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Integration of single-cell RNA sequencing data between different samples has

been a major challenge for analyzing cell populations. However, strategies to
integrate differential expression analysis of single-cell data remain under-
investigated. Here, we benchmark 46 workflows for differential expression
analysis of single-cell data with multiple batches. We show that batch effects,
sequencing depth and data sparsity substantially impact their performances.
Notably, we find that the use of batch-corrected data rarely improves the
analysis for sparse data, whereas batch covariate modeling improves the
analysis for substantial batch effects. We show that for low depth data, single-
cell techniques based on zero-inflation model deteriorate the performance,
whereas the analysis of uncorrected data using limmatrend, Wilcoxon test and
fixed effects model performs well. We suggest several high-performance
methods under different conditions based on various simulation and real data
analyses. Additionally, we demonstrate that differential expression analysis for
a specific cell type outperforms that of large-scale bulk sample data in prior-

M Check for updates

itizing disease-related genes.

Recent advances in single-cell RNA sequencing (scRNA-seq) techni-
ques have tremendously increased our understanding of cell types and
progresses in disease™*. While thousands of cells have been sequenced
in individual studies (or samples), integration of scRNA-seq data has
been confounded by technical variations between studies, called batch
effects. In particular, the lack of starting materials in scRNA-seq resul-
ted in highly sparse and noisy data, posing a great challenge to batch-
effect correction (BEC) of scRNA-seq data®*. Various BEC algorithms
have been developed to accurately discriminate cell types from mul-
tiple scRNA-seq datasets’. However, the impact of batch effects on
gene-based analysis such as differential expression (DE) analysis and
the strategies to integrate DE analysis for scRNA-seq data remained
underinvestigated. Accurate DE analysis in each cell type across sam-
ples (or patients) is instrumental in finding dysregulated genes and
functions in disease.

Tran and colleagues’ recently benchmarked 14 BEC methods for
scRNA-seq data, and recommended several high performance methods.
Most of the BEC methods exploited the low dimensionality of data and
removed the technical differences between matched cells using deep
learning or statistical models. Some methods then returned batch-
effect-corrected data in the original high dimension (dubbed BEC data)
for downstream analysis, whereas others provided only the low
dimensional embeddings for efficient annotation of cells. In particular,
they tested the use of BEC data for DE analysis (bimod method®) under a
simple batch condition, where the analysis of BEC data showed a
superior performance compared to that of uncorrected data. In con-
trast, it was suggested that batch alignment could severely distort the
high-dimensional observation of genes, making gene-based analysis
problematic®, and DE testing for measured data with technical covari-
ates included in the model was recommended over using BEC data’.
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While the BEC methods have been used to reduce or eliminate
the technical differences between matched cells, they also intro-
duced artifacts derived from data transformation and estimation
of batch differences. Therefore, the possible improvements in DE
analysis by using BEC data should be investigated extensively
using various DE methods and experimental conditions. In con-
trast, a statistical model with a batch covariate, denoted as a cov-
ariate model, used the uncorrected data in each batch when
estimating the model parameters with which DE was tested (see
Methods)®'. Another possible approach for integrating DE ana-
lysis of scRNA-seq data was the meta-analysis, where DE analysis
was performed for each batch and the resulting statistics or p-
values were combined for each gene''%

In this study, we compared various workflows for DE analysis of
scRNA-seq data with multiple batches in three different approaches: (1)
DE analysis of BEC data, (2) covariate modeling, and (3) meta-analysis.
These approaches were referred to integrative strategies as opposed to
the DE analysis of pooled uncorrected data, denoted as naive DE
analysis. We considered “balanced” study design where each batch
contained both the sample conditions to be compared, which enabled
to accommodate batch effects into DE analysis (Fig. 1). This experi-
mental design has been commonly observed in large-scale single-cell
studies where each batch included multiple individuals with various
group factors, such as severity of disease, sex, age, ethnic group and
clinical status™", or in cancer studies where both tumor and nontumor
samples were used from the same patients*”. For unbalanced design,
the batch effects were just ignored in DE analysis. See Supplementary
Notes for additional explanation on our study design. We used both
model-based and model-free simulations of scRNA-seq data, and ana-
lyzed the impacts of batch-effects, sequencing depth and data sparsity.
Furthermore, we compared the signs and fold changes (FCs) of DE
genes before and after BEC to analyze the extent of data distortion.

We analyzed real scRNA-seq data for seven patients with lung
adenocarcinoma (LUAD)". Notably, the analysis of LUAD epithelial
cells prioritized both known disease genes and prognostic genes sig-
nificantly better than that of large-scale bulk sample data, demon-
strating the high resolution and efficacy of DE analysis of scRNA-seq
data (denoted as sScRNA-seq DE analysis). Finally, we benchmarked DE
analysis of large-scale scRNA-seq data for COVID-19 patients™.

Results

In total, we benchmarked 46 combinations between ten BEC methods
(ZINB-WaVE'®, MNNY, scMerge'®, Seurat v3', limma_BEC", scVI*,
scGen?, Scanorama®, RISC* and ComBat**), covariate models, three
meta-analysis methods (weighted Fisher (wFisher)”?, fixed effects
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model (FEM)" and random effects model (REM)"), observation weights
of ZINB-WaVE®, pseudobulk data** and seven DE methods (DESeq2’,
edgeR”, edgeR_DetRate®, limmavoom'®, limmatrend”, MAST** and
Wilcoxon test). These combinations are denoted as DE workflows in
this article. We note that all the ten BEC methods tested here yielded
BEC data to be used for DE analysis. See Supplementary Notes on how
each DE workflow was implemented. We focused on the comparison
between two cell groups (case vs. control groups) and tested two and
seven batches. For each DE workflow, a threshold of g-value <0.05
(Benjamini-Hochberg correction®) was used to select differentially
expressed genes (DE genes). For simulated data, F-score and area
under precision-recall curve (AUPR) were compared between DE
workflows. In particular, we used Fq s-scores and partial AUPR (deno-
ted as pAUPR) for recall rates <0.5, both of which weighed precision
higher than recall; precision has been of particular importance because
we often needed to identify a small number of marker genes from
sparse and noisy scRNA-seq data. Further justification of using these
measures is shown in Supplementary Fig. 1. For real scRNA-seq data,
the ranks of known disease genes and prognostic genes, false-positive
rates (p-value <0.05) and false discoveries (g-value <0.05) were com-
pared. Throughout this study, we filtered sparsely expressed genes
(zero rate > 0.95), considering that genes rarely expressed in a cell type
were less likely to have a substantial role in disease.

