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Abstract

Rationale and Objectives: Irreversible electroporation (IRE) is a promising non-thermal 

ablation technique for the treatment of patients with hepatocellular carcinoma. Early 

differentiation of the IRE zone from surrounding reversibly electroporated (RE) penumbra is vital 

for the evaluation of treatment response. In this study, an advanced statistical learning framework 

was developed by evaluating standard MRI data to differentiate IRE ablation zones, to correlate 

with histological tumor biomarkers.

Materials and Methods: Fourteen rabbits with VX2 liver tumors were scanned following IRE 

ablation and forty-six features were extracted from T1w and T2w MRI. Following identification 

of key imaging variables through two-step feature analysis, multivariable classification and 

regression models were generated for differentiation of IRE ablation zones, and correlation with 

histological markers reflecting viable tumor cells, microvessel density, and apoptosis rate. The 

performance of the multivariable models was assessed by measuring accuracy, receiver operating 

characteristics curve analysis, and Spearman correlation coefficients.

Results: The classifiers integrating four radiomics features of T1w, T2w, and T1w+T2w MRI 

data distinguished IRE from RE zones with an accuracy of 97%, 80%, and 97%, respectively. 
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Also, pixelwise classification models of T1w, T2w, and T1w+T2w MRI labeled each voxel with 

an accuracy of 82.8%, 66.5%, and 82.9%, respectively. Regression models obtained a strong 

correlation with behavior of viable tumor cells (0.62≤r2≤0.85, p<0.01), apoptosis (0.40≤r2≤0.82, 

p<0.01), and microvessel density (0.48≤r2≤0.58, p<0.01).

Conclusion: MRI radiomics features provide descriptive power for early differentiation of IRE 

and RE zones while observing strong correlations among multivariable MRI regression models 

and histological tumor biomarkers.
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Introduction

Hepatocellular carcinoma (HCC) is one of the deadliest cancers affecting 10.4 per 100,000 

men and 2.9 per 100,000 women in the United States (1). Potentially curative treatments 

including surgical resection and partial hepatectomy are suitable for only 30% of the 

patients at the time of diagnosis due to advanced disease stages (2). Atezolizumab (immune 

checkpoint inhibitor, ICI) in combination with bevacizumab (anti-vascular endothelial 

growth factor, VGEF) has recently received FDA approval as the first line of therapy for 

the treatment of patients with unresectable or metastatic HCC, after showing improved 

overall survival compared to sorafenib (tyrosine kinase inhibitor, TKI) (3). Sorafenib was 

approved by FDA more than a decade ago for the treatment of advanced HCC, but genetic 

heterogeneity (4), adverse events (5), and drug resistance (6) have been its limitations. 

Lenvatinib, an FDA-approved TKI, has demonstrated an improved overall survival ratio 

compared to sorafenib but a non-superior overall survival benefit (7).

Local ablation techniques have been developed during the last three decades for patients 

who are not suitable to receive surgical resection (8, 9). Ablation techniques have gained 

importance for the treatment of very early to early-stage HCC patients (10). However, the 

efficacy of thermal ablation methods is restricted by heat-sink effect and tumor location 

(11). Irreversible electroporation (IRE) is a novel and non-thermal ablation method with 

a proven safety profile (12) that destructs malignant tissues by delivering high-frequency 

electrical current in short pulses without damaging surrounding tissues (13). Following 

IRE procedure, cellular level structure of the tissues is either permanently (irreversibly 

electroporated, IRE zone) or temporarily (reversibly electroporated, RE zone) destructed 

according to the selected application parameters (electrode distance, power of electric 

pulses, and duration). Despite biological changes caused by IRE, region boundaries are 

difficult to determine immediately post IRE using standard MRI imaging modalities (14). 

