. 3); however, whether this is true or physi-
ologically relevant to better cope with stresses should be further examined.

Elongation

The first complete translocation of the mRNA-tRNA complex from the A and P sites
to the P and E sites, respectively, catalyzed by the GTPase elongation factor G (EF-G), is
defined as the start of translation elongation (translocation) (67). Now, at the posttrans-
locational state, the A site is vacated, and the next codon is exposed, allowing the
appropriate aminoacylated tRNA to be incorporated as a ternary complex in which EF-
Tu plays the major role. Once the codon-anticodon match has been successfully
sampled (decoding), the EF-Tu-mediated hydrolysis of GTP is triggered, EF-Tu is
released, and the cognate tRNA is accommodated into the A site, rapidly leading to
the peptidyl transfer (peptide bond transfer).

As expected, the GTPases in charge of translation elongation can bind (p)ppGpp and
further regulate the flow of translation (Fig. 3). It is worth mentioning that elongation
factor Ts (EF-Ts), which catalyzes the exchange of GDP from EF-Tu with GTP, is indirectly
inhibited by ppGpp. This is because EF-Ts is sequestered by ppGpp-bound EF-Tu, since
its affinity is higher than that of GDP-bound EF-Tu (76). There seems to be, however, a
differential prioritization of ppGpp over EF-Tu and EF-G as the dissociation constants
(Kds) between GTP and ppGpp vary substantially between them. As such, EF-Tu and EF-G
show Kds of 8 nM and 13.9mM for ppGpp and 0.59mM and 8.3mM for GTP, respectively,
indicating that the regulation of ppGpp on translation elongation is kinetically favored
to occur through EF-Tu even at basal levels of ppGpp (72, 77–79). Interestingly, despite a
previous report showing a 2-fold delay in the arrival time of EF-G to pretranslocation
complexes in the presence of ppGpp, no effects on the overall elongation rates were
detected. It was thought that since the pool of aminoacylated tRNAs decreases during
the stringent response, fewer pretranslocation ribosomal complexes would also reduce
the dependence on normal EF-G levels and, as such, inhibiting EF-G would therefore
have only a marginal effect on the overall rates of elongation (76).

During stringent conditions, a limiting amino acid leads to a reduction of its corre-
sponding cognate aa-tRNA and, consequently, a decrease of ternary complexes contain-
ing that specific aa-tRNA. This suggests that ternary complexes containing near-cognate
aa-tRNAs could potentially outcompete the correct—but scarce—ternary complexes and
reduce translation fidelity. Nevertheless, the accuracy of proofreading during protein
elongation is preserved under high levels of (p)ppGpp (80). To explain this seemingly
contradictory scenario, extensive biochemical and kinetic studies have proposed differ-
ent models (80–83). The most robust of these seems to indicate that ppGpp-bound EF-
Tu reduces by ;2-fold the rates for peptide bond formation and thereby widens the
time frame for a higher proportion of near-cognate tRNAs to be sampled and rejected

Nucleotide Dynamics and Protein Synthesis in Bacteria Microbiology and Molecular Biology Reviews

March 2023 Volume 87 Issue 1 10.1128/mmbr.00044-22 10

https://journals.asm.org/journal/mmbr
https://doi.org/10.1128/mmbr.00044-22


(82). This suggests that by delaying the incorporation of all aa-tRNAs and extending the
time frame for proofreading, ppGpp allows the translational machinery to ensure the fi-
delity of aa-tRNA selection while amino acid deprivation persists. Evidently, the kinetic
cost of preserving translation fidelity by delaying elongation rates would reduce overall
translation rates and growth; however, misincorporation of aa-tRNAs would lead to the
synthesis of aberrant proteins that could ultimately be fatal (84). Along the same line,
elongation factor 4 (EF4, originally called LepA), required for 16S rRNA processing and
the association of late-stage 30S ribosomal proteins, is also a target of (p)ppGpp (85, 86).
Despite no clear indication of the functional basis for the alarmones targeting EF4, given
its function during ribosome biogenesis, EF4 could be yet another way to control ribo-
some pools under conditions in which cognate aa-tRNAs are limited.