Model-based simulation tests

ScRNA-seq count data were simulated on the basis of negative bino-
mial (NB) model using splatter R package®. Sparse data with a high
overall zero rate (> 80%) after the gene filtering were simulated for
each batch. The batch and group factors were estimated using the
principal variance component analysis (PVCA)*’. We first used a mod-
erate level depth (default; average nonzero count of 77 after gene
filtering, denoted as depth-77) and simulated 20% DE genes (10% up
and 10% down). The Fgs-scores and precision-recall results for two
batches were shown in Fig. 2. The experiment was performed for six
combinations of “dropout” parameter values and case-control ratios
(see Methods), and the resulting Fq s-scores and pAUPRs were repre-
sented as boxplots and averaged curves, respectively. We tested for
both small and large batch effects. In both cases, parametric methods
based on MAST, DESeq2, edgeR and limmatrend showed good Fgs-
scores and pAUPRs. Wilcoxon test applied to log-normalized uncor-
rected data (denoted as Raw_Wilcox) has been the most widely used
for scRNA-seq DE analysis®®; however, its performance was relatively
low for moderate depths. ZINB-WaVE (in short, ZW) provided the
observation weights (i.e., dropout probability) that were used to
unlock bulk RNA-seq tools to analyze single-cell data®. These weights
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Fig. 1| An overview of our benchmark study for differential expression (DE) analysis of scRNA-seq data with multiple batches. In total, 46 workflows from three

integrative strategies and the naive approach were tested.
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Fig. 2 | Model-based simulation results for moderate depths (two batches; zero
rate >80%). Scatter plots (tSNE) of two batches for a small and b large batch effects.
Principal variance component analysis results representing ¢ small and d large
batch effects. Fo s-scores for 46 differential expression (DE) workflows for e small
and f large batch effects. Results for six cell proportion scenarios (12 instances in
total: six for upregulated genes and six for downregulated genes) are represented
as boxplots; the lower, center and upper bars represent the 25th, 50th and 75th

percentiles, respectively, and the whiskers represent + 1.5 x interquartile range. The
vertical dotted lines (black) indicate the median Fqs-score of Wilcoxon test
(Raw_Wilcox). Precision-recall curves for g small and h large batch effects. The
partial areas under the curve for recall rate <0.5 (pAUPRs) are computed and sorted
in descending order in the legends. The vertical dotted lines (black) indicate the
recall rate of 0.5. The precision-recall pairs that correspond to g-value = 0.05 in
each DE workflow are circled. n=1050 cells were used for each test case.
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Fig. 3 | Model-based simulation results for low depths (depth-10 and depth-4;
zero rate >80%). Fq s-scores for 46 differential expression (DE) workflows for (a)
depth-10 and (b) depth-4. Results for six cell proportion scenarios (12 instances in
total: six for upregulated genes and six for downregulated genes) are represented
as boxplots; the lower, center and upper bars represent the 25th, 50th and 75th
percentiles, respectively, and the whiskers represent + 1.5 x interquartile range. The

vertical dotted lines (black) indicate the median Fq s-score of Wilcoxon test
(Raw_Wilcox). Precision-recall curves for ¢ depth-10 and d depth-4. The partial
areas under the curve for recall rate <0.5 (pAUPRs) are computed and sorted in
descending order in the legends. The vertical dotted lines (black) indicate the recall
rate of 0.5. The precision-recall pairs that correspond to g-value = 0.05 in each DE
workflow are circled. n=1000 cells were used for each test case.

were applied to edgeR and DESeq2 (denoted as ZW_edgeR and
ZW _DESeq2, respectively), and specifically improved edgeR.

Next, we checked whether the integrative strategies truly
improved the analysis of uncorrected data. First, the use of BEC data
rarely improved DE analysis; one exception was scVI that considerably
improved limmatrend. Second, covariate modeling (workflow names
tagged with _Cov) overall improved the corresponding DE methods
such as MAST, ZW_edgeR, DESeq2 and limmatrend for large batch
effects. In particular, the performances of two single-cell-dedicated
methods, MAST_Cov and ZW_edgeR_Cov were among the highest.
However, covariate modeling tended to slightly deteriorate DE analysis
for small batch effects. Third, meta-analysis methods did not improve
on the naive DE methods. Interestingly, DE analyses of pseudobulk

data, denoted as pseudobulk methods, showed good pAUPRs for small
batch effects; however, they performed the worst for large batch
effects. We also tested seven batches which yielded similar relative
performances between DE workflows (Supplementary Fig. 2). With this
increased number of batches, pseudobulk methods were rather
improved, but their Fos-scores remained the lowest for large batch
effects.

In recent years, shallow but high-throughput sequencing using for
example 10x Genomics’ technique has been widely used®*. Therefore,
we further performed simulation tests for low depths (average non-
zero count of 10 and 4 after gene filtering, denoted as depth-10 and
depth-4, respectively) (Fig. 3). As the depth was lowered, the use of
observation weights of ZINB-WaVE deteriorated both edgeR and
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DESeq2, because the low depth made it difficult to discriminate
between biological zeros and technical zeros among the read counts®.
The relative performances of Wilcoxon test and FEM for log-
normalized data (LogN_FEM) were distinctly enhanced for low
depths, whereas scVI improved limmatrend no more. For all depths,
limmatrend, LogN_FEM, DESeq2, MAST and corresponding covariate
models performed well and the use of BEC data rarely improved DE
analysis. Covariate modeling overall improved DE analysis for large
batch effects; however, its benefit was diminished for very low depths
(depth-4).

Model-free simulation tests

We devised a model-free simulation using real scRNA-seq data to
incorporate realistic and complex batch effects and avoid potential
bias toward parametric methods. First, we used the two batches from
the human pancreatic data® (named as humanl and human2) that were
produced by the same laboratory using the same sequencing platform
(inDrop*®). The alpha-cells were used for our simulation. Second, we
used the two batches from Mouse Cell Atlas (MCA) that were produced
by different laboratories using different sequencing platforms (Illu-
mina HiSeq 2500%” and NovaSeq 6000°). For MCA data, the T-cells
were used for our simulation. Because these cell types contained
several subtypes, the largest clusters that were matched between
batches were selected for our simulation (see Methods). After
removing sparsely expressed genes, the overall zero rates of the pan-
creatic alpha-cell and MCA T-cell data were 83 and 73%, respectively.
Each batch dataset was randomly split into case and control groups
with several different ratios, and then 20% of DE genes (10% up and 10%
down) were simulated by downsampling positive counts in one group
using binomial distribution (see Methods). The Fqs-scores and
precision-recall results for both data were shown in Supplementary
Fig. 3. As expected, PVCA indicated small and large batch effects for
the pancreatic and MCA data, respectively (Supplementary Fig. 3¢, d).
For the pancreatic data that had small batch effects and a low depth
(Supplementary Table 1), most integrative strategies did not improve
the DE analysis of uncorrected data, and limmatrend, DESeq2, edgeR
as well as Wilcoxon test performed well with minor differences in
PAUPR. The observation weights of ZINB-WaVE did not improve edgeR
and DESeq2 for this low-depth data. However, for the MCA data that
exhibited large batch effects and high depth in one batch, some inte-
grative strategies and the use of observation weights were effective.
For example, edgeR-based methods exhibited relatively low pAUPRs
compared to other parametric methods; however, the weights of ZINB-
WaVE considerably improved edgeR in pAUPR, and incorporating
batch covariate further improved the method, rendering ZW_edgeR -
Cov the top-performer in both Fqs-scores and pAUPRs (Supplemen-
tary Fig. 3e-h).

Overall, both batch effects and sequencing depth had critical
effects on scRNA-seq DE analysis in both model-based and model-free
tests. For moderate depths, many parametric methods outperformed
Wilcoxon test, and the observation weights and covariate modeling
improved the parametric methods. Thus, ZW_edgeR_Cov, ZW_DE-
Seq2_Cov and MAST_Cov were among the best performers. However,
for very low depths, FEM, limmatrend and Wilcoxon test were the
leading methods, and covariate modeling had limited effects even for
large batch effects. For all depths, the use of BEC data rarely improved
DE analysis for sparse data.

Comparison of data distortions in DE analysis

From the simulation results, we counted the number of DE genes that
reversed their signs by each DE workflow to compare the extent of data
distortion. The signs of simulated DE genes declared by each DE
workflow were compared with the known ground truth. For the p-value
combination method (wkFisher), the p-values for each batch were
combined for both right- and left-tail directions and the sign for the

smaller combined p-value was used for each gene. Figure 4 and Sup-
plementary Fig. 4 showed the proportions of DE genes that altered
their signs by each DE workflow (referred to error ratio) for four dif-
ferent simulation results.

