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A B S T R A C T   

Purpose: A semi-supervised two-step methodology is proposed to obtain a volumetric estimation of COVID-19- 
related lesions on Computed Tomography (CT) images. 
Methods: First, damaged tissue was segmented from CT images using a probabilistic active contours approach. 
Second, lung parenchyma was extracted using a previously trained U-Net. Finally, volumetric estimation of 
COVID-19 lesions was calculated considering the lung parenchyma masks. 
Our approach was validated using a publicly available dataset containing 20 CT COVID-19 images previously 
labeled and manually segmented. Then, it was applied to 295 COVID-19 patients CT scans admitted to an 
intensive care unit. We compared the lesion estimation between deceased and survived patients for high and low- 
resolution images. 
Results: A comparable median Dice similarity coefficient of 0.66 for the 20 validation images was achieved. For 
the 295 images dataset, results show a significant difference in lesion percentages between deceased and sur
vived patients, with a p-value of 9.1 × 10− 4 in low-resolution and 5.1 × 10− 5 in high-resolution images. 
Furthermore, the difference in lesion percentages between high and low-resolution images was 10 % on average. 
Conclusion: The proposed approach could help estimate the lesion size caused by COVID-19 in CT images and 
may be considered an alternative to getting a volumetric segmentation for this novel disease without the 
requirement of large amounts of COVID-19 labeled data to train an artificial intelligence algorithm. The low 
variation between the estimated percentage of lesions in high and low-resolution CT images suggests that the 
proposed approach is robust, and it may provide valuable information to differentiate between survived and 
deceased patients.   

1. Introduction 

In November 2019, an outbreak of the novel coronavirus SARS-CoV- 
2 was reported in the province of Wuhan, China. In January 2020, the 
World Health Organization (WHO) declared an international emer
gency. As of May 2022, the COVID-19 pandemic has caused more than 6 
million deaths worldwide [1]. 

The 2019 coronavirus disease (COVID-19) pandemic has triggered 
profound changes in healthcare practices and policies, beginning with 
triage management, diagnostic resources application, and patient 
destination according to positive test results. At the pandemic’s begin
ning, complete hospital resources were dedicated to COVID-19 patients, 
so diagnosis became a relevant step in resource management. 

Many of these challenges required developing solutions focused on 
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this new reality. For example, the gold-standard test for diagnosing 
COVID-19, real-time polymerase chain reaction (RT-PCR), was only 
available in some places. When it was, results may be delayed hours or 
even days. The test is sensitive to variations and high false negative 
results can be obtained depending on the protocol used, the technique to 
obtain the sample, handling of it, the viral load of the patient, the time 
from the begging of symptoms and arrival to healthcare facilities, and 
intrinsic patient’s health [2]. 

In another effort, the Dutch Radiological Society standardized a 
COVID-19 reporting and data system (CO-Rads) aiming to increase the 
options for early diagnosis, providing information based on non- 
enhanced Computed Tomography (CT) images where levels of suspi
cion increased from Co-Rads 1 up to Co-Rads 5 [3]. In parallel, there was 
significant interest in positive discrimination with CT of higher or lower 
survival chance to help relatives to make joint decisions with the 
healthcare team, defining scarce resource allocation and enhancing lung 
protective measures approach to patients in higher risk even if this 
would require more extended muscle relaxant use and higher sedative 
doses well-known risk factors for the need of vasoactive medications. 

In addition, hospitals faced the necessity to balance the lack of 
available experts in reading COVID-19 CT scans, the large number of 
patients arriving to be assessed, and the interest in decreasing radiation 
exposure in all patients while still being able to define early the survival 
probabilities. These conditions exposed the pursuit of automatic tools 
for patient assessment, many of which are based on AI algorithms. 

High-resolution computed tomography (HRCT) imaging has been 
recognized as an essential tool for diagnosing this novel disease [4,5]. 
This imaging technique allows the identification of different stages and 
phenotypes of COVID-19, and it is helpful in accurately evaluating the 
patient’s evolution [6,7]. Furthermore, HRCT is often used to assess the 
complications in hospitalized patients and evaluate the response to 
different treatments. HRCT, in combination with AI algorithms, can be 
used as an automated diagnosis system to assess medical treatments and 
could be relevant as a tool for radiological research [8]. 