A recent study has demonstrated that advanced MRI modalities can be performed for 

immediate assessment of ablation zones using advanced MRI techniques (15); however, 

these procedures rely on complicated MRI sequences with a lack of reproducibility and are 

restricted to certain centers due to complex non-standard analysis approaches (16).
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Recent technological developments have enabled quantitative radiomics analysis of clinical 

imaging data for diagnosis and prognosis of various diseases, prediction of genomic 

architectures, and personalized disease staging (17-20). Advanced statistical learning 

methods equipped with descriptive image features have been utilized to develop expert 

models for improving our understanding of disease characteristics and predicting therapeutic 

outcomes (21). Despite the benefits emphasized by previous studies, texture-based 

quantitative analysis of MRI data has not been performed to differentiate IRE from 

RE zones for early evaluation of the IRE ablation in our knowledge. In this study, we 

investigated potential benefits of quantitative radiomics features computed from structural 

MRI data to generate multivariable models for early assessment of IRE ablation through 

differentiation of ablation zones. Also, we developed multiparametric regression models 

by utilizing noninvasive MRI features to associate characteristics of the biological changes 

captured with histological tumor markers.

Materials and Methods

Our pre-clinical experiment was approved and performed according to Institutional Animal 

Care and Use Committee regulations, and all the animals were treated under humane 

conditions with regular monitoring at the animal facility.

Animal Model and Treatment

Of 16 New Zealand white rabbits, two were used as a donor for VX2 incubation, and others 

were used for performing the study. Under basic anesthesia that was initiated via injection 

of ketamine (100 mg/kg) and xylazine (5 mg/kg), and continued via isoflurane (2-3% in 

oxygen, 3 L/min), VX2 tumor cells were injected into the hindlimbs of donor rabbits. The 

rabbits were monitored using MRI and tumors were allowed to grow until reaching a size of 

3 cm in the longest diameter. Afterward, tumor tissues were dissected and tumor fragments 

with a size of about 1 mm3 were implanted in the left lobes of the remaining rabbits using 

a biopsy needle under percutaneous ultrasound guidance. The tumors were allowed to grow 

for 7-10 days as reaching a size of at least 10 mm under the guidance of MRI.

During IRE ablation, rabbits were stabilized in supine orientation and HCC tumors were 

revealed with mini laparotomy with anesthesia performed via isoflurane (2-3% in oxygen, 

3 L/min). MRI compatible 2-electrode platinum-iridium array with a thickness of 0.4 mm 

in diameter was placed about 5 mm inside of the tumor. IRE ablation was performed 

by two researchers (2+ years of experience) using ECM830 BTX Electroporator (Harvard 

Apparatus, Holliston, MA) with a predefined sequence (8 pulses at 2 kV of power with a 

duration of 100 μs and 100 ms interval) (22). Following IRE ablation, double-layer closure 

was performed, and MRI scanning was performed under anesthesia.

MRI Acquisition and Analysis

The rabbits were scanned using a 3T Siemens Magnetom Skyra MRI scanner before (only 

T1w and T2w MRI as baseline) and immediately after the IRE ablation procedure (T1w, 

T2w, and transcatheter intra-arterial perfusion (TRIP) MRI) with acquisition parameters 

described in Table 1. In our study, TRIP MRI was utilized to characterize perfusion 
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properties of the tissues following IRE ablation and immediate assessment of IRE ablation 

zones (23). The regions of interest (ROIs: RE and IRE zones) were outlined on a single post-

IRE TRIP MRI slice with maximum tumor diameter by consensus of two radiologists (6+ 

years of experience) under the instruction of a senior radiologist (15+ years of experience) 

using ITK-SNAP (v3.8). The generated mask images (IRE and RE zones) were translated to 

registered T1w, and T2w MRI images and corresponding images were utilized for radiomics 

analysis. In Figure 1, representative RE and IRE zones were shown on T1w and T2w MRI 

slices.

Histology Analysis

Following completion of post-IRE MRI acquisition, rabbits were euthanized and liver 

tissue sections including irreversibly and reversibly electroporated tissue regions were 

collected. Afterward, tissue samples were fixed in 10% formaldehyde solution and sent 

to the pathology core facility for histopathological analysis. Two researchers (2+ years of 

experience) examined hematoxylin-eosin (H&E) staining for counting viable cells, terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining for assessment of 

cell apoptosis, and CD31 staining for evaluation of microvessel density. The number of 

tumor cells, apoptosis fraction, and microvessel density were evaluated by two blinded 

researchers (5+ years of experience) through at least five selected regions and then averaged 

to define representative analysis results.