#DE genes that altered their signs «

error_ratio=
#DE genes

100 Q)

Large error ratios indicated serious distortions for each DE
workflow. Overall, limmavoom, pseudobulk_DESeq2, RISC_QP and the
workflows that used BEC data tended to show relatively high error
ratios, whereas Wilcoxon test and the parametric methods such as
MAST, edgeR- and limmatrend-based methods yielded relatively
accurate results. We then compared the error ratios among the sig-
nificantly detected DE genes (g-value <0.05) (Fig. 4b, d and Supple-
mentary Fig. 4b, d). Less than 50% of simulated DE genes satisfied this
significance cutoff with which the numbers of incorrect sign prediction
were dramatically reduced in most DE workflows. We additionally
applied the FC threshold [logFC|>0.5 (base 2) to the significant DE
genes. This threshold further reduced the number of detected DE
genes substantially; however, the corresponding error ratios were only
slightly reduced (Supplementary Fig. 5). Moreover, this FC threshold
also reduced Fgs-scores (Supplementary Fig. 6). These results indi-
cated that using logFC threshold could help select a small number of
reliable DE genes (or marker genes), but may not generally improve DE
and function analysis of scRNA-seq data. For a low depth (depth-4), the
error ratios were overall increased (Supplementary Fig. 4a, b). Dis-
tinctly high error ratios were observed for the workflows that used the
deep-learning-originated BEC data (scGen and scVI), followed by those
that used the observation weights of ZINB-WaVE.

Next, we specifically demonstrated the data distortions caused by
the 10 BEC methods by comparing the logFC of DE genes before and
after BEC without incorporating DE methods (Fig. 4e; Supplementary
Fig. 4e). The logFC values were estimated using log-normalized count
data. If a BEC method preserved the FC values, they would be aligned
closely to the straight line y=x. Thus, we used the average angular
(cosine) distance between each data point (DE gene) and this straight
line to estimate the data distortion by each BEC method (see Methods).
These angular distances for the six simulation scenarios were com-
pared between 10 BEC methods (Fig. 4f, Supplementary Fig. 4f). For a
moderate depth, Scanorama, ZW_BEC and MNN exhibited a relatively
high-level distortion. For a low-depth (depth-4), the distortion level
was overall increased, and scGen, ZW_BEC and scVI showed a high-level
distortion. Notably, ZW_BEC enlarged FC levels, whereas Scanorama,
MNN and RISC reduced them. scGen also enlarged FC levels for low
depths. Overall, data distortions caused by BEC methods and DE
workflows appeared worse for the lower-depth data and some BEC
methods perturbed the FC values systematically.

Effect of sparsity

We also compared the performance of DE workflows for less sparse
data. We tested scRNA-seq data with approximately 40% zero rates and
large batch effects for both moderate (depth-77) and low (depth-4)
depths (Supplementary Fig. 7). Remarkably, many BEC methods and all
the covariate models substantially improved the DE analysis. For both
depths, ZW_edgeR_Cov and ZW_DESeq2 Cov were among the best
performers. MAST_Cov and limmavoom distinctly performed well for
moderate and low depths, respectively. The observation weight of
ZINB-WaVE considerably improved edgeR for the moderate depth;
however, it was less effective for the low depth. When small batch
effects were tested, most BEC and covariate methods did not improve
DE analysis, and pseudobulk limma, pseudobulk edgeR and Raw -
Wilcox showed a good performance for both depths. Additionally,
DESeq2 and LogN_FEM performed well for moderate depths, while
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limmavoom/limmatrend and edgeR performed well for low depths
(Supplementary Fig. 8).

Control of false positives and false discoveries

Kim and colleagues” conducted a comprehensive analysis of SCRNA-
seq data for LUAD with over 200K cells containing various cell types.
We used the data for normal epithelial cells in the seven patients with

LUAD (stage I) to compare false-positives and false discoveries
between DE workflows. The data for each patient were randomly split
into two groups with several different ratios (2:8, 3.7, 4:6, and 5:5), and
DE analysis was performed with no DE genes included. We repeated
this experiment four times, and the numbers of genes with p-value
<0.05 (false-positive) and g-value <0.05 (false discovery) were com-
pared (Fig. 5a). edgeR wFisher exhibited the worst false positive
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Fig. 4 | Distortion analysis for differential expression (DE) workflows.

a Proportion of DE genes that altered their signs by each DE workflow (error ratios)
for model-based simulation (two batches; large batch effects; depth-77). b Error
ratios for the model-based simulation for only significantly detected DE genes (g-
value <0.05). The vertical dotted lines (black) indicate the median error ratio of
Wilcoxon test (Raw_Wilcox). ¢ Error ratios for pancreatic alpha-cell (model-free)
simulation data. d Error ratios for the pancreatic alpha-cell data for only sig-
nificantly detected DE genes. e A scatterplot of the logFC values for the model-
based simulation data with a moderate depth (depth-77) before (logFC_raw) and

after (logFC_corrected) applying batch-effect correction (BEC) methods: Combat,
limma (limma_BEC), MNNCorrect, Seurat_BEC, scMerge, ZINB-WaVE (ZW_BEC),
scVI, scGen, Scanorama and RISC. Pearson correlation, its p-value and the angular
cosine distance (Angular Dist) of scatter plot are shown for each BEC method. f The
distortion levels for the moderate depth data as measured by the angular cosine
distance from the logFC scatterplot for six cell proportion scenarios. The lower,
center and upper bars of each boxplot represent the 25th, 50th and 75th percen-
tiles, respectively, and the whiskers represent + 1.5 x interquartile range. n=1050
cells were used in a, b, e, f, and n =900 cells were used in ¢ and d.

controls. edgeR and edgeR _DetRate also showed relatively poor con-
trols of false positives and false discoveries, whereas ZW_edgeR
improved the results. The poor false positive control of bulk RNA-seq
tools in scRNA-seq DE analysis was also observed in the previous
benchmark study for a single batch?®. Two workflows that used BEC
data (scGen_Wilcox and scGen_limmatrend) also exhibited poor false
positive control. Other methods showed a reasonable control of false
positives and false discoveries.

We then performed the same test for seven batches generated
using model-based simulation (Fig. 5b) These data did not represent
correlations between genes and had a higher depth (depth-77) com-
pared to the LUAD scRNA-seq data. However, these two results
exhibited some similarity: (1) poor controls of false positives and false
discoveries using edgeR-related methods, especially edgeR wFisher,
(2) poor false positives controls of DE methods that used scGen BEC
data, and (3) good controls of false-positives and false discoveries
using Wilcoxon test, pseudobulk methods, MAST and ZW_edgeR. We
note that Wilcoxon test yielded a number of false discoveries pre-
viously when “independent” samples where each batch contained
either case or control condition only were analyzed*’; however, it
showed a reliable false discovery control when balanced samples were
analyzed.

Detection of known disease genes: lung adenocarcinoma

We used the cells from seven patients with LUAD (stage I)" to perform
DE analysis between tumor and normal cells for three main cell types:
epithelial cells, myeloid cells, and immune cluster composed of T
lymphocytes and natural killer cells. These cell types together occu-
pied 68.8% and 74.6% of normal and tumor cells in the LUAD scRNA-
seq data, respectively (Supplementary Fig. 9a). Because true DE genes
were not known for real data, we used the known lung cancer-related
genes as the “standard positives”. In total, 221 standard positive genes
annotated with “adenocarcinoma of lung” were obtained from two
disease gene databases, DisGeNET* and CTD*’. These genes were
weighted by the disease-association score (GDA score > 0.3) provided
by DisGeNET (see Methods). All the genes analyzed were sorted by the
DE p-values in each workflow, and the cumulative sum of GDA scores of
standard positive genes, denoted as cumulative score, was compared
between DE workflows in the respective cell types (Fig. 6a—c). In other
words, we compared the weighted counts of known disease genes
included in the top-k DE ranks to compare the performance of DE
workflows.