Most studies on AI related to COVID-19 CT images aim to classify 
positive and negative cases as automatic diagnosis systems 
[9,10,11,12,13]. Beyond diagnosis, lesion segmentation is essential in 
COVID-19 quantifying and correctly assessing the disease. Machine 
learning algorithms have been applied to CT images of COVID-19 pa
tients to solve the lesion segmentation problem. Wu et al. [14] present a 
joint classification and segmentation diagnosis system; they used a fine- 
grained model for segmentation and achieved a Dice similarity coeffi
cient (DSC) value of 0.78 on their dataset built by axial CT slices. On the 
other hand, authors in [15] proposed a weakly supervised method based 
on point annotations to segment disease on CT images and tested it on 
three different datasets, one of them is the COVID-19 CT Lung and 
Infection Segmentation Dataset (LISD) [16], which is worth to mention 
since it is used to test our approach for validation. Additionally, Liu et al. 
[17] proposed another weakly supervised algorithm based on scribble 
annotations, and they tested it on their dataset [10,11,18]. In [19], a 
pair of networks called teacher-student framework is trained using 
Fourier transform augmentation to build a training dataset from lung 
cancer data without collecting COVID-19 images for training. 

Other recent studies, like [20], performed a segmentation task for 
regions of interest and then use an Artificial Bee Colony optimized 
Neural Network to classify these regions as COVID-19 or non-COVID-19 
regions. They only presented the segmentation performance of two 
images with a Dice similarity coefficient (DSC) of 0.91 and 0.90 and a 
Jaccard coefficient of 0.88 and 0.87. Their main contribution was the 
classification network, where they obtained a classification accuracy of 
92.3 %. 

In [21], they presented a network with a pixel-wise sparse graph 
reasoning module which is inserted on a U-net configuration between 
the encoder and decoder paths. They tested their network on three 
datasets obtaining DSC values of 0.84, 0.78, and 0.67 on each dataset. It 
is important to mention that they compared their model with other 

models on the state of the art, and in most cases, they achieved the best 
result using the new proposed model with the pixel-wise sparse graph 
reasoning module. 

To deal with the challenging task of obtaining large amounts of an
notations for training, Weiyi Xi, et al. proposed in [22] a network 
training based on dense regression activation maps. These maps were 
generated by a neural network trained to estimate a per-lobe lesion 
percentage, then they refined their results using an attention neural 
network module, achieving a DSC coefficient of 0.7. 

All the studies above used convolutional neural network (CNN) ar
chitectures to obtain a classification of the images or a segmentation 
mask. However, it is worth pointing out that such approaches demand 
large amounts of labeled data to train and evaluate the models. The need 
for more data to train and test CNN models is grounded on the challenge 
of generating gold-standard segmentation. Unfortunately, more publicly 
available datasets are needed to accomplish these tasks, even more for a 
particular new disease such as COVID-19. 

In medical imaging, gold standards are usually drawn manually by 
expert radiologists. Furthermore, in many cases, multiple radiologists 
perform the task to account for inter-subject bias. This task is very time- 
consuming since each HRCT study may hold between 100 and 300 sli
ces, and images must be segmented one slice at a time. Moreover, the 
CNN training process is time-consuming and computationally expensive, 
even with access to sufficient labeled data. 

Data augmentation [23,24] and transfer learning [25–28] are often 
used to overcome the lack of data when training a CNN. In the latter 
strategy, images from other pulmonary diseases can be used to learn 
similar features on the images and thus segment COVID-19 images. For 
instance, in [29], images from other lung conditions and COVID data 
were used simultaneously during training. However, better results are 
still obtained using only COVID-19 images, even with a minimal training 
set. Even with the best results, the lesion segmentation does not perform 
the same as parenchyma segmentation, considering a DSC of 0.65 for 
COVID-19 lesions in the best case, 0.85 (using only COVID-19 images) 
and around 0.95 for lung segmentation. 

There are other recent attempts to handle these difficulties, such as 
the one shown in [30], here a label-free segmentation was accomplished 
by generating synthetic lesion regions that were added to images of 
healthy subjects. Then, these images were used to train a neural network 
to differentiate between healthy and synthetic disease images. Three 
publicly available datasets were used to test the model, including the 
one we used in this work, achieving a DSC value of 0.69 for this dataset 
and 0.59 and 0.61 for the others [31]. 

Consequently, this work is motivated by the need to develop new 
methodologies to automatically quantify the lung lesion percentage, 
dealing with the need for datasets to train AI models. 

