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ABSTRACT
Contrasting views exist on timing and mechanisms of Tertiary crustal uplift in the NE Tibetan Plateau
based on different approaches, with many models attributing surface uplift to crustal shortening. We carry
out a comprehensive investigation of mid-Tertiary stratigraphy, sedimentology, and volcanism in theWest
Qinling, Hoh Xil and Qaidam basin, and the results challenge previous views. It was held that the
discordance between Oligocene andMiocene strata is an angular unconformity in theWest Qinling, but
our field observations show that it is actually a disconformity, indicative of vertical crustal uplifting rather
than crustal shortening at the Oligocene toMiocene transition. Widespread occurrence of synsedimentary
normal faults in mid-Tertiary successions implicates supracrustal stretching. Miocene potassic–ultrapassic
and mafic–ultramafic volcanics in the Hoh Xil andWest Qinling suggest a crucial role of deep
thermomechanical processes in generating crust- and mantle-sourced magmatism. Also noticeable are the
continuity of mid-Tertiary successions and absence of volcanics in the Qaidam basin. Based on a holistic
assessment of stratigraphic–sedimentary processes, volcanic petrogenesis, and spatial variations of
lithospheric thicknesses, we speculate that small-sale mantle convection might have been operating beneath
northeast Tibet in the mid-Tertiary. It is assumed that northward asthenospheric flow was impeded by
thicker cratonic lithosphere of the Qaidam and Alxa blocks, thereby leading to edge convection.The
edge-driven convection could bring about surface uplift, induce supracrustal stretching, and trigger vigorous
volcanism in the Hoh Xil andWest Qinling in the mid-Tertiary period.This mechanism satisfactorily
explains many key geologic phenomena that are hardly reconciled by previous models.
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INTRODUCTION
The collision of India with Asia occurred around
55–60 Ma and built the Tibetan Plateau [1–4]. It,
however, remains controversial how the plateau ex-
panded laterally and rose in response to the per-
sistent India–Asia convergence [4,5]. Diverse dy-
namic models have been advanced to reconstruct
the spatiotemporal growth of the Tibetan Plateau
[6–9]. Some workers suggest that the NE Tibetan
Plateau began developing soon after the India–
Asia collision [10], but others insist that the Ti-
betan Plateau expanded outward in steps, with its
peripheral margins not having been involved until
the Miocene [11]. No agreement has been reached
as to how the NE Tibetan Plateau evolved. A
great many studies have been carried out to un-

derstand different aspects of tectonic history of NE
Tibet, such as stratigraphic and sedimentary evo-
lution [12–15], basin tectonics [16–18], exhuma-
tion history of structural belts [19–23], petrogene-
sis of volcanic rocks [24–28], crustal deformation
[10,29,30], and crustal and lithospheric structures
[31–34].

This work focuses on mid-Tertiary tectonics of
the NE Tibetan Plateau based mainly on strati-
graphic and sedimentologic observations in the
West Qinling, Hoh Xil and Qaidam basin. Our re-
visit of stratigraphic sequences and sedimentary pro-
cesses reveals that the West Qinling and Hoh Xil
orogens underwent crustal vertical uplifting rather
than shortening in the mid-Tertiary, and surface up-
lift was accompanied by volcanism sourced from
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Figure 1. (A and B) Geomorphologic map showing distribution of main tectonic elements and Cenozoic intermontane basins in the NE Tibetan Plateau.

both the crust and mantle. The Qaidam basin, by
contrast, is free of volcanism and characterized by
conformable mid-Tertiary sequences. Based on de-
tailed investigations of stratigraphic and sedimen-
tary successions, together with careful evaluation
of petrogenesis of volcanic rocks and spatial varia-
tions of the lithospheric thickness, we assume that
an edge-driven convection might have been op-
erating beneath the NE Tibetan Plateau in the
mid-Tertiary as a consequence of impediment of
the thicker lithospheric keels of the Qaidam and
North China cratonic blocks to northward astheno-
spheric flow.The resultant upwelling of the astheno-
spheric hot materials raised the crustal surface and
simultaneously triggered volcanism. This mecha-
nism provides a satisfactory explanation for a num-
ber of prominent geologic phenomena such as re-
gional disconformity, supracrustal stretching, and
spatial distribution of the crust- and mantle-sourced
volcanism.

GEOLOGIC SETTING
The NE Tibetan Plateau is made up of both struc-
tural/orogenic belts and cratonic blocks (Fig. 1).
The western portion comprises the Qaidam basin
and surrounding structural belts such as the Al-
tyn Tagh, Qilian Shan, East Kunlun and Hoh Xil,
whereas the eastern portion is a mosaic of inter-
montane basins and structural belts. The eastern
portion is largely occupied by the West Qinling,
a wide orogenic domain that experienced multiple
terrane accretion, magmatism, and metamorphism

in the Paleozoic and early Mesozoic [35–38]. The
West Qinling was further modified by the alternat-
ing crustal extension and contraction in the late
Mesozoic [17].

Opinions differ considerably on when and how
the NE Tibetan Plateau was established (Fig. 2).
Surface uplift of NE Tibet is commonly attributed
to crustal shortening and thickening due to far-
field effect of the India–Asia collision. Crustal
contraction is assumed to have been initiated as
early as the Early Eocene on account of initi-
ation of reverse faulting [39,40], compressional
basins [12,17,41] and conglomeratic sedimenta-
tion [10,42,43]. Low-temperature thermochrono-
logic data show that structural belts in NE Tibet
underwent cooling/rock exhumation in the inter-
val from ∼30 to 22 Ma, which is often ascribed to
crustal shortening [19–22,44,45]. The inference of
the ∼30–22 Ma shortening event, however, is not
justified because of the lacking of geologic evidence
of simultaneous thrust faults and growth strata. By
contrast,∼16–14Ma crustal shortening and surface
uplifting arewell confirmed by a variety of geological
observations such as growth strata [46], thrust and
strike-slip faulting [19,47], marked increase in sedi-
mentation rates [48,49], river system reorganization
[50], and rapid exhumation of structural belts and
coeval shifting of sediment supply systems of adja-
centbasins [23,49,51,52].Rapid contraction-related
exhumationof structural belts is demonstrated tooc-
cur at∼10–8Ma by virtue of growth strata [53,54],
cooling ages [55,56] and transpressional deforma-
tions [57]. The Pliocene witnesses another period
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55–45 Ma, based on inferred reverse faulting,
conglomerate sedimentation, compressional
basin development [10,12,39–43]