Feature Extraction and Selection

To overcome MRI intensity relativity, images were quantized using a fixed-bin-size 

quantization approach in which optimal bin size was empirically determined among three 

candidates (4, 8, and 16). A total of forty-six region-based and pixelwise features were 

computed from T1w and T2w MRI images through analysis of statistical characteristics of 

the intensity (first-order statistics, FOS, 6 features) and texture (gray-level co-occurrence 

matrix, GLCM, 9 features; gray-level run-length matrix, GLRLM, 13 features; gray-

level size-zone matrix, GLSZM, 13 features; neighborhood gray-tone difference matrix, 

NGTDM, 5 features) (24-26). The complete list of the computed features is presented in 

Supplementary Table 1. The region-based classifiers were generated by integrating structural 

aspects of all the voxels in RE and IRE zones while pixelwise classification models 

determined the label of each voxel within RE and IRE zones with features computed over 

three-by-three neighborhood window. GLCM and GLRLM features were computed through 

four gradient directions (0°, 45°, 90°, and 135°) and combined by averaging. Afterward, 

features were transformed into the range of [0, 1] with min-max normalization.

To identify key predictors, a two-step feature selection framework was followed. First, 

features were split into clusters by evaluating inter-relation among the features measured 

with Pearson correlation coefficient (Figure 2A-C), and an individual feature with the 

largest average correlation coefficient was selected as the representative of each cluster 

(Figure 2D-F). Afterward, the rankings of the candidate variables were computed with 

RELIEFF algorithm by evaluating the interaction between candidate MRI features and 

therapeutic variables (outcome and histological tumor biomarker measurements) using the 

ten nearest neighbors approach (Figure 2G-I) (27). Top-ranked eight variables were further 
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analyzed to determine key predictors for treatment response and histological tumor markers 

while optimizing parameters of random forest (RF) classification and regression models 

empirically.

Statistical Analysis

The biological changes related to IRE ablation therapy were characterized through region-

based and pixelwise features by generating three RF classification models: T1w, T2w, 

and T1w+T2w MRI (combination MRI). For individual models, candidate features were 

identified by performing a two-step feature-selection process. The features for combined 

MRI were identified by following the same two-step approach after merging the features 

into one set. During region-based classification experiments, three models were generated 

using twenty-eight images with leave-one-out cross-validation to prevent overfitting. For 

pixelwise classifiers, image data (2480 voxels) were separated into training and test sets 

with a ratio of 80%/20%, and ten-fold cross-validation was performed during training. 

The performance of the classification models was measured with accuracy, specificity, 

sensitivity, and area under the receiver operating characteristics curve (AUC).

To associate characteristics of IRE ablation regions reflected on MRI and biological 

changes captured with histological tumor markers, three multivariable regression models 

were generated using RF method with leave-one-out cross-validation. The performance 

of regression models was assessed with root-mean-squared-error (RMSE), Spearman 

correlation coefficient, and relative-error. A two-tailed Student T-test was used to evaluate 

statistical difference while accepting p<0.05 significant. The analysis of the data was 

completed using MATLAB® v9.8 (MathWorks, Natick, MA). The datasets generated during 

and/or analyzed during the current study will be available from the corresponding author on 

reasonable request.

Results

Feature Selection

The candidate features were identified by following a two-step procedure. First, T1w, 

T2w, and T1w+T2w MRI radiomics features were clustered based on their similarity, and 

representative of each cluster was determined for region-based classification model (15, 17, 

and 29 features) and regression models (15, 14, and 26 features). During the assessment 

of pixelwise features, a lower number of clusters and representative features (11, 10, and 

21 features) were identified. Second, all features were sorted according to their rankings 

computed with RELIEFF method within their groups, and top-ranked eight features were 

selected for each experiment to perform classification and regression tasks.

Evaluation of the Classification Models

Individual RF classification models were constructed with features computed from T1w, 

T2w, and T1w+T2w MRI data to distinguish IRE and RE ablation zones. RF classifiers were 

generated with four quantitative region-based features (Table 2) that were selected through 

exhaustive search experiments while evaluating validation accuracy of the decision models. 