Following this motivation, the aim of this work is to propose a semi- 
supervised method for lesion quantification on COVID-19 CT images, 
eliminating the need for a large dataset to train and generalize the re
sults. The proposed methodology removes the need for a training dataset 
of COVID-19 scans and is also repeatable on other images because it is 
not a model fitted to a specific dataset. Moreover, we evaluated the 
helpfulness of the proposed scheme in estimating the outcome of pa
tients from a Mexican third-level hospital with proven COVID-19, and 
compared the differences in high and low-resolution CT images for 
COVID-19 lesion segmentation. 

The proposed methodology consists of two steps. First, the lesion is 
segmented using a semi-supervised algorithm based on probabilistic 
active contours (PACO) [32], which is a multi-region segmentation 
approach that requires an initial delimitation of regions of interest 
(ROIs) in order to calculate probability density functions that constraint 
and guide contours to the border of the multiple ROIs; this algorithm has 
proved to be a good alternative for the segmentation on medical imag
ing, however it has yet to be explored for COVID-19 segmentation. 
Lesion segmentation is made over a full body image (which includes 
tissue outside the lung). Thus, the raw output of this algorithm may 
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identify body regions outside the lungs as lesions. For this reason, a 
second step is implemented to perform a complete lung-parenchyma 
segmentation. This is done using a U-net pre-trained on a lung paren
chyma segmentation dataset. The output mask of the U-net is then used 
to clean the initial lesion mask. This cleaned version of the lesion and the 
lung parenchyma is then compared to estimate the lesion concerning the 
whole lung volume. 

2. Methods 

Our lesion segmentation approach involves two steps. The first aims 
to segment the COVID-19-induced lesion, and the second is focused on 
segmenting the lung parenchyma. This way, we obtained an excellent 
lung parenchyma segmentation using non-COVID-19 CT images and 
then used this information to mask the lesion segmentation obtained 

using our semi-supervised approach. The reason for proceeding as 
indicated was that experimentally, we noticed that our semi-supervised 
method performed much better when applied to the images containing 
the entire body than to parenchyma-only ones. Based on these results, 
we proposed the methodology described in Fig. 1. 

2.1. Study population and CT data acquisition 

Data were collected retrospectively from 295 patients (84 female, 
211 male, 54 ± 12 years) admitted to the intensive care unit at the 
National Institute of Medical Sciences and Nutrition Salvador Zubirán 
(INCMNSZ, Mexico City, Mexico) due to severe pneumonia caused by 
COVID-19 infection in the period from March to April of 2020. Positive 
RT-PCR tests confirmed SARS-CoV-2 infection. The institutional ethics 
committee approved this protocol. Chest CT images were acquired using 

Fig. 1. Flow chart of the proposed methodology.  
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a GE Revolution EVO Gen 3 (GE Healthcare, Milwaukee, WI) system. 
The used imaging series consisted of low-resolution (70–101 slices) and 
high-resolution (117–361 slices) helical acquisitions using a lung win
dow, matrix size of 512x512 pixels, slice thickness of 1.25–3.75 mm, and 
1.25 mm spacing between slices. The X-ray tube voltage and current 
were set to 140 kV and 100–300 mA, respectively. 

There is a low and high-resolution image for each patient, giving a 
total of 590 CT (295 low-resolution and 295 high-resolution volumes). 
Of those 295 patients, 132 were reported as deceased, and 163 survived. 

2.2. Data pre-processing 

All the images were pre-processed using a body extraction algorithm. 
First, a binary threshold was performed, with values between 175HU 
and 750HU. Then, a 3D morphological closure was applied using a 
structural element of radius (5,5,5) and a binary fill-hole filter. Finally, 
the 3D-connected components with a volume of fewer than 2 L were 
removed. Fig. 2 illustrates these data pre-processing steps. 

2.3. Probabilistic active contours (PACO) 

For COVID-19 lesion segmentation, the PACO algorithm proposed in 
[32] was used. This multi-region segmentation algorithm is based on 
minimizing an energy functional with constraints that guide contours to 
the border of the multiple regions of interest. For a better understanding, 
the PACO algorithm consists of the minimization of an energy functional 
E defined as: 

E[I] =
∑N

k=1

{

λk

∫

L
− Pk(V(x) )H(ϕk(x) )

∏N

j=1j∕=k

(
1

− H
(
ϕj(x)

) )
dx+ ρk

∫

L
|∇H(ϕk(x) ) |dx

}

(1)  

where V is a volume observed over the voxel lattice L with N disjoint 
regions, the functions Pk(.) measure how much V(x) belongs to one of the 
N regions, x is a vector defining the voxel positions, and H is the 
Heaviside function defined by 2 

H(x) =
{

1, x ≥ 0
0, x < 0 (2)  

where |⋅| is the L2 norm and ∇ is the gradient function. ϕk(⋅) are the 
functions that define the contours of the objects as their zero-level-set, 
and if a voxel x belongs to a region Rk, then ϕk(x)〉0. 