30–22 Ma, based on exhumation history of structural belts [19–22,44,45]

16–14 Ma, based on ages of growth strata, rapid change of basin’s provenances, rapid exhumation
of structural belts, creation of high-relief topography, accelerated sedimentation, angular
unconformity, river system reorganization, paleontologic evidence [19,23,45–48,50,63]

10–7 Ma, based on rapid exhumation of structural belts, thrust and strike-slip faulting, growth strata [19,53-56,79]

5–1.6 Ma, based on ages of river terraces, growth strata, climate changes [23,58,59]

0 (Ma)

Quaternary Pliocene Miocene Oligocene Eocene Paleocene

Figure 2. A summary of the views on timing of uplift of the NE Tibetan Plateau. Diverse approaches are used to infer the ages of contraction-induced
uplift, and tectonic interpretations are based on different rationales of geological phenomena and experimental data.

of significant surface uplift that is recorded by rapid
fluvial incision, rock denudation and high-rate sedi-
mentation of coarse-grained sediments [23,58–60].
Figure 2 summarizes the key time intervals when the
NE Tibetan Plateau is inferred to experience rapid
uplift in response to crustal shortening.

Vigorous debate exists regarding when crustal
shortening initiated in the NE Tibetan Plateau.
Paleogene successions of intermontane basins in
the West Qinling, such as the Xining, Guide and
Linxia basins, are interpreted as infill of flexural
or compressional basins [17,41,61]. The Eocene–
Oligocene Lulehe conglomerate in the western and
middle Qaidam basin is also taken as sedimentary
record of thrust-related uplifting of the Qilian Shan
in the north [10,42,43]. Dating of some reverse
faults hints at Eocene inception of shortening in
the West Qinling [39]. All these studies suggest
Eocene–Oligocene contractional deformations,
implying an immediate response of NE Tibet to
the India–Asia collision. Recent structural and
stratigraphic investigations, however, show that
the eastern NE Tibetan Plateau was in an exten-
sional setting during the Paleogene on account
of widespread occurrence of normal faulting that
either controls Paleogene sedimentation or occur in
Paleogene successions [62]. EarlyMiocene tectonic
setting also remains elusive albeit ∼30–22 Ma ex-
humation of some structural belts, such as the East
Kunlun and Laji Shan, is often interpreted as the
result of crustal shortening [20–22,44,45,51,63].
Middle–Late Miocene rock uplift, thrusting
and strike-slip faulting have been widely doc-
umented throughout the NE Tibetan Plateau
[19,49,53,64,65], and it is now accepted that crustal
shortening had become predominant since∼15Ma
[46,48,53].

STRATIGRAPHIC SEQUENCES
Tertiary strata in the NE Tibetan Plateau have been
well studied, and the age assignments to lithos-
tratigraphic units rely basically on mammal fos-
sils and magnetostratigraphy [12–15,52,61,66–71].
Tertiary successions are perfectly preserved inmany
basins, and rest unconformably on Mesozoic and
older rocks (Fig. 3).

The West Qinling
A number of Cenozoic intermontane basins exist
in the West Qinling (Figs 1 and 4). A regional
unconformity separates Paleogene from Neogene
strata (Fig. 3) and can be readily observed in the
field (Fig. 5). Tertiary sequence in the Xining basin
was previously regarded conformable [66,72], but
a careful magnetostratigraphic study identifies a
disconformity separating the Xining Group from
overlying Miocene Chetougou Formation, which
represents a time lapse from 22 to 20 Ma [73].
This disconformity becomes conspicuous in the Laji
Shan (Fig. 5A), which bounds the Xining basin
on the south and was once a part of the Xining
basin in the Paleogene [62]. The unconformity be-
tween the Paleogene and Miocene in the Guide
basin is often taken as an angular unconformity
[41]. However, this low-angle discordance turns
out to be a local erosional surface in that Lower
Miocene Guidemen Formation remains in general
parallel to the underlying Xining Group (Fig. 5B).
Field observations further disprove the interpreta-
tion of angular unconformity insofar as the ‘an-
gular contact’ changes laterally into a disconfor-
mity in a short distance (Fig. 5C). The erosional
contact resulted from channeling of rivers that de-
posited basal conglomerate of the Guidemen For-
mation. This disconformity is also clearly discerned
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Figure 4. Simplified geological map showing distribution of Cenozoic intermontane basins in the West Qinling. Note that original configurations of
Paleogene and Early Miocene basins were altered to various degrees by late-stage crustal deformations.

in the Xunhua and Linxia basins where it manifests
itself as a striking erosional surface below theGuide-
men and Zhongzhuang formations (Fig. 5D and E),
with paleosols being locally present atop the Up-
per Oligocene Tala Formation [74].The coeval dis-
conformity in the Tianshui basin is exemplified by
a sharp facies change from the Guyuan fluvial con-
glomerate toGanquan lacustrine fine-grained clastic
rocks (Fig. 5F) [75]. Paleogene strata are missing in
the Gonghe basin where Miocene units rest directly
on strata of different ages [76].

The Hoh Xil
Tertiary sequence in the Hoh Xil is composed
of three units, the Fenghuoshan Group, Yaxicuo
Formation and Wudaoliang Formation in ascend-
ing order, and two unconformities separate them
from each other (Fig. 3). The Late Eocene–Early
Oligocene Yaxicuo Formation is widely distributed
(Fig. 6) and dated at 36–30 Ma by magnetostrati-
graphic studies [77]. This unit is deformed to var-
ious degrees and particularly intensely folded near
the Tanggula, Fenghuoshan and Hoh Xil thrust
belts [29,78,79]. In contrast, the overlying Wu-
daoliang Formation remains flat-lying throughout
the Hoh Xil, indicative of termination of crustal

shortening since the Miocene [80]. Thrusting and
folding should have come to an end by the Late
Oligocene inasmuch as the deformed Yaxicuo For-
mation is overlain by the undeformed basalt sheets
dated at ∼27 Ma [79,81]. The Wudaoliang Forma-
tion is assigned to be a Lower–MiddleMiocene unit
from 23 to 16 Ma on the basis of magnetostrati-
graphic dating and fossil assemblages [82,83]. The
discordance between the Yaxicuo and Wudaoliang
formations mostly expresses itself as an angular un-
conformity [29,78,84] although it is observed as a
disconformity in some locales [80].