T1w MRI classifier integrating four features had an accuracy of 1.0 for training and 0.97 
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for validation experiment. Moreover, it had a specificity of (1.0, 1.0) and sensitivity of (1.0, 

0.93) for training and validation experiments. On the other hand, T2w MRI classification 

model obtained an accuracy of (0.90, 0.80), a specificity of (0.89, 0.80), and a sensitivity of 

(0.90, 0.80) for training and validation sets. Moreover, T1w+T2w MRI model demonstrated 

slightly better performance as presenting an accuracy of (0.99, 0.97), specificity of (1.0, 

0.93), and sensitivity of (0.99, 1.0) for training and validation experiments. The receiver 

operating characteristics (ROC) curves were shown in Figure 3A to visualize classifier 

behavior during training experiments.

The pixelwise RF classification models were generated with five features selected among 

eight candidate variables (Table 2) while classifier parameters were optimized by assessment 

of validation dataset and final model performance were measured using test data. T1w MRI 

classifier with five predictors obtained an accuracy of (0.88, 0.79, and 0.83) for training, 

validation, and test datasets. Additionally, specificity of (0.83, 0.74, and 0.79), sensitivity 

of (0.91, 0.83, and 0.85), and AUC of (0.93, 0.83, and 0.85) were observed for training, 

validation, and test sets, respectively. T2w MRI classifier demonstrated comparatively lower 

stability as receiving accuracy of (0.78, 0.67, and 0.67), specificity of (0.69, 0.57, and 0.59), 

sensitivity of (0.85, 0.74, and 0.72), and also AUC of (0.86, 0.67, and 0.66) for training, 

validation, and test datasets, respectively. MRI model obtained slightly better performance 

compared to individual models (T1w and T2w MRI). It had accuracy of (0.94, 0.83, and 

0.83), specificity of (0.92, 0.79, and 0.80), sensitivity of (0.95, 0.86, and 0.85), and AUC 

of (0.98, 0.90, and 0.90) for training, validation, and test datasets, respectively. ROC curves 

for training, validation, and test datasets are shown in Figure 3B-D to demonstrate overall 

behavior of the classifiers.

Evaluation of Correlation between MRI features and Histological Tumor Biomarkers

The regression models were generated to describe correlation between histological tumor 

biomarkers and MRI radiomics features with the assessment of RMSE and Spearman 

correlation coefficient of the training and validation during leave-one-out cross-validation. 

For each histological biomarker, three RF regression models were developed following a 

comprehensive analysis of the features computed from T1w, T2w, and T1w+T2w MRI data 

while optimizing model parameters through leave-one-out cross-validation.

H&E-stained histological slice demonstrated significantly different (p<0.01) tumor cells 

in RE (10969.64±2215.64 cells) and IRE zones (5429.71±1381.72 cells) (Figure 4A-B). 

During multivariable analysis, three features were selected as key predictors for generating 

regression models to associate with tumor cell count (Table 3). T1w MRI regression model 

obtained an RMSE of 1657.20 that corresponds to a relative error of 0.155 and a correlation 

value of 0.931 (p<0.0001). T2w MRI regression model had an RMSE of 5353.67 associated 

with a relative error of 0.233 and a correlation value of 0.685 (p<0.0001). Furthermore, 

T1w+T2w MRI regression model presented an RMSE of 2318.47 that corresponded to 

a relative error of 0.171 and a correlation value of 0.884 (p<0.0001). The correlation of 

multivariable models and the tumor cell count is shown in Figure 4G.

In TUNEL stained histological images, a significant difference (p<0.01) for the percentage 

of hepatocyte apoptosis rate was observed between ablation regions (9.28±4.98 for RE 
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and 24.02±4.48 IRE zones) (Figure 4C-D). Throughout the multivariable analysis, a total 

of three quantitative features were determined as pivotal variables to generate regression 

models for interpreting characteristics of the apoptosis rates in ablation regions (Table 3). 

The regression model generated with T1w MRI features had an RMSE of 4.57×10−2 that 

corresponds to a relative error of 0.672 and a correlation value of 0.623 (p<0.001). T2w MRI 

regression model obtained an RMSE of 2.59×10−2 that was associated with a relative error 

of 0.529 and a correlation value of 0.828 (p=0.003). Moreover, T1w+T2w MRI regression 

model presented an RMSE of 2.21×10−2 that corresponded to a relative error of 0.455 and 

a correlation value of 0.873 (p<0.0001). The association between multivariable models and 

hepatocyte apoptosis rate is shown in Figure 4H.