Termination

The elongation cycle will repeat itself throughout the mRNA until a stop codon is
reached, which marks the start of the termination cycle. In bacteria, release factors 1
and 2 (RF1 and RF2) recognize the codons UAG/UAA and UGA/UAA, respectively, as
the end of the transcript and promote the peptidyl transferase center-dependent hy-
drolysis of the peptidyl-tRNA, liberating the nascent polypeptide. Release factor 3 (RF3)
then enhances the release of RF1/RF2 from the ribosome, setting the stage for ribo-
some recycling (87).

Initial estimations of the dissociation constants of GDP and GTP to RF3 (5.5 nM and
2.5 mM, respectively) pointed to a model in which RF3 mainly existed in its GDP-bound
state (88). Nevertheless, these values were later revisited and the Kd of GTP to RF3 was
found to be comparable to that of GDP at 76 nM (89, 90). Considering that in bacteria
the levels of GTP are present in an ;5-fold excess compared to GDP throughout
growth phases or under mupirocin treatment, it is believed RF3 actually favors its GTP-
bound form. Furthermore, RF3 has been reported as a binding partner for the alar-
mones ppGpp and pppGpp, although showing higher dissociation constants at 0.8
and 15 mM, respectively (86). Interestingly, when RF1 turnover rates were probed, the
efficiency of recycling was compromised in the presence of ppGpp, suggesting that
under stringent conditions RF3 switches from its active GDP-bound state to an inactive
ppGpp-bound form (91) Fig. 3). It was further characterized that the binding of ppGpp
to RF3 would preclude the factor’s association to the ribosome due to a clash and elec-
trostatic repulsion between the 39 diphosphate group of ppGpp and the sarcin-ricin
loop (91).

Recycling

The fourth essential step of translation ensures that the posttermination ribosomal
complex releases the mRNA and tRNA and splits into functional subunits capable of
binding a new transcript to start translation over again (92). This is catalyzed by the
ribosome recycling factor (RRF) binding to the A site and forcing the ribosome into a
fully rotated state. EF-G then binds and alters the position of RRF, forcing the tRNA out
of the ribosome (93). Next, the EF-G-mediated hydrolysis of GTP pushes RRF into the
intersubunit space, ultimately splitting the 70S ribosome into individual ribosomal sub-
units (94).

Despite not being commonly described as a player in ribosome recycling, in princi-
ple, the heat shock-induced GTPase HflX is a ribosome-splitting factor (95). It has been
proposed that under stress conditions, GTP-bound HflX associates with the ribosomal
E site of translationally arrested ribosomes and rescues them by inducing subunit split-
ting (95, 96) to rates similar to those of GTP-bound EF-G–RRF-mediated ribosome dis-
sociation (97). Ribosomal dissociation was also observed in the presence of GDP-bound
HflX, albeit at an ;20-fold lesser extent than the GTP-bound state as evaluated by the
changes in light scattering (96). Since the ribosome-splitting function of HflX occurs in
a nucleotide-dependent manner and it has been previously reported as a (p)ppGpp
binder in bacteria, the putative regulation of translation recycling by the alarmones
under specific stress conditions remains to be challenged (Fig. 3).
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29,39-Cyclic Nucleotide Monophosphates and Translation

29,39-Cyclic nucleotide monophosphates (cNMPs) are a product of RNase 1-mediated
RNA degradation that accumulate upon ribosome recycling, mRNA decay, and the strin-
gent response (98). It has been shown that in E. coli, downregulated levels of cNMPs
heavily modulate its transcriptome, unveiling several cNMP-dependent cellular proc-
esses, such as acid resistance, biofilm formation, motility, and other stress responses (99).
However, the mechanism by which bacteria are able to sense the levels of these nucleo-
tides is still unknown. A recent work aimed to identify cNMP binding proteins in E. coli
and S. Typhimurium by employing cNMP-bound affinity chromatography resins (100).
Interestingly, various ribosomal proteins were detected by a mass spectrometry-coupled
protein pulldown assay, which led them to successfully probe purified 70S ribosomes as
the cNMPs’ binders. Furthermore, it was shown that translation was inhibited in vitro by
high levels of the cNMPs (50 to 100 mM), while at lower concentrations (5 to 10 mM),
cAMP showed an increase in translation partially attributed to transcription-dependent
effects (Fig. 3). All in all, it seems conceivable that intracellular levels of cNMPs can modu-
late translation, although the mechanistic and physiological basis for this regulation
needs to be further studied.