The Qaidam basin
Cheng et al. [16] provide a helpful review of
Cenozoic stratigraphy of the Qaidam basin, and
make a discussion about the controversy on age
assignments to lithostratigraphic units in the middle
of the basin [14,52]. Figure 7A displays a geologic
section across the central Qaidam basin, showing
the continuity of Cenozoic successions. Given
that all the Tertiary successions of the basin were
deposited in continental environments, sedimen-
tary facies associations may exhibit marked spatial
variations, with some units being diachronous.
As a result, simple temporal correlation of
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Figure 5. Field photos showing disconformities between Paleogene and Miocene strata in the West Qinling. (A) Disconformable surface between
the Guidemen conglomerate and the underlying mudrocks of the Xining Group in the Laji Shan. Width of view ∼200 m. (B) An erosional low-angle
unconformity resulting from fluvial channeling into the Xining Group in the Guide basin. Width of view∼250 m. (C) Typical disconformity separating the
Guidemen conglomerate from the underlying Xining Group in the Guide basin. Width of view ∼150 m. (D) Sharp discordance (disconformity) between
the Guidemen Formation conglomerate and the Xining Group mudrocks in the Xunhua basin. Width of view ∼300 m. (E) A sharp erosional contact
(disconformity) between basal conglomerate of Miocene Zhongzhuang Formation and Oligocene Tala Formation in the Linxia basin. Width of view
∼10 m. (F) Sharp contact (disconformity) between lacustrine mudrocks of the Lower Miocene Ganquan Formation and alluvial conglomerate of the
Oligocene Guyuan Group in the Tianshui basin. Width of view ∼150 m. Fm = Formation, Gr = Group, cgl = conglomerate.

lithostratigraphic units can be misleading. For ex-
ample, the Lulehe Formation is dated or inferred to
be an Eocene unit in the westernmost Qaidam basin
[10,85,86], but this unit was recently demonstrated
to be Early Oligocene (∼31 Ma) in age in its type
section [87]. Magnetostratigraphic studies further

show that deposition of the Lulehe conglomerate
have not started until the Late Oligocene [52] or
Early Miocene [70] in the Honggou section in
the middle of the Qaidam basin, which is located
ca. 120 km east of the type section. This situation
clearly indicates that the Lulehe Formation is a
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Figure 6. Simplified geologic map showing distribution of Tertiary strata and volcanic rocks in the Hoh Xil and northern Qiangtang. Note that Lower
Miocene Wudaoliang Formation (Nw) unconformably overlies the pre-Miocene strata. The dates of Miocene volcanic rocks are from Refs [24,26,28].

diachronous unit, possibly resulting from eastward
transgressive deposition. Conglomeratic facies
associations of the unit represent alluvial–fluvial
sedimentation at the edge of the basin. Expansion
of the depositional area of the Qaidam basin is
implied by the eastward onlap of Tertiary strata
on geologic profiles (Fig. 7B) and isopach maps of
different units [16,18]. Middle Tertiary successions
are conformable in the western and central Qaidam

basin, with the Oligocene Shangganchaigou Forma-
tion passing upward conformably into the Lower
Miocene Xiayoushashan Formation. The two units
are composed dominantly of lacustrine fine-grained
siliciclastic and carbonate facies such as thin-bedded
mudstone/siltstone and limestone/marls. The
Paleogene is absent in the easternmost Qaidam
basin or the Wulan basin where Miocene units lie
unconformably over the Mesozoic and older rocks
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Figure 7. Geological sections of the Qaidam basin based on interpretations of seismic profiles. (A) SW–NE-striking section across the central part of
the basin, showing the continuity of Cenozoic successions. Basinward thrusting had not started until the Late Miocene when the Shizigou Formation
was deposited as growth strata. (B) The west–east-striking section in the eastern Qaidam basin, showing transgressive overlapping of units toward
the east. Refer to Fig. 1 for locations of the two sections.

[88], similar to Tertiary stratigraphy of the Gonghe
basin.

SEDIMENTARY PROCESSES
The West Qinling
Mid-Tertiary strata are well preserved in inter-
montane basins of the West Qinling (Figs 3 and
4). Oligocene units are comprised mostly of fine-
grained facies associations deposited in lacustrine
and meandering fluvial environments. Coarse-
grained facies associations exist in some locales
and result from fan-deltaic sedimentation due to
high-rate extensional subsidence [62]. Paleosols are
present at the uppermost parts of some Oligocene
units, implicating development of exogenic surfaces
at the end of the Paleogene. LowerMiocene succes-
sions usually commence with alluvial and braided
fluvial debrite and coarse-grained sandstone,
and unconformably overlie pre-Miocene rocks
(Fig. 5A–D).

Complete Miocene successions perfectly crop
out in the Guide basin south of the Laji Shan
(Fig. 4). Alluvial and braided-river sedimentation
marks the initiation of the Guide basin, as repre-
sented by basal debrite of theGuidemen Formation.
Debrites are massive or thick-bedded, and consist
dominantly of angular clasts of different lithologies
such asmetavolcanics, schist, quartzite, and argillite.

Coarse-grained sandstonewith planar and low-angle
stratification becomes more abundant in the up-
per Guidemen Formation. Debrite and sandstone
facies associations are interpreted as deposits of
debris- and high-concentrated flows. Noteworthy is
the rapid change from theGuidemen coarse-grained
facies upward into green- and dark-colored fine-
grained clastic facies and thin-bedded limestone,
which make up the overlying Garang and Ashigong
formations.

The Xunhua basin is located to the east of the
Guide basin where the Oligocene unit is termed in
the literature as either the Tala Formation or Xining
Group. This unit consists of alluvial conglomeratic
facies in the lower part and fluvial–lacustrine
sandstone and mudrock in the middle and upper.
In places, paleosol horizons are present in the
uppermost part of the Tala Formation, which is
then overlain disconformably by massive alluvial
debrite and coarse-grained sandstone of the Guide
Group. Fine-grained sandstone and mudrock faces
become predominant in the middle Guide Group,
and are deposited in lacustrine and deltaic environ-
ments. Braided river sedimentation took place in
the north of the basin, as recorded by cross-bedded
and parallel-stratified gravelly sandstone facies
associations.