The first term of 1 corresponds to probability density functions 
(PDF), and it is used for measuring how much a voxel belongs to each 
region. This term is multiplied by the product term, which contains the 
Heaviside function, forcing the voxels not to be included in more than 
one region. The second term is the classical regularization term used in 
active contours algorithms; it measures the surface area that delimitates 
each volumetric region. The constants λk and ρk are used to control the 
influence of each term. 

A two-step methodology is used to minimize the energy functional in 
the PACO algorithm. First, the PDFs are estimated using the regions 
delimited by the ϕ functions. Then, the energy functional E is minimized 
with respect to ϕk. These two steps are repeated until a convergence 
criterion or when the indicated number of iterations is reached. The 

Fig. 2. Body extraction sequence.  

D.E. Rodriguez-Obregon et al.                                                                                                                                                                                                                



Biomedical Signal Processing and Control 85 (2023) 104905

5

reader is referred to [32] for further details on the PACO 
implementation. 

For this work, the algorithm was implemented in MATLAB 2020b, 
and normal probability distributions were assumed. Also, the λk pa
rameters were empirically set to 1 and the ρk to 0.5 while the number of 
iterations was set to 200. The Dirac delta and the Heaviside functions 
were approximated as in [29] for numerical implementation. 

2.4. Initialization 

The PACO algorithm requires initial contours to start the minimi
zation process. The initial contours were defined manually, drawing the 
four initial regions (healthy tissue, lesion, body, and background) in a 
representative slice from the CT volume. This slice was selected 
empirically, looking for slices with large lesion areas from the middle 
section of the lungs. Fig. 3 shows an example of the initial contours for 
one patient and the initials PDFs from these regions. The background 
PDF is centered on − 2000 for graphic presentation purposes in the 
figure, but the actual value assigned to the background is − 5000. This 
image shows that the regions of interest have different PDFs. 

2.5. Lung parenchyma segmentation 

Convolutional neural networks have been widely used for image 
classification tasks and, more recently, for image segmentation. The 
latter could be achieved by training a CNN as a pixel-level classifier, as 
shown in [33], or by using an encoder-decoder architecture similar to 
the one used in this work and very popular in recent years [34]. This 
encoder-decoder model is named U-net. It extracts information from the 
image in the decoder stage to build low-resolution features; then it re
constructs the labeled image in the decoder path; this means it increases 
the resolution of the coded information to provide an output image with 
equal resolution as the input and combines the low-resolution with the 
high-resolution information by concatenating the decoding path with 
the corresponding encoding counterpart. 

In this study, lung parenchyma segmentation was achieved using a 
modified 3D U-net architecture, like the one presented in [34] (see 
Fig. 4). The network takes as input a volumetric image of size 
(256,256,128) and returns a lung parenchyma mask image of the same 
size. 

As Fig. 4 shows, the U-NET architecture was built with a 5-level 
encoder stage and two 3D convolution blocks on each level, using a 

kernel size of 3x3 and 8, 16, 32, 64, and 128 convolution filters. Con
volutions are followed by a rectified linear unit (ReLu) activation 
function for each level. After both convolutions have been performed, a 
batch normalization layer and a Max-pooling operation are applied. The 
decoder stage is also composed of five levels with an upsampling process 
each, followed by a transpose 3D convolution layer, a ReLu activation, 
and a concatenation with the residuals of the same level from the 
encoder stage. A final convolutional layer is applied using a sigmoid 
activation function to create the desired volumetric mask output [35]. 

The network was trained on a publicly available lung segmentation 
dataset from The Cancer Imaging Archive: Thoracic Volume and Pleural 
Effusion Segmentations in Diseased Lungs for Benchmark Chest CT 
Processing Pipelines (PleThora) [36]. This dataset contained 402 CT 
scans with corresponding parenchyma segmentation masks from sub
jects with diseased lungs. The images were randomly rearranged in 
training and validation datasets, including 70 % (n = 281) and 30 % (n 
= 121) images. 