CD31 stained histological slices presented a statistically significant microvessel density 

difference (p<0.001) among RE (4.36±0.77) and IRE zones (1.53±0.64) (Figure 4E-F). The 

multivariable regression models were generated with four MRI features for describing the 

behavior of microvessel density by interpreting the structures reflected in MRI (Table 3). 

The regression model generated with the features of T1w MRI data obtained an RMSE of 

4.86×10−4 that corresponds to a relative error of 0.326 and a correlation value of 0.885 

(p<0.0001). T2w MRI regression model combining texture and intensity-based features had 

an RMSE of 1.92×10−3 that was associated with a relative error of 0.613 and a correlation 

value of 0.603 (p<0.001). Moreover, T1w+T2w MRI model that integrates vital variables of 

T1w and T2w MRI data had an RMSE of 4.94×10−4 that corresponded to a relative error 

of 0.317 and a correlation value of 0.893 (p<0.001). The correlation between microvessel 

density and individual regression models is shown in Figure 4I.

Discussion

In this study, we investigated potential benefits of radiomics features computed from 

structural MRI data to develop multivariable classification models for IRE ablation 

assessment. The identified quantitative MRI features facilitated early discrimination 

of temporarily and permanently electroporated ablation zones while regression models 

correlated with histological tumor biomarkers for noninvasive evaluation of IRE ablation 

therapy. The results demonstrated that quantitative analysis of MRI texture reveals the 

characteristic behavior of histological tumor biomarkers and distinguishes ablation zones by 

interpreting early changes following IRE ablation.

IRE ablation is one of the most promising treatment modalities for cancer patients 

who are not eligible for potentially curative treatments e.g., surgical resection and liver 

transplantation (9, 28). Compared to other ablative techniques, IRE brings out several 

benefits including safe application near major blood vessels and minimal effects on 

surrounding tissues, and induction of immunological reaction against tumor cells (23). RE 

and IRE regions, generated following the electroporation, can be used for assessment of IRE 

ablation efficacy and identifying the suitability of the environment for treatments that are 

restricted by membrane permeability e.g., chemotherapeutic drugs and immunotherapeutic 

agents. Furthermore, early assessment of these permanently (IRE) and temporarily (RE) 

electroporated regions allows adjusting treatment framework including parameters of the 

ablation method. Several studies have investigated CT, US, and MRI imaging techniques for 
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the assessment of response after IRE ablation and have concluded that MRI is the preferred 

modality for differentiation of the electroporation treatment zones (15, 22, 29-31). These 

studies demonstrated superior advantages of advanced MRI modalities over conventional 

MRI sequences for differentiation of treated and untreated regions with a well-demarcated 

boundary between them. Despite the benefits of advanced MRI modalities for reflecting IRE 

treatment effects, the necessity for complicated but non-standardized analysis approaches 

limits their usage for the early assessment of IRE ablation. Therefore, novel approaches for 

the analysis of conventional MRI data are required for the differentiation of temporary (RE) 

and permanent electroporation (IRE) regions using standard MRI data after IRE ablation.

Throughout the last decade, the potential role of texture-based computational features that 

capture the heterogeneity and reveal distinctive characteristics of the tissues has become 

more apparent (32-34). Previous studies have investigated the benefits of MRI data analysis 

with the aim of diagnosis and prognosis of diseases, prediction of genomic expression 

signatures, and stratification of tumor types (35-37). However, there is a lack of data on the 

role of texture analysis to characterize IRE ablation zones and show the association between 

MRI radiomics features and histological tumor biomarkers in this setting. In this study, 

we investigated the texture-based features of conventional MRI data for distinguishing IRE 

ablation zones. Furthermore, we evaluated the correlation of histological tumor markers and 

MRI radiomics features as biomarkers. Our results demonstrated that a classification model 

equipped with T1w MRI texture features allows accurate differentiation of IRE ablation 

zones immediately after the procedure. Whereas T2w MRI data is routinely used for visual 

assessment of the tumor characteristic for clinical practice, T2w MRI classifier obtained 

a lower performance compared to T1w MRI. This might be associated with underlying 

biological changes occurring in tumor texture captured via T1w MRI sequence. The 

performance of the region-based classifier is not significantly improved by combining T1w 

and T2w MRI features. However, combined voxelwise classifier (accuracy of 82.93% and 