The Linxia and Xunhua basins are separated by
the Jishi Shan, the southeastern extension of the
Laji Shan (Fig. 4). Compared with its equivalent
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Figure 8. Field photos showing Early Miocene normal faults in the Wulan and Guide basins in the eastern Qaidam and West Qinling, and lava sheet in
the Hoh Xil. (A) A normal fault controlling basal sedimentation of Lower Miocene unit in the Wulan basin, with a small depositional wedge thickening
toward the fault. Width of view∼20 m. (B) A normal fault separates the Guidemen from Garang units in the Guide basin, which is covered with the upper
Garang fine-grained layer. Width of view ∼80 m. (C) Various-scale normal faults in the Garang sequence of the Guide basin. People for scale. (D) Early
Miocene lava sheet in the distance, which overlies the Yaxicuo Formation and undergoes little deformation. View in the background 500 m wide.

of the Xunhua basin, the Tala Formation is com-
posed of meandering fluvial and lacustrine sand-
stones and siltstone, with conglomeratic beds be-
ing merely present at the base. The Lower Miocene
Zhongzhuang Formation comprises conglomeratic
facies in the lower part and fine-grained facies asso-
ciations in the middle and upper. Our field obser-
vations and sedimentary analysis indicate that this
unit exhibits a rapid transition from braided-river
to meandering-river/lacustrine environments, sim-
ilar to the Lower Miocene sequences in the Guide
basin.

Middle Tertiary stratigraphy and sedimentation
in the Tianshui basin northeast of the Linxia basin is
also carefully studied [75]. The Oligocene Guyuan
Group, less than 500 m thick, is made up pri-
marily of massive conglomerate and coarse-grained
sandstone, which are interpreted as debris-flow de-
posits in alluvial environments. The Miocene Gan-
quan Formation is comprised mostly of lacustrine
siltstone and mudstone (Fig. 3), and rests dis-
conformably on the Guyuan Group, with alluvial–

fluvial conglomerate and sandstone being at the
base [62].

It is worth noting that extension must have
been active during the Early Miocene, as man-
ifested by the presence of various-scale synsedi-
mentary normal faults that either cut the uncon-
formity beneath the Lower Miocene or occur in
Lower Miocene successions. Figure 8A displays a
normal fault controlling LowerMiocene sedimenta-
tion in the Wulan basin. The Wulan basin, located
at present in the easternmost area of the Qaidam
basin, was once connected with the Gonghe basin
in the Early–Middle Miocene [89]. It is noticeable
that the Miocene subsidence of the Gonghe basin
was governed by normal faulting on its northern and
southern borders, as inferred by geologic interpre-
tation of a seismic profile [90]. In addition, nor-
mal faulting should have commenced at the begin-
ning of the Early Miocene when the Guidemen and
Garang successions were deposited. Normal faults
cut the Guidemen conglomeritic sequences and
controlled deposition of both the Guidemen alluvial
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conglomerate andGarang lacustrine fine-grained fa-
cies (Fig. 8B). Widespread presence of synsedimen-
tary normal faults of various scales in theGarang suc-
cession (Fig. 8C) indicates continuation of normal
faulting in the late Early Miocene. Normal faults are
also documented in the eastern West Qinling, such
the Tianshui basin [91,92]. Guo et al. [93] demon-
strate that Miocene sedimentation in the Zhangx-
ian basin should have taken place in an extensional
setting based on detailed facies analysis of deposi-
tional successions. Miocene bimodal volcanic rocks
in theWestQinling are also consistentwith an exten-
sional tectonic setting [94]. Extensionmight have af-
fected theWestQinlinguntil thePliocenewhencon-
tractional and transpressional deformation became
prevailing [95].

The Hoh Xil
The Late Eocene–Oligocene Yaxicuo Formation is
made up primarily of fine-grained siliciclastic rocks,
including thin- to medium-bedded sandstone, silt-
stone, and mudstone. Red-colored mudrock and
sandstone typify the middle and upper parts of the
formation, and gypsum layers are particularly com-
mon in the uppermost. Conglomerate and coarse-
grained sandstone facies are present at the base.The
fine-grained siliciclastic facies associations are in-
terpreted as the result of coastal to shallow lacus-
trine sedimentation, whereas the basal conglomer-
atic facies formed in fluvial and deltaic environments
[78,96–98].

The Wudaoliang Formation begins with con-
glomeratic facies, which pass upward to thin-bedded
mudrock, bioclastic limestone, marl, and dolostone.
Stromatolites of differentmorphology are common-
place, and can build up huge reefs or domes up to
80 m thick in some locales [99]. This unit is less
than 400m thick, varying from 100 to 350m. Abun-
dant ostracode fauna are reported, such as Leuco-
cythere sp. and Microlimnocythere sp., Ilyocypris sp.,
Eucypris sp., andCandona sp. [82].The sedimentary
facies associations and ostracode fauna indicate that
the Wudaoliang succession was deposited in lacus-
trine environments [82,97]. Broad distribution of
fine-grained clastic and carbonate facies and the lack
of coarse-grained facies are consistent with the infer-
ence of a vast lake in the Hoh Xil during the Early
Miocene [82].

Also important is the occurrence of mid-Tertiary
normal faults in northern Tibet [100]. Wu et al.
[101]made a detailed investigation of theWenquan
basin that is bounded on the west by a normal fault,
and demonstrated∼18 Ma commencement of nor-
mal faulting. Blisniuk et al. [102] also documented

an∼13.5Manormal fault system that controlled the
Shuanghu rift basin just south of theWenquanbasin.
Unfortunately, there are no reports of synsedimen-
tarynormal faults inMiocene successions in theHoh
Xil in the literature although Pliocene–Quaternary
extensional basins widely develop [80].

The Qaidam basin
Mid-Tertiary sedimentary processes of the Qaidam
basin have been extensively studied [42,86,103].
The Oligocene–Lower Miocene successions or the
Shangganchaigou–Xiayoushashan successions are
continuous, contrasting with the mid-Tertiary suc-
cessions in the West Qinling and Hoh Xil. The suc-
cessions are dominated by mudstone, siltstone, and
carbonate rock, and there also occur stromatolite
and algal reefs [104–106]. Fluvial systems mainly
develop along the northern margin of the Qaidam
basin. Existence of limestone, stromatolite, and al-
gal reefs, in conjunction with the predominance of
fine-grained clastic facies associations, hints at ex-
pansion of a vast lake during this period. Fluvial and
alluvial systems began propagating into the basin
from the surrounding structural belts in the Late
Miocene, such as the East Kunlun [103], AltynTagh
[107] andQilian Shan [42], leading to considerable
shrinkage of lake area and disappearance of carbon-
ate deposition.

MIOCENE VOLCANISM
Miocene volcanic rocks are distributed in the Hoh
Xil and West Qinling (Fig. 9), and their petrol-
ogy, geochemistry, and petrogenesis have been well
studied [25,26,108–114]. Volcanic eruptions in the
Qiangtang took place mainly in the Early–Middle
Eocene, and then diminished [24,115–118]. Vol-
canismmigrated northward and became quite active
in theHohXil andWestQinling during theMiocene
(Fig. 9), asmanifested by diverse volcanic lava dated
at∼23–7Ma [26,28,113].