To assess the ranks of known disease genes, we devised a trun-
cated Kolmogorov-Smirnov (KS) test that only reflected the ranks of
standard positives within the top 20% DE genes, with those in the
remaining 80% forced to be evenly distributed. This approach can be
particularly useful when selecting DE methods that are capable of
prioritizing important genes in high ranks (see Methods), whereas the
conventional KS test risks assessing a large number of middle ranks as
significant®’. Even with this conservative test, as many as 25 workflows
exhibited significantly high ranks of the standard positives when epi-
thelial cells were analyzed (p-value <0.01) (Fig. 6d). To further compare
the performance of DE workflows, the area under the cumulative score
curves for the top 20% DE genes, denoted as pAUC, was used. Many

workflows including RISC_QP, ZW_edgeR_Cov, edgeR_Cov, Raw_Wilcox
and limmatrend_Cov exhibited similarly good pAUCs (Supplementary
Fig. 10a). Covariate modeling and observation weights only marginally
improved the corresponding parametric methods presumably due to
the low depth of the data (average depth of 4.48 for epithelial cells).
Interestingly, when myeloid cells and immune cluster were analyzed,
none of the workflows showed significance (Fig. 6d).

We then performed DE analysis using the bulk RNA-seq data for
LUAD from The Cancer Genome Atlas (TCGA)** comprising 493
cancer and 53 normal samples. The corresponding cumulative
scores for the known disease genes were also represented in
Fig. 6a-c. Remarkably, DE analysis of epithelial cells for only seven
patients outperformed that of hundreds of bulk samples, demon-
strating the high potential of scRNA-seq DE analysis to discover
disease genes. Although the superiority of DE analysis of sScRNA-seq
data over that of bulk RNA-seq data has been expected, it has not
been systematically analyzed. Here, we presented a statistical test
comparing the performance of scRNA-seq and bulk sample DE
analyses in detecting disease-related genes.

Figure 6e compared the ranks of 12 genes with high disease scores
(GDA score > 0.5) for six selected DE workflows and four bulk sample
analysis methods. The six workflows for scRNA-seq data detected the
12 genes with the average rank percentiles of 31.7% - 43.8% with
ZW _DESeq2 performing the best, whereas much worse percentiles of
67.0% — 71.3% were obtained using the four TCGA analysis methods. In
particular, EGFR, KRAS, CTNNBI, and ERBB2 genes were captured
within the top 20% rank by at least four scRNA-seq workflows, and the
two genes EGFR and KRAS, which were most common in lung cancer,
were ranked in the top 5.4% and 8.9% by ZW_edgeR_Cov, respectively.
In contrast, none of the 12 genes were captured within the top 20%
ranks in the analyses of TCGA data; specifically, EGFR and KRAS were
only ranked 68.0% - 98.0% and 33.8% - 37.2%, respectively. These four
genes were known to play important roles in the development of
tumor malignancy related to RAS/RAF/MAPK and Wnt signaling
pathways**™* (see Supplementary Notes). The top 20% DE genes for
LUAD epithelial cells obtained using four selected DE workflows as well
as TCGA analysis results were shown in Supplementary Data 1, which
suggested novel LUAD-related genes.

We analyzed two more large-scale bulk sample expression data-
sets for LUAD that were obtained from GEO database*® (GSE31210 and
GSE43458), where analyses of scRNA-seq data still outperformed the
analyses of these bulk sample data in detecting the known disease
genes (see Methods and Supplementary Fig. 11). Furthermore, inte-
grative DE analyses for all seven patients, except the pseudobulk
methods, surpassed the analyses for individual patients (Supplemen-
tary Fig. 12).

Detection of prognostic genes

Next, we performed the same analysis as above using another set of
disease-related genes. These genes were selecteded from an integrated
survival analysis of five microarray gene expression datasets for
patients with LUAD (GSE29013, GSE30129, GSE31210, GSE37745 and
GSE50081). The Cox proportional hazards model incorporating cov-
ariates of age, sex, and tumor stage*” was applied to each dataset, and
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the resulting p-values were combined for each gene using wFisher
considering the signs of hazards ratios (HRs)". These integrated p-
values were adjusted for multiple testing correction, yielding 447
genes with g-value <0.05, denoted as “prognostic (standard positive)
genes”. We note that only seven of these genes were also included in
the 221 known disease genes. Many DE workflows applied to epithelial
cells except the pseudobulk methods detected the prognostic genes
with significantly high ranks, and outperformed the analyses of TCGA
data (Supplementary Fig. 13). Interestingly, several DE workflows
applied to myeloid cells also detected the prognostic genes with sig-
nificantly high ranks (p-value <0.01), suggesting the correlation of DE
genes in those cell types with the survival of patients.

Analysis of large-scale scRNA-seq data: COVID-19

We compared the performance of DE workflows for large-scale scRNA-
seq data. Ren and colleagues have conducted a comprehensive ana-
lysis of scRNA-seq data from 196 patients with COVID-19". We used the
48 patient samples that provided fresh/frozen PBMC samples. Among
the cells from severe patients, the largest cell number was taken by
monocytes (Supplementary Fig. S14a) which were known to play a
crucial role in defending cells against viral infections*s. We analyzed
the 100,361 monocyte cells to benchmark DE workflows. We

Lung-epithelial cell

performed DE analysis between mild/moderate and severe/critical
symptoms assuming “sex” as two batch groups. “Age” has been
regarded as an important factor for COVID-19 severity; however, 23 out
of 24 senior patients (=60 year old) had the severe/critical symptom
which did not meet the balanced condition. We used the 133 genes
annotated with the GO term, DEFENSE_RESPONSE_TO_VIRUS
(GO:0051607) as standard positives (GO _Biological Process 2021)*°,
and compared their ranks between DE workflows (Supplementary
Fig. 14b). Among them, 27 workflows detected the standard positive
genes with significantly high ranks by the truncated KS test (p-value
<0.01). We tested pseudobulk methods by summarizing the counts for
the 48 individual patients. However, the four pseudobulk methods did
not exhibit significant results even using 48 samples. Whereas the
analysis of pseudobulk data exhibited strict controls of false positives
and false discoveries (Fig. 5), its predictive power for disease-related
genes was not high in our analyses.