HOWNUCLEOTIDES ARE INVOLVED IN ASSEMBLY, DEGRADATION AND
BIOSYNTHESIS OF RIBOSOMES

After exploring the regulatory potential of nucleotide dynamics in the stability and
abundance of mRNAs, the levels and functionality of tRNAs, and the different stages of
translation, it is worth probing whether ribosome biogenesis and assembly are also
influenced by nucleotides. Indeed, various screenings searching for (p)ppGpp targets
have identified multiple proteins linked to the biogenesis, degradation, and assembly
of ribosomes whose functions would be altered during the stringent response (86,
101–104).

Regarding ribosome biogenesis, we can distinguish between the transcriptional regu-
lation of rRNA and the synthesis and assembly of ribosomal proteins. Irrespective of the
large number of molecules involved, the rate of ribosome biogenesis is primarily deter-
mined by the rate of rRNA transcription (105). In this sense, it has been observed that
during starvation in E. coli the formation of the open complex by RNAP is strongly
repressed by DksA, a protein that, bound to ppGpp, inhibits the start of rRNA transcrip-
tion (106). However, this regulation differs from that observed in Gram-positive bacteria
such as B. subtilis, in which, as previously discussed, the regulation of rRNA transcription
depends on the concentrations of its initiator NTP (36).

Due to the high number of ribosomal proteins, their synthesis must be highly regu-
lated to obtain the precise stoichiometry of these proteins in mature ribosomes. Thus,
in E. coli we can find many of them forming part of large operons whose translation
and increase in free protein levels generate negative feedback on the translation of
their own transcript (107). This regulation mechanism is common in eubacteria; how-
ever, the structures present in the mRNAs encoding ribosomal proteins are not highly
conserved among bacteria (108). This raises the possibility of alternative RNA structures
that interact with ribosomal proteins, or even with other metabolites, as is the case of
Vibrio vulnificus, which contains certain riboswitches that detect adenosine and lead to
the synthesis of the ribosomal S1 protein (109).

The assembly and maturation of ribosomal subunits are assisted by various factors,
such as DEAD box RNA helicases, maturation factors, and ribosome-associated GTPases.
Many of these GTPases have been identified as targets of (p)ppGpp, namely Era, Der
(EngA), ObgE (CgtAE), RsgA, BipA (87, 101, 110, 111). Given their relevance in subunit
maturation, some authors have already proposed these GTPases as regulators of ribo-
some biosynthesis under stress conditions (112). In addition to the regulation exerted on
ribosome biosynthesis, different putative GTPases, such as RsgA, RbgA, Era, HflX, and
ObgE, have been identified as (p)ppGpp targets, whose binding to (p)ppGpp negatively
impacts subunit joining in Gram-positive and Gram-negative bacteria (102, 113). The
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accumulation of (p)ppGpp in E. coli increases the affinity of ObgE for the 50S subunit,
exerting a role of antiassociation of the subunits and ultimately inhibiting the initiation
of translation, although its overexpression also decreases the fraction of mature 70S ribo-
somes (113). It is possible that an antiassociation factor with these characteristics has a
hierarchical effect on translation initiation—first on canonical translation initiation and
then on alternative initiation mechanisms such as 70S-scanning or the use of leaderless
mRNAs as the templates, where mechanisms that involve an interaction of the tran-
scripts with 70S monosomes rather than to individual subunits have been proposed
(113–115).

On the other hand, it has been proposed that the stringent response also involves
the degradation of ribosomal proteins mediated by the Lon protease, which is highly
conserved from bacteria to humans. This protease reduces the rate of protein synthesis
and helps to supply back limiting amino acids during starvation (116). Lon-mediated
proteolysis is activated by the accumulation of inorganic polyphosphates (PolyP), ubiq-
uitous polymers of various lengths, depending on the species, whose intracellular lev-
els are finely regulated by the balance between their synthesis and degradation by the
enzymes polyphosphate kinase (PPK) and exopolyphosphatase (PPX), respectively
(116). Agents that induce the stringent response, such as serine hydroxamate (SHX),
trigger a rapid accumulation of PolyP, which is explained by a (p)ppGpp-dependent in-
hibition of PPX (101, 117, 118). Some of the proteins that have been identified as part
of the Lon-PolyP complex are recruited very late in the formation of the subunit, such
as S2, but there are also others that interact almost directly with rRNAs, such as L9 and
L13 (116).