Mid-Tertiary volcanoes come in all sizes and
shapes in NE Tibet, expressing themselves as pos-
itive landforms like lava sheets (Fig. 8D), domes
and pyroclastic cones, ranging from 30 to 150 m in
thickness [28,119,120]. Some lava sheets cover an
area up to 200 km2 [121]. Volcanic rocks overlie
sedimentary successions of different ages, with the
youngest underlying strata being the Yaxicuo For-
mation. Volcanics are compositionally variable, in-
cluding massive trachyte, trachyandesite, rhyolite,
volcanic breccia and pyroclastics [28]. Intermedi-
ate rocks are basically potassium-rich adakitic vol-
canics and attributed to lower-crustal melting [26].
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Figure 9. Diagram showing distribution of Miocene volcanics in NE Tibet. Note that volcanic rocks are distributed in the Hoh Xil and West Qinling but
absent in the Qaidam basin, Qilian Shan and Alxa block. Geochronologic data of volcanics are from Refs [24,26,28,131,132].

Peraluminous rhyolites, dated at 14–9 Ma, are as-
sociated with K-rich adakitic rocks, and ascribed to
middle crustal melting [122]. It is particularly worth
noting the occurrence of 16 Ma olivine leucitites in
the Hoh Xil [26,28], which display very low SiO2
and high MgO contents, and are enriched in large
ion lithophile elements [123]. These geochemical
features indicate that olivine leucitites originate from
low-degree partial melting of the lithospheric man-
tle [123]. Potassic–ultrapotassic volcanics are com-
monly thought of as the products of partial melting
of the enriched lithospheric mantle at high tempera-
tures [109,111]. Coexistingmafic rocks further indi-
cate the contribution of partial melting of the litho-
spheric mantle to mid-Tertiary volcanism [124].

Miocene lava in the eastern West Qinling is
distributed as tens of individual outcrops usu-
ally <1 km2 (Fig. 10). Pyroclastic rocks occur
as interlayers in volcanic lava successions. Vol-
canics are predominantly mafic and alkaline, and
characterized by very high Na2O/K2O ratios and
enrichment of Sr–Nd–Pb isotopic compositions.
Timing of volcanic eruptions is constrained by
phlogopite 40Ar/39Ar and zircon U-Pb ages from
∼23 to 7 Ma [113,114]. Kamafugite suites are
typical of alkaline volcanic rocks in the easternWest
Qinling (Fig. 10C), and accompanied by igneous
carbonatite [125]. Porphyritic texture characterizes
the kamafugites that contain abundant carbonatite
inclusions [110,125], xenoliths of pyroxenite, dunite

and harzburgite [25], and numerous phenocrysts
of olivine, clinopyroxene and nepheline [25,126].
Miocene alkaline mafic and ultramafic volcanics in
the middle part of the West Qinling express them-
selves as alkaline basalt and contain minor olivine
crystals and carbonatite inclusions [125]. Basalts
in the Duofutun area yield a zircon U-Pb age of
∼14 Ma (Fig. 10D) [114], and their geochemical
characteristics implicate their derivation frompartial
melting of the carbonatedmantle lithosphere [125].

NoMiocene volcanics occur in the westernWest
Qinling (Fig. 9). It is, however, interesting to note
that hot dry rocks are widely reported in theGonghe
basin, and serve as important geothermal resources
[127, 128]. Drilling reveals that hot dry rocks pos-
sess high temperatures up to 214◦C at depths from
3700 to 4610 m, indicating a very high geother-
mal gradient (up to 14◦C/100 m) and high terres-
trial heat flows (up to 109.6 mW/m2) in the crust
of the Gonghe basin [127,128]. Geophysical explo-
rations attest to the existence of low-velocity zones
(LVZs) at depths from 20–40 km, with calculated
temperatures ranging from 680–760◦C in the lower
crust [128]. Plausibly, partial melting might have
been happening in the mid-lower crust [129]. All
these phenomena are suggestive of a deep-seated
heat source beneath the Gonghe basin.

Broad distribution of diverse volcanic rocks
and hot dry rocks collectively indicates thermal
disturbance in the lithosphere of NE Tibet during
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Figure 10. Diagram showing detailed distribution and outcrops of Miocene volcanic rocks in the West Qinling. (A) Volcanic rocks in the eastern West
Qinling include kamafugite and minor felsic volcanics. Isotopic ages are from Ref. [113]. (B) Basalts in the middle West Qinling. Isotopic age is from
Ref. [114]. (C) Kamafugite in the Lixian area, eastern West Qinling. (D) Basalts in the Tongren area, middle West Qinling. Hammer circled for scale.

the mid-Tertiary, and partial melting occurred in
both the crust and lithosphericmantle. Crustalmelt-
ing is indicated by rhyolite and K-rich adakitic rocks
[26,122], whereas mantle sources of volcanics are
sustained by the presence of peridotitic xenoliths in
kamafugites in the West Qinling [25,27,113] and
olivine leucitites and mafic–ultramafic rocks in the
Hoh Xil [28,123,130]. It is estimated that potassic
volcanics formed at 900–1200◦C [26,111,131] and
the lithospheric melting must have taken place at
high temperatures up to 1400◦C [132]. No mid-
Tertiary volcanics have been reported in theQaidam
basin andQilian Shan, in striking contrast to the vig-

orous volcanism in the adjacent Hoh Xil and West
Qinling.

DRIVERS FOR MID-TERTIARY UPLIFT OF
NE TIBET
Previous models
Many studies have been focusing on the age of
inception of crustal shortening in NE Tibet. It is
assumed that the India–Asia collision might have
immediately affected the NE Tibetan Plateau,
creating compressional basins in the Hoh Xil
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[29,78,79] and West Qinling [12,17,41]. Eocene–
Oligocene conglomeratic sedimentation in the
Qaidam basin is also ascribed to a far-field effect
of the India–Asia collision [10,43]. Rapid Late
Oligocene–Early Miocene exhumation of struc-
tural belts in the NE Tibetan Plateau, as recorded
by low-temperature thermochronologic data, is
considered to be the result of crustal shortening
[22,45,51]. However, some tectonic explanations
are inconsistent with our geologic observations.