Comparison of runtimes

The running times of the 46 DE workflows were compared in Fig. 7a for
both LUAD and COVID-19 cases. These data represented moderate and
large data sizes with 7764 and 100,361 cells with 7000-8000 genes. All
the DE workflows were run on a Linux machine with AMD Ryzen
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Fig. 5| Comparison of false positive controls (p-value <0.05) and false discovery
controls (g-value <0.05) between differential expression workflows (gene fil-

tering: zero rate > 0.95). Test results for a seven batches of normal lung epithelial
cells and b seven batches of model-based simulation data are shown as boxplots;

the lower, center, and upper bars represent the 25th, 50th and 75th percentiles,
respectively, and the whiskers represent + 1.5 x interquartile range. Black dashes
indicate the five percent of all genes tested. n =2331 and 2400 cells were used from
normal lung epithelial cells and model-based simulation.
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Fig. 6 | Comparison of predictive powers for lung adenocarcinoma (LUAD)
genes between differential expression (DE) workflows for scRNA-seq and bulk
RNA-seq data. Cumulative disease gene scores (GDA scores) for known disease
genes up to top 20% DE gene ranks are shown for three cell types: a epithelial cells,
b myeloid cells and ¢ T/NK cells. X-axis represents the DE gene ranks in each DE
analysis. Y-axis represents the cumulative score of known disease genes captured
within top-k gene ranks by each DE analysis. The black-dashed slopes represent the
expected cumulative scores of known disease genes for random gene ranks. Ten
and four methods are selected for analyzing scRNA-seq and bulk/pseudobulk data,

PIK3CA-

q2°

R_Cov-

RISC_QP-

GDA Score-
Raw_Wilcox-
LogN_FEM-
ZW_DESe
limmavoom-
limmatrend-

limmatrend_Cov-
_edge

ZW_ed;

respectively. d p-values of truncated Komogorov-Smirnov (KS) test for DE analyses
of scRNA-seq and TCGA RNA-seq data are shown for the three cell types. Black and
gray dashes represent the two significance cutoffs p-values = 0.01 and = 0.05,
respectively. e Rank percentiles of the 12 known LUAD genes with GDA score no less
than 0.5 are visualized for six DE workflows applied to LUAD epithelial cells and four
bulk sample DE methods applied to TCGA LUAD data. n =7728, 17348, and 15293
cells were used for the analysis of epithelial, myeloid, and T/NK scRNA-seq data,
respectively.
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Fig. 7 | Comparison of runtimes, similarity of differential expression (DE)
workflows and other measures. a CPU times (log-scale) of DE workflows taken for
analyzing lung adenocarcinoma (LUAD) epithelial cell (n=7728) and COVID-19
monocyte (n=100361) scRNA-seq data, each containing 10278 and 7242 genes,
respectively. b Clustering heatmap of 46 DE workflows for LUAD epithelial cell data

and four DE methods for TCGA LUAD data. The Spearman rank correlation of DE
genes were used as the similarity measure. ¢ Comparison of the capability of
prioritizing disease-related genes between 46 DE workflows and their performance
classified in terms of false positive/discovery controls, sign preservation of DE
genes, speed, and scalability.

Threadripper 3960 x 24-core processor and 128 Gb of DDR4 memory.
The fastest were pseudobulk methods followed by limma-based
workflows. Meta-analysis workflows exhibited shorter runtimes com-
pared to naive DE methods, as they applied a DE method to the indi-
vidual batches. edgeR-based workflows showed intermediate
runtimes. A long computation time was required for the workflows
that used BEC such as MNN and scGen, and those that used the
observation weight, which took longer than a day for COVID-19 data.
Among the recommended, LogN_FEM and limmatrend took less than
an hour even for COVID-19 data.

Similarity between DE workflows

We compared the similarity of DE analysis results between the 46
workflows for LUAD epithelial scRNA-seq data and four DE methods
applied to TCGA LUAD RNA-seq data. All 9,395 genes commonly found
in both scRNA-seq and RNA-seq data were ranked by the signed log(p-
value) score, -log(DE p-value) « sign(logFC) to compute Spearman rank

correlation between DE workflows. We used this score to sort genes,
because log(FC) values for low-depth scRNA-seq data could be less
reliable. The correlation heatmap and hierarchical clustering results
were shown in Fig. 7b. The four TCGA analysis results formed a distinct
cluster. The edgeR-, limmatrend- and RISC-based methods formed the
largest cluster, followed by the cluster of DESeq2 and limmavoom
methods. The four pseudobulk methods formed a separate cluster that
was close to the largest cluster.

We also compared the similarity of DE workflows for COVID-19
monocyte data (Supplementary Fig. 15a). The DE workflows exhibited
overall similar clustering patterns between LUAD and COVID-19 data.
For example, pseudobulk methods formed a separate cluster; edgeR-
and limmatrend-based methods were close to each other; and DESeq2-
and limmavoom-based methods were also close. Besides, MAST and
Raw_Wilcox were clustered together in both cases. The Baker's Gamma
correlation indicated a high similarity between the two clustering
results (0.56, p-value = 0)*°. Even when we removed the covariate
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workflows, the Gamma correlation remained high (0.42, p-value = 3.2e-
04) (Supplementary Fig. 15c). We selected ten DE workflows from the
three main clusters for LUAD data, and performed pathway analysis on
the corresponding DE results in the next section.

Pathway analysis for LUAD epithelial cell and TCGA data

We tested the pathway enrichments for scRNA-seq (epithelial
cells) and TCGA data to compare the functional relevance of each
DE analysis in cancer. Genes were ranked by their signed log(p-
value) scores and the gene-set enrichment analysis (GSEA) was
applied to the ranked genes in each DE workflow**2, From the
pathway database “wikipathway 2021”*°, 192 pathways that were
most relevant to cancer progression were selected as standard
positives. These pathways were selected on the basis of the ten
oncogenic signaling pathways> and the seven cancer associated
processes®, as well as those including the keyword(s) tumor,
cancer, or carcinoma in their names (see Methods). We classified
these pathways into 16 categories for detailed interpretation of the
GSEA results (Supplementary Data 2).

Interestingly, the analyses of scRNA-seq and TCGA data exhibited
distinct functional categories. For example, “Ciliopathies (WP4803)” in
the “cell polarity and migration” category ranked the first or second in
all the ten scRNA-seq analyses, whereas it only ranked 21th to 62th in
TCGA analyses. “Genes related to primary cilium development (based
on CRISPR) (WP4536)”, which belonged to the same category, was
ranked the third in all the ten scRNA-seq analyses, whereas none of the
TCGA analyses detected this pathway. These results represented the
cell-type-specific perturbation of pathways in lung epithelial cells.
Moreover, “VEGFA-VEGFR2 Signaling Pathway (WP3888)” in “angio-
genesis” category was detected within top 10 ranks and the four
categories “p53”, “PI3K”, “HIPPO” and “NOTCH” in oncogenic signalling
pathways were also detected in scRNA-seq analyses. However, none of
them were detected in TCGA analyses. In contrast, GSEA for TCGA data
detected at least two and seven pathways in the two categories
“genomic instability” and “inflammation”, respectively, whereas GSEA
for scRNA-seq data detected at most one and two in the respective
categories. By focusing on the epithelial cell data, DE analyses of
scRNA-seq data successfully detected many canonical oncogenic
pathways as well as cell-type-specific pathways that the bulk sample
analysis missed.

The scRNA-seq DE workflows selected from each cluster (Fig. 7b)
exhibited distinct pathway analysis results. For example, Raw_Wilcox
and MAST_Cov detected as many as six and seven pathways, respec-
tively in “cell survival” category, but they detected none in “oxidative
stress” category. Additionally, DESeq2, DESeq2_FEM, and ZW_DESeq2
also detected more pathways in “cell polarity and migration” and
“oxidative stress” categories compared to other workflows, whereas
they detected none in “p53” category. The GSEA results for four
selected DE workflows and one TCGA analysis result are available from
Supplementary Data 3.

A gross performance comparison

The capability of prioritizing disease-related genes for the 46 DE
workflows was categorized into three levels (Good, Intermediate and
Poor) for both LUAD and COVID-19 scRNA-seq data (Fig. 7c). We used
both criteria pAUC and truncated KS p-value to classify the workflows
(see Methods). Pseudobulk methods, many DE methods that used BEC
data, edgeR_DetRate, limmavoom and REM and p-value combining
meta-analysis did not show a good performance. Raw_Wilcox, FEM
meta-analysis and other parametric methods performed well, but the
benefit of using observation weight was not clear for low depth-data.
We also classified the DE workflows using other performance measures
such as false positive/discovery controls, sign preservation of DE
genes, speed and scalability (Fig. 7c). See Methods for detailed criteria
in each measure.