AUC of 0.896) obtained a slight improvement compared to T1w model (accuracy of 82.80% 

and AUC of 0.852) and significantly for T2w model (accuracy of 66.53% and AUC of 

0.657). Multivariable models were developed to analyze correlation with histopathological 

tumor biomarkers. The regression model examining fibrosis measurement of the tumor 

structure with three features of T1w MRI data (r2=0.85) had better performance compared to 

both T2w MRI (r2=0.62) and combined MRI models (r2=0.84). However, the performance 

of the multivariable models describing hepatocyte apoptosis rate (r2=0.82, p<0.01), and 

microvessel density (r2=0.58, p<0.01) improved with the integration of features of combined 

MRI data. We observed a stronger correlation between hepatocyte apoptosis rate measured 

with CD31 immunostaining and multivariable T1w radiomics model while characteristic of 

microvessel density was better captured with T2w MRI data.

Our study had limitations including the size of the subject cohort, and limited use of 

data-driven analysis methods. Despite the small size of our subject cohort, the sample 

size was comparable with previous preclinical studies (38, 39). Also, a classical statistical 

learning technique with less complexity was utilized to interpret IRE ablation method 

response with our comparatively small dataset. With the analysis of larger sample size, more 

complex approaches would be feasible to perform. Furthermore, conventional MRI data 

were included during statistical learning analysis despite available TRIP MRI data. Although 
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advanced MRI modalities have become vital for tumor assessment (40) and were previously 

utilized for radiomics studies (41, 42), the lack of standardized analysis approaches restricts 

the reliability and reproducibility (43, 44). Therefore, clinically standard T1w and T2w 

MRI, utilized for diagnosis, treatment, and monitoring disease progression, were included 

for advanced statistical learning analyses in this study and showed very promising results. 

Finally, current study was performed at a single institution by using same experimental setup 

and devices. Further studies aiming for a comprehensive analysis of reproducibility will be 

beneficial.

In conclusion, our study demonstrated that characteristic tissue changes following IRE 

ablation can be captured with conventional MRI modalities. By developing multivariable 

classification models using texture-based MRI features, IRE ablation zones were 

successfully identified. Furthermore, imaging biomarkers reflecting underlying tissue 

changes show promise for noninvasive assessment of response to IRE ablation.
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Figure 1. 
Representative regions corresponding to RE and IRE zones on T1w and T2w MRI slices 

after performing IRE ablation. After registration of MRI data, ablation regions were drawn 

by an experienced radiologist using TRIP MRI and translated to T1w and T2w MRI slices 

for further analysis.

Note (RE: Reversible electroporation; IRE: Irreversible electroporation)
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Figure 2. 
The framework for selection of the features extracted from T1w and T2w MRI, and their 

concatenation. (A)-(C) visualizes pairwise correlation coefficients of the computed variables 

with five different feature extraction methods. (D)-(F) demonstrates the number of features 

in each cluster generated based on Pearson correlation coefficients. The number of clusters 

increases with broadening heterogeneity among image features. The importance of the 

features was determined via RELIEFF algorithm that evaluates the interaction between MRI 

features and therapeutic measurements (IRE ablation regions and histopathological tumor 

marker measurements (G-I).

Note: FOS, first-order statistics features; GLCM, gray-level co-occurrence matrix features; 

GLRM, gray-level run-length matrix features; GLSZM, gray-level size-zone matrix features; 

and NGTDM, neighborhood gray-tone difference matrix features. T1, T1w MRI; and T2, 

T2w MRI.
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Figure 3. 
The receiver operating curves (ROCs) for the predictive models were generated to 

discriminate RE and IRE zones by developing region-based and pixelwise classification 

models with random forest technique. (A) represents ROCs for the training of the region-

based classifier while (B-D) represents ROCs for training, validation, and test sets for the 

pixelwise classification model.
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Figure 4. 
The representative histological images for visualizing IRE ablation regions (A, C, and D), 

statistical analysis (B, E, and F), and correlation plots (G-I). A significantly lower number 

of tumor cells (B), percentage of apoptosis rate (E), and higher microvessel density (F) 

for IRE zones compared to RE zones. The figures (G)-(I) demonstrate the behavior of the 

models generated with features of T1w, T2w, and T1w+T2w MRI data.
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Table 1.

