Skip to main content
. Author manuscript; available in PMC: 2023 Sep 1.
Published in final edited form as: Acad Radiol. 2021 Dec 18;29(9):1378–1386. doi: 10.1016/j.acra.2021.11.020

Table 2.

The list of features used to generate classification models for differentiation of irreversible and reversible electroporation zones.

T1w T2w T1w1+T2w2
Region-based Features Busyness (NGTDM) HGL ZE (GLSZM) LGL ZE (GLSZM1)
Autocorrelation (GLCM) Third moment (FOS) SR LGL emphasis (GLRLM1)
SR LGL emphasis (GLRLM) Zone-size variance (GLSZM) SZ emphasis (GLSZM1)
GL nonuniformity (GLSZM) Busyness (NGTDM) Third moment (FOS1)
Voxelwise Features SD (FOS) LGL RE (GLRLM) LGL RE (GLRLM1)
LGL RE (GLRLM) Variance (GLCM) GL nonuniformity (GLRLM1)
Mean (FOS) Entropy (FOS) Variance (GLCM1)
LR LGL emphasis (GLRLM) GL nonuniformity (GLSZM) SZ LGL emphasis (GLSZM1)
HGL ZE (GLSZM) RP (GLRLM) SD (FOS1)

Features: Gray-level (GL), high gray-level (HGL), low gray-level (LGL), Long run (LR), run emphasis (RE), run percentage (RP), Short-run (SR), small zone (SZ), standard deviation (SD), zone emphasis (ZE)

Classes: First order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), gray-level size-zone matrix (GLSZM), neighborhood grey tone difference matrix (NGTDM).

Note Superscript highlights image that was used to compute specific feature.