Discussion

Here, we benchmarked various workflows for DE analysis of scRNA-seq
data with multiple batches, and investigated the impacts of batch
effects, sequencing depth, and data sparsity on DE analysis. For sparse
data (zero rate > 80%), the use of BEC data rarely improved DE analysis
and the effect of using batch covariate depended on both batch effects
and sequencing depth.

For a moderate depth (depth-77), single-cell-dedicated methods
showed a good performance. For example, MAST which used zero-
inflation model incorporating the sparsity information and edgeR
combined with the observation weights for zero-inflation model (ZINB-
WaVE) performed the best. Many parametric DE methods based on
MAST, ZW_edgeR, DESeq2, and limmatrend surpassed the widely used
Wilcoxon test, and covariate modeling of batch groups further
improved the corresponding parametric methods for substantial
batch effects. The bulk RNA-seq tool edgeR without observation
weights exhibited relatively low precisions and poor false positive
controls. For a low depth (depth-10), DESeq2, limmatrend and meta-
analysis that used log-normalized data (LogN_FEM) showed a good
performance, and covariate modeling still improved the results.
However, the use of observation weights deteriorated edgeR and
DESeq2 from this depth, as the low depth made it difficult for zero-
inflation model to discriminate biological zeros from technical zeros.
For an even lower depth (depth-4), covariate modeling hardly
improved DE analysis and observation weights had deleterious effects
on DE analysis. In this case, LogN_FEM and two naive methods, lim-
matrend, and Wilcoxon test were among the best performers. Indeed,
in our analysis of LUAD and COVID-19 scRNA-seq data that had a low
depth (4.48 and 3.27, respectively), covariate modeling only marginally
improved the corresponding parametric methods in detecting
disease-related genes. While the observation weight only marginally
improved edgeR and DESeq2 in LUAD data analysis, it deteriorated the
methods in COVID-19 data analysis. We also tested pseudobulk
methods which exhibited good false discovery controls and overall
discriminatory abilities in a recent study®. We observed similar good
results with pseudobulk methods for small batch effects; however,
they were highly vulnerable to batch effects and exhibited low sensi-
tivities in our tests.

Moreover, we compared the signs of DE genes declared by each
DE workflow with the ground truth to estimate the data distortions
caused by each workflow. For a moderate depth, many workflows that
used BEC, RISC_QP, and limmavoom exhibited relatively high error
ratios. For a low depth, the overall error ratios were increased, and
relatively high error ratios were observed with the workflows that used
the observation weights and the BEC data obtained from deep-learning
methods (scGen and scVI). We further examined how BEC methods
affected scRNA-seq data before applying a DE method. The analysis
results demonstrated that BEC methods introduced additional per-
turbations (or noise) to data as well as systematic changes in the FC
values. Whether these perturbations were beneficial or not could only
be tested by comparing the performance of DE workflows in identi-
fying DE genes and their signs. Our tests showed that the artifacts
introduced by BEC methods outweighed their benefits in DE analysis,
especially for sparse and low-depth data.

For less sparse data (zero rate =40%), the situation changed much;
many BEC methods considerably improved DE analysis and covariate
modeling clearly improved DE analysis for both moderate and low
depths. Moreover, many workflows including Wilcoxon test showed
good overall discriminatory abilities (pAUPR) with minor differences.
This showed the performance of DE workflows depended on batch
effects, sequencing depth, data sparsity, as well as their interactions,
posing a challenge to choosing an optimal DE workflow for various
conditions. Thus, we suggested suitable DE workflows under different
conditions based on our simulation and real data analysis results
(Table 1). Here, the sequencing depth and sparsity were explicitly given
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Table 1 | Recommended differential expression (DE) workflows for different experimental conditions

Sparsity (zero rate) Depth* Batch Effects Recommended DE workflows
80% 77 Substantial MAST_Cov, ZW_edgeR_Cov, ZW_DESeq2_Cov,
scVI_limmatrend, DESeqg2_FEM, limmatrend_Cov
80% 77 Small MAST, ZW_edgeR, ZW_DESeq2, Pseudobulk_limma,
DESeqg2_FEM, limmatrend_Cov
80% 10 Substantial DESeqg2_Cov, limmatrend_Cov, DESeq2_wFisher,
LogN_FEM, MAST_Cov, Raw_Wilcox
80% 10 Small DESeq2, limmatrend_Cov, LogN_FEM,
Pseudobulk_edgeR, Pseudobulk_limma, Raw_Wilcox
80% 4 Substantial LogN_FEM, limmatrend, Raw_Wilcox,
RISC_QP
80% 4 Small LogN_FEM, limmatrend, Raw_Wilcox,
RISC_QP
40% 77 Substantial MAST_Cov, ZW_edgeR_Cov, ZW_DESeq2_Cov,
limma_BEC_Wilcox, Scanorama_limmatrend, logN_FEM
40% 77 Small Pseudobulk_limma, Raw_Wilcox, Pseudobulk_edgeR, DESeq2, LogN_FEM
40% 4 Substantial limmavoom_Cov, limmatrend_Cov, ZW_edgeR_Cov,
ZW_DESeq2_Cov, logN_FEM, limma_BEC_Wilcox
40% 4 Small Pseudobulk_limma, limmvoom, limmatrend, Pseudobulk_edgeR, Raw_Wilcox, edgeR

In 40% sparsity cases, recommended methods were selected based on simulation results only.
*Average nonzero count in each cell after filtering sparsely expressed genes (zero rate > 0.95).

from the data in hand, whereas batch effects should be estimated from
the study design, data distribution or using PVCA. For example, if the
batch data were obtained from different research groups or sequen-
cing protocols, we might expect sizable batch effects. This could be
affirmed by using commonly used dimension reduction and visuali-
zation techniques’® and assessed using batch effects quantification
tools>. PVCA required quite a long computation time for large-scale
data; however, the time was greatly saved by using a randomly selected
subset from scRNA-seq data.

Finally, we tested whether DE workflows for multi-batch scRNA-
seq data could be used to prioritize disease-related genes better than
analyses of bulk or pseudobulk data. This was verified for two inde-
pendently derived sets of cancer-related genes and three large-scale
bulk sample datasets for LUAD. For a specific cell type (epithelial cells),
many DE workflows applied to scRNA-seq data exhibited a superior
predictive power for the cancer-related genes compared to the ana-
lyses of bulk or pseudobulk data. Furthermore, we tested DE workflows
for large-scale COVID-19 scRNA-seq data. Each individual in these data
belonged to multiple biological or technical categories, such as age,
sex, sequencing protocol, sample processing method and cohort
region. These factors imposed large and complex group effects on the
data, which could have deteriorated pseudobulk methods. Many of
those factors did not meet the balanced condition when the whole
data were considered for DE analysis; thus, we took the most universal
factor as a batch category to test DE workflows for large-scale data.
Many DE workflows successfully detected virus-related genes in their
significantly high ranks. Our results suggested using integrative DE
analysis of scRNA-seq data considering cells as independent replicates
rather than using bulk or pseudobulk data to discover disease-
related genes.