CONCLUSIONS AND PERSPECTIVES

In the present day, when high-throughput nucleic acid sequencing tools have
grown vertiginously, the myriad roles of nucleotides as encoders of information are re-
markable. However, before this genomic era, their study revealed them crucial ele-
ments of metabolism, as carriers of chemical energy as well as allosteric regulators of
different proteins, among multiple other functions. In this review, we have tried to
emphasize the relevance of changes in intracellular nucleotide levels and how their
action is not isolated but depends on the entire set of nucleotides.

Throughout their study, different strategies for nucleotide characterization and quan-
tification were performed, often sacrificing the diversity of analyzed nucleotides for
improved sensitivity and reproducibility. To exemplify this, we can contrast the sensitiv-
ity of the luciferin-luciferase enzymatic assay for ATP quantification in the picogram
range, while global nucleotide analysis by two-dimensional thin-layer chromatography
on polyethyleneimine (PEI)-cellulose allows discrimination of around 90 nucleotide spe-
cies at one time (119, 120). Additional efforts have been made in capillary electrophore-
sis. However, the species of nucleotides identified by this methodology depends on the
electrophoresis conditions, which makes the analysis of complex samples difficult (121).
Currently, chromatographic methods coupled to mass spectrometry provide us with suf-
ficient precision for the identification and quantification of mononucleotides and dinu-
cleotides with different degrees of phosphorylation or modifications in the bases that
compose them and/or cyclic dinucleotides (122–125). One field that has advanced in
parallel with the detection of nucleotides is the characterization of their targets.
Different methodologies have been standardized to determine both the targets of spe-
cific nucleotides and their affinity (101, 103). An example of this is the differential radial
capillary action of ligand assay (DRaCALA), which facilitates the determination of dissoci-
ation constants from different targets in a systematic way (103). These new tools force us
to reanalyze dynamics at the nucleotide level, this time understanding them as a net-
work that regulates cell metabolism and not as isolated values that change in response
to some disturbance.

The ribosome is quite convincingly the molecular hub at which most of these nucle-
otides converge and ultimately regulate protein synthesis rates and the state and fate
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of the cell. In the first instance, the combination of biogenesis and assembly of ribo-
somes, arguably the highest energetic cost process in the cell, is constantly tuned by
the pools of nucleotides, which fluctuate according to whatever challenge bacteria en-
counter. Then, mRNAs and tRNAs, the template-encoding substrates and the tools to
build such templates for the ribosome, are also finely regulated by nucleotide levels.
All stages of mRNA translation have at least one molecular reporter that senses and is
affected by (p)ppGpp, meaning that the fluctuating nucleotides originating from the
stringent response feedback the cell via the ribosome and its function. Furthermore,
antimicrobial compounds that bind to the ribosome and preclude its function cause
increased levels of Ap4A, possibly revealing a novel mechanism by which dinucleoside
polyphosphates act as reporters of the state and integrity of protein synthesis in real
time.

Various studies are attempting to unveil new modifications and changes in the con-
centrations of the nucleotide network, while others aim to characterize their targets.
However, the number of processes being regulated by nucleotides is so vast that it is
necessary to integrate both approaches through the generation of models, just as the
field of metabolic engineering did through the development of metabolic flux analysis
(126). Since many enzymes can interact to different extents with one or more nucleo-
tides, it is difficult to assess the in vivo effect of a specific nucleotide, and hence, is why
we should keep in mind the abundance, variety, and dynamics of nucleotides within
the cell. An example of this is seen with regard to translation factors that show differ-
ent affinities for GTP, GDP, and (p)ppGpp and where the degree of inhibition of the
steps involved in translation will depend on the levels of these four nucleotides. Future
research that reconnects our deep understanding of protein synthesis together with
the acknowledgment of how dynamic nucleotides are will allow us to uncover the
extent of how diverse nucleotide families are differentially fine-tuned when microor-
ganisms are perturbed. This will provide a picture in which we see whether nucleotides
are affecting the cell concomitantly or whether there is a prioritization of targets that
changes with the fluctuating levels of nucleotides.
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