Paleogene successions in the West Qinling
were thought of as infill of compressional basins,
with basin subsidence resulting from tectonic load
applied by surrounding thrust sheets [12,41].
However, widely-observed synsedimentary normal
faults of various scales in Paleogene successions
hint at crustal stretching rather than shortening
[62,133]. In addition, it is often taken for granted
that conglomeratic sedimentation is indicative of
shortening-related uplift of adjacent structural belts,
and accordingly the Eocene–Oligocene Lulehe
conglomerate in the Qaidam basin is frequently
invoked to argue for activation of thrusting and
uplifting of the Qilian Shan on the north. However,
broad distribution and textural/petrologic matura-
tion of the Lulehe conglomerate are at odds with
the interpretation of rapid proximal subsidence and
sedimentation of flexural basins.

There is also meager geological evidence bearing
out Early Miocene crustal shortening. The view of
Early Miocene crustal contraction in the northern
Tibetan Plateau relies mainly upon exhumation
history of structural belts, such as the East Kunlun
[19,45], Qilian Shan [20] and Laji Shan [21],
with cooling ages being utilized to constrain the
initiation and chronicle of contraction-related
uplifting. Unfortunately, few geologic observations
attest to Early Miocene thrust faulting. Growth
strata in well-dated Neogene successions show that
folding and thrusting commenced ∼15 Ma and
have persisted since then, as confirmed by seismic
profiles in the Qaidam basin [16,18,46] and field
observations in intermontane basins [53,54,134]. A
dramatic change in sediment feeding systems, to-
gether with synchronous thrusting, also consistently
points to∼15Ma commencement of rapid uplifting
of structural belts in the NE Tibetan Plateau, such
as the Qilian Shan [49,65], Jishi Shan [135], and
intrabasinal thrust belts like the Luliang Shan in the
northern Qaidam basin [64]. Strike-slip faulting
along the edges of the NE Tibetan Plateau is also
demonstrated to initiate at ∼15 Ma, such as the Al-
tyn Tagh fault [48,136], East Kunlun fault [19,137]
and Haiyuan fault [19,47]. Strike-slip faulting
within the NE Tibetan Plateau began ∼10 Ma,
such as the Elashan and Riyue Shan right-slip faults

[57]. Moreover, Early Miocene prevalence of fine-
grained clastic and carbonate sedimentation in the
Qaidam basin and the West Qinling also negate the
assumption of strong crustal contraction during that
period of time. Active thrusting and uplifting would
produce lots of coarse-grained clastics that rapidly
propagate into basins and suppress carbonate
sedimentation.

It is important to note another fact that crustal
shortening in the northern Qiangtang and Hoh Xil
had ceased by∼27Ma [79,81], and this view is ver-
ified by the observation of flat-lying LowerMiocene
Wudaoliang Formation and lava sheets (Fig. 8D).
It follows that the focused rock uplift of structural
belts in the NE Tibetan Plateau is hardly ascribed
to shortening as a result of tectonic push caused by
the Asia–India collision. Instead, it is plausible that
Late Oligocene–Early Miocene regional surface up-
lift, including the structural belts, arose from verti-
cal crustal motion. This inference is buttressed by
the occurrence of widespread disconformity sepa-
rating Oligocene from Miocene units in both inter-
montane basins (Fig. 3) and structural belts such as
the Laji Shan in the West Qinling (Fig. 5A). More-
over, the Hoh Xil surface height is estimated to have
been∼1400–2900m in theEarlyMiocene in light of
leaf fossils (barberry) in the Wudaoliang Formation
[138].Given that shortening had come to an end be-
fore∼27Ma in theHoh Xil, exogenic processes and
peneplanation was likely attributed to vertical sur-
face uplift driven possibly by deep thermomechan-
ical processes. The Hoh Xil surface elevation is now
at ∼5000 m above sea level, and thus it must have
experienced high-rate uplift since ∼15 Ma after the
termination of Wudaoliang lacustrine deposition.

A number of dynamic models have been ad-
vanced to account for the rising of the Tibetan
Plateau, such as northward-migrating crustal
shortening and thickening [1,11] and convective
removal of the mantle lithosphere [139]. These
models are favored in that they provide some
explanations of spatiotemporal variations of crustal
deformation, surface elevation, and volcanism in the
TibetanPlateauas awhole [8,9,29,140], andare thus
invoked to reconstruct Tertiary tectonic evolution
of the Hoh Xil [78,79]. It is noteworthy thatMolnar
et al. [139] developed the mantle removal model
to account for the rough synchronicity of crustal
uplift and volcanism in the Late Miocene. However,
Cenozoic volcanism had already begun prior to the
Late Miocene, and exhibited striking spatial migra-
tion with time [109]. The mantle removal model is
thus not fit for the mid-Tertiary tectonic evolution
of NE Tibet. Another popular model appeals to
southward subduction of the Asian continent to
explain tectonic development of the Qaidam basins,
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surrounding structural belts [11,141], and Miocene
volcanism in the Hoh Xil [26,142]. Unfortunately,
this model fails to reconcile with some conspicuous
features of mid-Tertiary tectonics of NE Tibet, as
explicated in this study. First, crustal shortening had
terminated by∼27Ma in theHoh Xil, and theWest
Qinling was basically in an extensional regime in the
Early Miocene. These facts are at variance with the
postulation that crustal shortening had continued
migrating northwards. Second, the convective
removal model predicts simultaneous volcanism
in a broad area, but Tertiary volcanism displays
marked northward shifting, with volcanic eruptions
occurring in the Qiangtang during the Eocene and
starting in the Hoh Xil andWest Qinling during the
Miocene. Also noticeable is the absence of Miocene
volcanics in the Qaidam and Qilian Shan where
volcanism should have taken place if convective
removal of lithospheric root happened beneath the
NETibetan Plateau.Third, observations of flat-lying
and gently-dipping Lower Miocene and younger
lava sheets in the Hoh Xil are in conflict with
tectonic models that assume southward subduction
of the Asian continent along the East Kunlun belt
and predict strong shortening of the overriding
Hoh Xil.

A new mechanism
It remains a key challenge to develop a dynamic
model that could exposit mid-Tertiary diverse tec-
tonic processes and their relationships in NE Tibet.
A feasible mechanism should at least take into ac-
count the new observational data provided in this
study, such as widespread disconformity between
Oligocene and Miocene strata, Early Miocene nor-
mal faulting, and concurrent volcanism. The tem-
perospatial coincidence among vertical surface up-
lift, supracrustal stretching and volcanism should
be no accident. Petrogenesis of volcanic rocks in
the Hoh Xil and West Qinling provides essen-
tial clues for inferring the driving forces. Potassic–
ultrapotassic and mafic–ultramafic volcanic rocks,
together with the presence of peridotitic xenoliths
and olivine crystals, suggest that thermomechanical
processes in the mantle should have played a sig-
nificant role controlling crustal deformation in NE
Tibet [108,109,111,125,143].ThemissingMiocene
volcanics in theQaidambasin,Qilian Shan, andAlxa
block is also an unavoidable fact (Fig. 9).