Methods

Fg-score and partial area under precision-recall curve

In DE analysis of scRNA-seq data, it is often important to identify a
small number of genes (markers) that are capable of characterizing
each cell type. Moreover, it is not reasonable to expect to identify all
DE genes from highly noisy and sparse data. Thus, we use generalized
F-score (Fp) and partial AUPR (pAUPR) that weigh precision twice
higher than recall to assess a DE analysis method. In binary classifica-
tion task, F-score is the harmonic mean of precision and recall. For a list

of DE genes (g-value <0.05), we use Fg (8=0.5) defined as follows:

_a +f?) - precision - recall

F B 2 it
B - precision +recall

>0 2)

The Fgscores were calculated for both up and downregulated
genes and both results were used. To assess the general performance
of a classifier, precision-recall curve has often been considered. Instead
of using the whole AUPR, we suggested using pAUPR (7 = 0.5) defined
as follows:

;
PAUPR; = %/ precision, dt,0<T<1 3
0

Acquisition and preprocessing of gene expression data

The LUAD TCGA data were downloaded from UCSC xenabrowser
(https://xenabrowser.net/datapages/). HT-seq count data and
gene/mapping data were used for DE analysis. The curated gene
sets were downloaded from Enrichr Gene-set Library (https://
maayanlab.cloud/Enrichr/#libraries). “WikiPathway_2021_Human”
was used for pathway analysis and the 133 genes annotated with
“defense response to virus” were obtained from “GO_Biological_-
Process_2021”. LUAD and COVID-19 scRNA-seq data (GSE131907
and GSE158055, respectively) and the microarray data for LUAD
bulk samples were downloaded from NCBI Gene Expression
Omnibus database with their accession numbers (GSE43458,
GSE29013, GSE30129, GSE31210, GSE37745, GSE50081).

For both simulation and real scRNA-seq data, genes expressed
in less than 5% of the cells analyzed were excluded. For both LUAD
and COVID-19 scRNA-seq data, the cells with high mitochondrial
gene expression were removed using the PercentageFeatureSet
function from the Seurat R package; the same thresholds used in
the original studies 20 and 10% were applied to the three cell types
of LUAD and monocyte of COVID-19 data, respectively. Then, we
disabled the additional filtering in each DE analysis method. Spe-
cifically, we set the logFC threshold and minimum number of
expressed cells to zero. Several BEC methods, such as Seurat and
scMerge have used highly variable genes only which yielded cor-
rected data with a low dimension. Thus, we used all the genes for
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those methods to have the corrected data with the original high
dimension to test downstream DE analysis. For bulk sample data,
we used biomaRt R package to map probe IDs to GRCh38 gene
symbols and used the protein coding genes. The ENSEMBL IDs of
TCGA data were converted to GRCh38 gene symbols.

For each DE workflow, either raw count or log-normalized count
data were used as input data as recommended for each DE method
used. All the 10 BEC methods yielded batch-corrected data in their log-
scale, which were directly used for Wilcoxon test and limmatrend.
DESeq2- and edgeR-based workflows used raw count data as input.
ZINB-WaVE yielded both the observation weights and corrected data,
and the former was used as additional input for edgeR and DESeq2
(ZW_edgeR and ZW DESeq2). Detailed preprocessing (e.g., log-nor-
malization) of the input data for each DE workflow was described
in Supplementary Notes.

Model-based simulation for 80% and 40% zero rates

Splatter R package®” was used to simulate scRNA-seq data based on
negative binomial model. The dropout parameter values dro-
pout.mid=0.01- .05 and 3.7-3.8 were used to simulate data with
overall zero rates 40% and 80%, respectively. splatSimulate function
was used to simulate different batches. Large batch effects (batch.fa-
cloc=0.4 and batchfacScale=0.4) and small group differences
(defacloc=0.2 and defacScale=0.2) were used to simulate large
batch effects. We created six scenarios for combinations of two
dropout values and three group size ratios (2:8, 3:7, 4:6). The batch
sizes with 300 and 750 cells were used for the two-batch case; and 100,
150, 200, 300, 400, 500, and 750 were used for the seven-batch case.
Approximately 2500 genes survived gene filtering and included 20%
DE genes (half up and half downregulated). No statistical method was
used to predetermine sample size.

Model-free simulation

MCA and pancreas data were used to simulate scRNA-seq data. MCA
data comprised two independent datasets obtained using different
sequencing techniques. The original data included two batches con-
taining 4,239 and 2,715 cells. We chose T-cells for our simulation.
Because T-cells included several subtypes, we selected the largest
clusters from each batch that shared marker genes identified by using
FindMarkers function in Seurat package'. Specifically, we selected
clusters with 358 and 266 T-cells from different batches. For pancreas
data, we used the clusters with 241 and 659 alpha-cells from humanl
and human2 batches, respectively. Then, each batch dataset was ran-
domly divided into case and control groups with different ratios to
cover several scenarios. We then randomly selected two groups of
genes, each with 10% of all genes; one group was downsampled in the
case group and the other downsampled in the control group using
binomial distribution to simulate DE genes. The success probability for
the binomial distribution was sampled from the beta distribution with
the shape parameters a = =2 that are expected to generate DE genes
with the median fold-change two.

Covariate modeling
The log-linear model’**” has been frequently used to model the read
count data as follows:

B G
Iog(E (y’/)> =i +agl;+ bzzlﬁfbljb + ; Vielis “4)

where yj; is the read count of gene i and sample, L; is the library size of
sample j, / is the indicator function of a specific sample group, a’s, s,
and y’s are the model parameters, B and G are the numbers of batches
and sample groups used, respectively. Then, DE of a gene can be tested
using quasi-likelihood ratio, Wald or moderated ¢-test under a
logarithmic count model incorporating the batch variable®2%%%,

Principal variance component analysis

Principal variance component analysis (PVCA)* was used to estimate
the variability of experimental effects. PVCA combines principal
component analysis (PCA) and variance components analysis (VCA) to
take advantages from both techniques. PCA reduces the dimension of
data while preserving their major variability. VCA fits a mixed linear
model using the factors of interest to estimate and partition the total
variability. Whereas PVCA is a generic approach used to quantify the
proportion of variations of different effects, it provides a handy
assessment for the batch effects before and after the correction.

Estimation of logFC values and data distortion from scRNA-
seq data

For a read count matrix [c;] for gene i and cell j, the log-normalization
of ¢; is defined as follows:

lognorm (cy> = log(% *10* +1) (5)
j

where L;is the library size (total count) of cellj. Then, the log, FC value
for gene i between case and control conditions was estimated as fol-
lows:

,1 > " lognorm(cy) —

20 ¢!
Ci Ocy;so

1

log FC, = p > " lognorm(cy) (6)

;%0 ;%0

where ¢; and ¢; are read counts of gene i for the case and control
groups, respectively. We compared the logFC values before and after
BEC. We used the average angular (cosine) distance between each data
point (DE gene) and the straight line y = x (Fig. 4e) as the measure of
data distortion by each BEC method.

d
n 1,1, ]Og FC':aw, log FC«.?Orrec[e
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Collection of known disease genes

Two disease gene databases, DisGeNET and CTD were used to retrieve
known lung cancer genes. In DisGeNET, 2438 genes were annotated
with term, “Adenocarcinoma of the lung (disorder)”. DisGeNET pro-
vides gene-disease association score (GDA score), which is weighted
sum of the number of each level/type of sources, and the number of
publications supporting the association. Among the 2438 genes, we
have selected only 207 genes with GDA score 0.3 or larger. In CTD, we
have selected 158 genes that were annotated with “Adenocarcinoma of
Lung” and curated as “Marker/mechanism” in “Direct.Evidence” field.
Among them, 144 genes were also selected from DisGeNET and their
median score was given to the rest 14 genes that were exclusively
selected from CTD. In total, 221 genes were used as standard positives.