MRI acquisition parameters for conventional and perfusion MRI sequences

Sequence TR (ms) TE (ms) Flip Angle(°) # of Slices FOV (mm3) Matrix Thickness/Gap (mm)

T1w 200 2.93 70 17 180×180 224×224 2/0.6

T2w 4000 39 150 17 180×180 192×192 2/0.6

TRIP MRI 2.6 1.02 8 20 128×112 128×112 2/0.6

Note: Transcatheter Intraarterial Perfusion Magnetic Resonance Imaging, (TRIP MRI)

Acad Radiol. Author manuscript; available in PMC 2023 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Eresen et al. Page 17

Table 2.

The list of features used to generate classification models for differentiation of irreversible and reversible 

electroporation zones.

T1w T2w T1w1+T2w2

Region-based Features

Busyness (NGTDM) HGL ZE (GLSZM) LGL ZE (GLSZM1)

Autocorrelation (GLCM) Third moment (FOS) SR LGL emphasis (GLRLM1)

SR LGL emphasis (GLRLM) Zone-size variance (GLSZM) SZ emphasis (GLSZM1)

GL nonuniformity (GLSZM) Busyness (NGTDM) Third moment (FOS1)

Voxelwise Features

SD (FOS) LGL RE (GLRLM) LGL RE (GLRLM1)

LGL RE (GLRLM) Variance (GLCM) GL nonuniformity (GLRLM1)

Mean (FOS) Entropy (FOS) Variance (GLCM1)

LR LGL emphasis (GLRLM) GL nonuniformity (GLSZM) SZ LGL emphasis (GLSZM1)

HGL ZE (GLSZM) RP (GLRLM) SD (FOS1)

Features: Gray-level (GL), high gray-level (HGL), low gray-level (LGL), Long run (LR), run emphasis (RE), run percentage (RP), Short-run 
(SR), small zone (SZ), standard deviation (SD), zone emphasis (ZE)

Classes: First order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), gray-level size-zone 
matrix (GLSZM), neighborhood grey tone difference matrix (NGTDM).

Note Superscript highlights image that was used to compute specific feature.
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Table 3.

The list of features used to generate regression models for characterizing the behavior of histological tumor 

markers as reflecting biological changes in tumor tissue.

T1w T2w T1w 1 + T2w 2

H&E

SZ LGL Emphasis (GLSZM) LGL ZE (GLSZM) SZ LGL Emphasis (GLSZM1)

SZ HGL Emphasis (GLSZM) Kurtosis (FOS) SZ emphasis (GLSZM1)

Kurtosis (FOS) SR LGL emphasis (GLRLM) SZ HGL Emphasis (GLSZM1)

CD31

HGL ZE (GLSZM) LGL ZE (GLSZM) SZ LGL emphasis (GLSZM1)

SZ HGL Emphasis (GLSZM) Kurtosis (FOS) HGL ZE (GLSZM1)

Autocorrelation (GLCM) SR LGL emphasis (GLRLM) Autocorrelation (GLCM1)

Correlation (GLCM) ZS nonuniformity (GLSZM) Correlation (GLCM1)

TUNEL

HGL ZE (GLSZM) Busyness (NGTDM) Autocorrelation (GLCM1)

SZ LGL Emphasis (GLSZM) ZS variance (GLSZM) Kurtosis (FOS2)

Autocorrelation (GLCM) SR LGL emphasis (GLRLM) SZ LGL emphasis (GLSZM1)

Features: Gray-level (GL), high gray-level (HGL), low gray-level (LGL), Long run (LR), run emphasis (RE), run percentage (RP), Short-run 
(SR), small zone (SZ), standard deviation (SD), zone emphasis (ZE), zone percentage (ZP).

Classes: First order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), gray-level size-zone 
matrix (GLSZM), neighborhood grey tone difference matrix (NGTDM).
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