The crustal and lithospheric mantle structures of
the Hoh Xil and West Qinling prove to be quite dif-
ferent from those of the Qaidam and Alxa blocks.
Magnetotelluric data reveal that the Hoh Xil has a
conductive or low-resistivity upper mantle, indica-

tive of significant partial melting [144]. This fact is
consistentwith seismic images that indicate ahotup-
permantle beneath theHohXil [145]. Similarly, the
West Qinling exhibits weak and diffusive negative
velocity gradients in the lithosphericmantle, also im-
plying thermal anomalies or high temperature [32].
By contrast, the Qaidam and Alxa blocks behave as
rigid cratonic domains with higher resistivity [144].
Also interesting is the marked change in lithosphere
thickness across the boundaries between orogenic
and cratonic domains. The Hoh Xil and West Qin-
ling possess relatively thinner lithosphere thickness
varying from 125 to135 km [34,146] although their
crust is considerably thicker, up to 65 km [147,148].
By comparison, the lithosphere of cratonic blocks
is much thicker, varying from 175 to 190 km in
the Qaidam basin and up to 200 km in the Alxa
block, respectively [34]. Ye et al. [33] provide a deep
seismic reflection profile across the boundary be-
tween the West Qinling and Alxa block, which illus-
trates a conspicuous change in lithosphere thickness
between the two distinct tectonic domains. Spec-
ulations of active southward underthrusting of the
Qaidam lithosphere beneath the Hoh Xil and the
North China lithosphere beneath the West Qin-
ling depend on interpretations of the seismic im-
ages [33,145] or are inferred from geochemistry of
Miocene volcanics [26,122,142,149]. The concep-
tual models, however, are called into question by
other geophysical investigations such as differen-
tial P- and S-wave travel-time measurement [31]
and receiver-function imaging [150]. Moreover, the
models are also at odds with geologic observations
that Miocene strata basically remain little deformed
in both the Hoh Xil andWest Qinling.

The Songpan terrane, situated on the south of
the West Qinling and merging with the Hoh Xil to
the west, is part of the NE Tibetan Plateau (Fig. 1).
This terrane consists mostly of strongly deformed
Triassic turbiditic successions and is intruded by
the scattering granites of Late Triassic–Early Juras-
sic ages [151,152]. The Songpan shares similar tec-
tonic and magmatic evolution with the Hoh Xil and
West Qinling in the early Mesozoic [153], but dif-
fers from the two orogens in some aspects. First,
Cenozoic volcanics aremissing. Second, Cretaceous
strata remain essentially undeformed. Third, Ceno-
zoic deposits are basically lacking [154]. These dis-
tinct features imply that the Songpan terrane es-
caped both deep thermomechanical processes and
crustal compression in theCenozoic. It is shown that
the Songpan underwent two-phase rapid cooling at
∼120 Ma and ∼80 Ma during the Cretaceous, re-
spectively, which was then followed by extremely
slow surface uplift in the Cenozoic [154]. Implicitly,
the Songpan might have already attained its present
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mean elevation of ∼3500 m prior to the Cenozoic.
Crustal thickness of this terrane is up to ∼63 km
[147], and the thickening might have primarily re-
sulted from earlyMesozoic shortening. Also notable
is the thinner lithosphere of the Songpan terrane,
varying from∼125–135 km [34].

Cenozoic asthenospheric mantle flow is inferred
to have taken place under the Tibetan Plateau in
response to the persistent India–Asia convergence
[155,156]. The plausibility of northward astheno-
spheric flow is supported by spatiotemporal varia-
tion of Cenozoic volcanism [143], and also extrapo-
lated by seismic heterogeneity and anisotropy in the
upper mantle [157] and P-wave velocity perturba-
tions [158].A thickLVZ is imaged in theupperman-
tle of the Hoh Xil, reaching down to the top of the
mantle transition zone from the Moho [159]. The
LVZ exists mainly beneath the Hoh Xil, West Qin-
ling, and Songpan terranes [31,160], but disappears
beneath theQaidamandAlxa blocks [161]. Presum-
ably, the northward asthenospheric mantle flow is
driven by continued hinge advance of the subduct-
ing Indian lithospheric plate, a kind of tectonic pro-
cess suggested by Kapp and DeCelles [6].

Based on a holistic treatment of geologic, geo-
chemical and geophysical observations and data, we
propose an edge-driven convection model that can
satisfactorily account for regional surface uplift of
the West Qinling and Hoh Xil as well as generation
and spatial distribution of volcanic rocks in NE Ti-
bet during the mid-Tertiary (Fig. 11). As described
above, a marked step exists in lithosphere thickness
between orogenic and cratonic domains, with the
depth offset of the lithosphere–asthenosphere
boundary (LAB) up to ∼45 km. Conceivably, the
present-day variations in lithospheric thickness does
not exactly reflect their original difference, for the
lithosphere of the Hoh Xil and West Qinling must
have been thinned as a result of thermal erosion or
other thermomechanical processes (Fig. 11A and
B). Nevertheless, cratonic blocks usually possess a
considerably more stable and thicker lithosphere
than adjacent orogenic belts [162]. This notion is
well illustrated by the striking variation in litho-
sphere thickness between theAlxa block (>200 km)
[163] and the Qilian Shan (∼170 km) [34], both
of which have not been altered by Cenozoic deep
thermomechanical processes. The discrepancy of
LAB depth of the two domains should be even
larger in consideration of the increase in crustal
thickness of the Qilian Shan due to late Cenozoic
shortening. If it is the case, lithospheric keels of the
Qaidam and Alxa blocks could have served as bar-
riers to impede the northward mantle flow, thereby
inducing small-scale convection cells beneath the
West Qinling and Hoh Xil since the Late Oligocene

(Fig. 11A). The uprising asthenosphere heated the
overlying lithosphere and led to partial melting of
both the lithospheric mantle and mid-lower crust
(Fig. 11B). Other thermomechanical processes
might also be involved in the edge-driven convec-
tion, such as delamination and partial removal of the
lithospheric mantle (Fig. 11B), especially beneath
the Qiangtang–Hoh Xil that had experienced short-
ening just before the Late Oligocene [79]. K-rich
adakitic and peraluminous rhyolitic volcanism
resulted from partial melting of the mid-lower crust,
whereas partial melting of the lithospheric mantle
gave rise to mafic–ultramafic rocks and kamafugite
suites. Gradual thermal erosion of the lithosphere
by edge convection brought about vertical crustal
uplift due to the replacement of metasomatosed
mantle lithosphere by less dense asthenosphere
(Fig. 11B), possibly in conjunction with magmatic
inflation [130]. Upwelling of the asthenospheric
hot materials is sustained by petrologic studies that
infer very high temperatures from 800 to 1400◦C in
the crust and lithospheric mantle of the Qiangtang,
Hoh Xil andWest Qinling [111,131,132].