Categorization of standard positive pathways in lung cancer

The standard positive pathways were categorized on the basis of ten
oncogenic signaling pathways® and seven cancer-associated
processes®*. The ten oncogenic signaling pathways included (1) cell
cycle, (2) Hippo signaling, (3) MYC signaling, (4) NOTCH signaling, (5)
oxidative stress response/NRF2, (6) PI-3-Kinase signaling, (7) receptor-
tyrosine kinase (RTK)/RAS/MAP-Kinase signaling, (8) TGF( signaling,
(9) P53 and (10) B-catenin/WNT signaling. Here, “MYC signaling”
category was not detected by any analysis, so was excluded. The seven
cancer-associated processes included (1) cell proliferation, (2) cell
polarity and migration, (3) cell survival, (4) cell metabolism, (5) cell fate
and differentiation, (6) genomic instability, and (7) tumor micro-

environment. Among them, “cell cycle”, “cell proliferation” and “cell
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fate and differentiation” were combined into one category, and “tumor
microenvironment” was divided into its subcategories, “inflammation”
and “angiogenesis”. Lastly, pathways that included the keywords,
tumor/cancer/carcinoma in their names were collected into a separate
category, where less relevant pathways such as retinoblastoma or
glioblastoma were excluded. In total, 190 standard positive pathways
for cancer were classified into 16 categories (Supplementary Data 2).

Analysis of LUAD bulk-sample expression data

DE analysis for TCGA LUAD bulk RNA-sequencing data between 493
cancer and 53 normal samples were performed incorporating covari-
ates age, sex and smoking history using four methods, DESeq?2, edgeR,
limm, and limmatrend methods. 16,129 genes with five or larger mean
count that were commonly found in gene-filtered epithelial sScRNA-seq
data were analyzed. Two LUAD microarray expression datasets
(GSE31210 and GSE43458) were also analyzed. The former consisted of
226 tumor and 15 normal samples and covariates of age, sex, and
smoking history were incorporated in DE analysis. The data were
normalized by MASS and the log-normalized data were used for lim-
matrend. The latter consisted of 80 cancer and 30 normal samples.
Only smoking history was available and used as covariate. RMA nor-
malization and limmatrend were used.

Criteria for classifying performance

Standard positive gene detection. We used the ranks of pAUC and
truncated KS p-values to classify the performance into three categories
as follows:

* Good: Truncated KS p-value < 0.01 and top 10 in pAUC
* Intermediate: Cases other than Good and Poor
* Poor: Truncated KS p-value > 0.01 or pAUC rank > 20

False Positive/False Discovery. We used the number of false positives
and false discoveries to classifiy the performance into three categories

as follows
* Good: Zero median false discovery and the median number of
false positives not larger than 5% of analyzed genes for both low-

and moderate-depth data (Fig. 5).
* Intermediate: Cases other than Good and Poor
* Poor: Median false discoveries larger than zero for both low- and

moderate-depth data AND median number of false positives
larger than 5% for either low- or moderate-depth data.

Sign preservation. Because the ranges of values were different
between the results of datasets, we think of aggerating the relative
difference between boxplots/groups of performance values of meth-
ods. The percentage of errors (P) is calculated based on the difference
between medians (DBM) and the overall visible spread (OVS) as:

DBM
= 8
P VS x100 8

*  Good: P<30%
* Intermediate: between Good and Poor
*  Poor: P>60%

Speed. We used LUAD epithelial cell and COVID-19 monocyte data to
compare the computing times between DE workflows and classified
them based on their ranks as follows:

*  Good: Runtime of COVID-19 <10 mins
* Intermediate: between Good and Poor
*  Poor: Runtime for LUAD data > 30 mins or runtime for COVID-19

> three hours

Scalability. We compared the proportionality between the computing
time and the data size. We estimated this coefficient for the square

root of the number of data entries (cells x genes). For dataset i
including N; cells and M; genes, the computing time T; (seconds) of
method K was modeled as

Ti=0{,(\/N,--M,- (9)

The scalability of method K was classified based on the coefficient
o as follows:
* Good:ay <1
* Intermediate: between Good and Poor
* Poor:ax >2

Truncated Kolmogorov-Smirnov test

Kolmogorov-Smirnov (KS) test assesses the maximum distance
between empirical and null cumulative distribution functions (cdf).
The empirical distribution was generated by accumulating the gene
scores of standard positives in the order of DE gene p-values and the
test statistic is given as follows:

u
5 (10)
F.(u= ‘Z':w = cdf of empirical distribution
i
Fy(u) = cdf of null hypothesis 11

KS statistic (right-tailed). D* = max(F,(u) — F (1)) where wy’s are the
weights of standard positive genes. If the ith gene does not belong to
standard positive genes, w; =0.

A drawback of KS test is that the maximum discrepancy D' can
occur for a low gene rank*. Because we are interested in methods that
are capable of prioritizing standard positive genes in high ranks, we
modified the statistic so that D* can occur only within top 20% ranks as
follows:

wKS statistic(right — tailed) : D' = max(F ,(u) — Fyw)  (12)
~ F(u), u<nN
POZ Ry + b (1 F V), uzN ©

where un,x is total number of genes N corresponds to the top 20%
rank. In other words, the ranks of standard positives outisde the top
20% DE genes were uniformized not to affect the test result.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The single-cell, bulk sample and pathway data used in this study are
available publicly and described in the Methods section. The scRNA-
seq and microarray data were downloaded from the GEO database*®
through their accession numbers (scRNA-seq LUAD: “GSE131907";
scRNA-seq COVID-19: “ GSE158055”; microarray LUAD: “GSE29013”,
“GSE30129”, “GSE31210”, “GSE37745”, “GSE43458” and “GSE50081”).
TCGA LUAD RNA-seq data were downloaded from the UCSC xenab-
rowser  (https://xenabrowser.net/datapages/?dataset=TCGA-LUAD.
htseq_counts.tsv&host=https%3A%2F%2Fgdc.xenahubs.
net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%
3A443). Pathway data (WikiPathway 2021 _Human and GO _Biological_-
Process 2021) were downloaded from Enrichr Gene-set Library*
(WikiPathway 2021_Human: https://maayanlab.cloud/Enrichr/
geneSetLibrary?mode=text&libraryName=WikiPathway 2021_Human;
GO_Biological_Process_2021: https://maayanlab.cloud/Enrichr/
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https://xenabrowser.net/datapages/?dataset=TCGA-LUAD.htseq_counts.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?dataset=TCGA-LUAD.htseq_counts.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?dataset=TCGA-LUAD.htseq_counts.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://maayanlab.cloud/Enrichr/geneSetLibrary?mode=text&libraryName=WikiPathway_2021_Human
https://maayanlab.cloud/Enrichr/geneSetLibrary?mode=text&libraryName=WikiPathway_2021_Human
https://maayanlab.cloud/Enrichr/geneSetLibrary?mode=text&libraryName=GO_Biological_Process_2021
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geneSetLibrary?mode=text&libraryName=GO_Biological_Process_
2021). The collection of known disease genes were downloaded from
two public databases (DisGeNET: https://www.disgenet.org/; CTD:
http://ctdbase.org/). All other relevant data supporting the key find-
ings of this study are available within the article and its Supplementary
Information files or from the corresponding author upon reasonable
request. Source data are available at Zenodo (https://doi.org/10.5281/
zenodo.7645614%).

Code availability

The R and Python codes used for our simulation tests are available at
both GitHub (https://github.com/noobCoding/Benchmarking-
integration-of-scRNAseq-differential-analysis) and Zenodo (https://
doi.org/10.5281/zenodo.7608396).
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