The edge convection exerted little effect on the
lithosphere of theQaidambasin, neither heating nor
raising it. As a consequence, the Qaidam basin has
remained a region of lower elevation (<1500 m)
[107,164–166] and free from volcanism in the
mid-Tertiary.TheQilian Shan was unaffected either
by the edge convection owing to the defense of
the Qaidam lithosphere keel on the south, thereby
explaining the absence of Miocene volcanics in
the Qilian Shan. Rapid uplift and exhumation of
the Qilian Shan arose mainly from crustal short-
ening and thickening from ∼15 Ma [30,167]. The
Songpan terrane appears to have also escaped the
influence of edge-driven convection as a whole
in that no volcanism and striking surface uplift
happened there in the mid-Tertiary. The possibility
is that the northward mantle flow had not been
dammed up until it met the lithospheric keel of the
Alxa block. The generated small-scale convection
merely affected the West Qinling, and exerted
little impact on the Songpan terrane. The focused
Early Miocene exhumation of the East Kunlun
and Laji Shan, as revealed by low-temperature
thermochronologic data, should also be the con-
sequence of convection-driven vertical crustal
motion, presumably enhanced by normal faulting
on the flanks of structural belts. Another outcome of
vertical crustal uplift is supracrustal stretching in the
West Qinling and Hoh Xil, possibly due to gravita-
tional collapse (Fig. 11B). Supracrustal stretching
created small-scale extensional basins filled with
Lower Miocene successions, and was accompanied
by volcanic eruptions. The convection-related
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distributed small extensional basins. (C) Strong crustal shortening began affecting periphery of the NE Tibetan Plateau from the Late Miocene onward
and led to thrust-related uplift of structural belts and basin inversion or shrinkage.

vertical crustal uplift, therefore, provides a
satisfactory explanation for the formation of
the regional disconformity beneath Miocene strata
and coeval volcanism in NE Tibet.

Crustal shortening has become predominant in
the Qaidam basin and surrounding structural belts
since Late Miocene time (Fig. 11C). It remains
perplexing as to what caused the switch of tec-
tonic regimes around 15 Ma. We conjecture that
the change in tectonic settings might have resulted
from gravitational collapse and spreading of the
rising interior of the Tibetan Plateau. Our ratio-
nales are based on the following arguments. First,
the Qiangtang and Hoh Xil are estimated to have
been at a paleoelevation of <3000 m in the Early

Miocene [138] and then reached an altitude of
∼4500m in a short timespan from theLateMiocene
to Pliocene [168], indicating a rapid uplift in the
latest Neogene. Second, the Qaidam basin and
surrounding structural belts had been regions of
lower elevation of <1500 m prior to Late Miocene
times, and then rapidly attained a high altitude of
∼3600 m in the Late Miocene [164]. Third, the
Qiangtang and Hoh Xil are featured by the over-
thickened crust [149,169,170] and the presence
of LVZs in the mid-lower crust [171]. The over-
thickened and heated orogens are weak and tend
to collapse under internally-generated body force
[1]. Finally, crustal stretching in the Qiangtang
and Hoh Xil occurred simultaneously with marginal
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shortening of the East Kunlun and Qaidam basin
in the Late Miocene. Taken together, a sharp ele-
vation gradient could readily lead to gravitational
collapse and spreading of hotter and thicker oro-
gens toward regions of low elevation. Northward
gravitational spreading of the Qiangtang and Hoh
Xil is thus likely responsible for compressional force
in marginal zones, thereby bringing about folding,
thrusting and strike-slip faulting in theQaidambasin
and surrounding structural belts like the East Kun-
lun, Qilian Shan and Altyn Tagh belts. The West
Qinling with ∼60-km-thick crust also underwent
rapid elevation in the Late Miocene, as recorded by
widespread planation surfaces [172], pollen assem-
blages [173], incision and reorganization of river
systems [50], and supracrustal extension [92,93].
Noticeably, Late Miocene rapid uplifting of the
West Qinling was coeval with left-slip faulting of
the Haiyuan fault [47] and thrusting of the Long-
shoushan belt south of the Alxa block at low el-
evation [174]. The synchronicity of the two dis-
tinct tectonic activities implicates their genetic link-
age, that is, gravitational spreading of the elevated
West Qinling might have played a role in compres-
sional deformations in its northern margin. Much
more work is obviously required to unravel the re-
lationships among diverse geologic processes in a
holistic framework so as to advance a more feasible
mechanism.

CONCLUSIONS
Stratigraphic and sedimentologic investigations
of mid-Tertiary successions demonstrate that the
contact between Oligocene and Miocene strata is a
regional unconformity in theWest Qinling andHoh
Xil, but conformable in the Qaidam basin. This dis-
cordance manifests itself as a typical disconformity
in theWest Qinling, but as an angular unconformity
in parts of the Hoh Xil, with Lower Miocene strata
being nearly horizontal. LateOligocene termination
of shortening in the Hoh Xil and the formation of
regional disconformity in the West Qinling indicate
that the NE Tibetan Plateau experienced vertical
surface uplift rather than crustal shortening in the
mid-Tertiary. Widespread occurrences of synsedi-
mentary normal faults in LowerMiocene succession
undermines the long-held notion that Early
Miocene intermontane basins in the West Qinling
were created by crustal shortening.Miocene volcan-
ism, sourced from both the crust and lithospheric
mantle in theHohXil andWestQinling, indicate the
involvement of deep thermomechanical processes
in mid-Tertiary tectonic processes. An edge-driven
convection model is proposed that satisfactorily
accounts for a number of prominent phenomena

such as regional disconformity, synsedimentary
normal faults and volcanic eruption in NE Tibet.
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