Data augmentation was applied for the training stage using the 
following methods: random flip of the x or y axes, 3D random rotation 
among the three axes with a range of [-20, 20] degrees, and 3D trans
lation in the range of [-5, 5] mm for every axis. Image normalization was 
performed to have the pixel intensity with zero mean and standard de
viation of 1. Finally, random Gaussian noise was added with a standard 
deviation in the [0.0, 0.3] range. The model was trained using a variant 
learning rate with an initial value of 0.005 that was reduced by a factor 
of 0.1 when there was no improvement in the validation loss for two 
consecutive epochs. In addition, the network was trained for 100 epochs 
using the Adam optimizer. However, it contained a callback function to 
stop the training when no improvement in the validation set was ob
tained for five consecutive epochs. The batch size was set to 3, and the 
objective loss function used was the DICE loss (DL), as shown in eq.3 and 
commonly used in CNN-based segmentation tasks [37,38]. Finally, a k- 
fold cross-validation routine (k = 5) was implemented over the PleThora 
dataset to evaluate the network’s overall performance. 

DL(A,B) = 1 −
2|A ∩ B| + 1
|A| + |B| + 1

(3)  

where one is added on the numerator and denominator to ensure the 
stability of the function in edge scenarios, i.e., A = B = ∅, then |A ∩ B| =
|A| + |B| = 0. 

After the U-NET was trained on the PleThora dataset, it was used to 

Fig. 3. Initial contours and initial PDFs for the PACO algorithm.  
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extract the lung parenchyma from the lesion-segmented CT images of 
the COVID-19 patients. Additionally, a median filter was applied to the 
final segmentation masks to eliminate some of the airways and vessels 
labeled as diseased tissue. 

2.6. Lesion segmentation validation 

To assess and compare our results with other strategies in the liter
ature, the proposed workflow was applied to the publicly available 
COVID-19 CT Lung and Infection Segmentation Dataset (LISD) [16]. 
This dataset contains 20 COVID-19 CT scans manually labeled by three 
expert radiologists for the right lung, left lung, and infection. Further
more, the images have different slices per volume and resolution (voxel 
size). 

The 20 CT volumes from this dataset were segmented using the 
proposed methodology and then the volumetric DSC was computed to 
evaluate the resultant segmentation [39]. The DSC coefficient measures 
the overlap between two masks and is defined in eq. (4): 

DSC(A,B) =
2|A ∩ B|
|A| + |B|

(4)  

where A and B are binary masks, one is the ground truth, and the other is 
the segmented mask. The cardinality of a set is defined by | ⋅ |. This 
coefficient takes values from 0 to 1, where 0 means no overlap, and 1 is a 
perfect match between the masks. 

2.7. Statistical analysis 

The algorithm was then used to perform lung segmentation in our 
dataset, which contained low (n = 295) and high-resolution CT images 
(n = 295). Further classification of images was made by identifying 
patients that survived and did not survive. For each image, the per
centage of the lesion was computed by counting each voxel in the pa
renchyma and lesion mask. Then, the ratio between these two quantities 
was obtained to estimate the lesion percentage. 

A Shapiro-Wilk test was performed to evaluate the normality in the 

distribution of lesion percentages in both survived and deceased patients 
for the high-resolution and low-resolution datasets. This test suggested 
that such data followed a non-normal distribution. Thus, a Flinger- 
Killeen test was applied for variance homogeneity. A Wilcoxon rank- 
sum test was used to compare the groups of deceased patients against 
survived patients in high and low-resolution modalities. A significance 
level α = 0.05 value was considered in all tests. 

3. Results 

3.1. Evaluation of lung parenchyma segmentation 

Fig. 5 shows the result of the lung parenchyma segmentation work
flow for a CT image from the PleThora dataset. The upper row images 
show the ground truth (left) and segmented mask (right) using the U-net 
architecture, whereas the bottom row depicts the original and cropped 
parenchyma images, respectively. 

Table 1 exhibits the 5-fold cross-validation result for the U-NET using 
the PleThora dataset. The average DSC obtained was 0.93 and 0.94 for 
the training and validation datasets. These DSC values reveal that the 
network performance is optimal for parenchyma segmentation since 
DSC can take values from 0 to 1, where 1 indicates a perfect match 
between the segmented mask and the ground truth [40]. The loss value 
is the reciprocal of the DSC value; for this metric, average values of 0.06 
and 0.05 were obtained for training and validation, respectively, where 
a lower value close to zero means better performance on training. 

All CT low and high-resolution images from the 295 patients with 
COVID-19 were processed using the body extraction workflow and the 
U-net to segment the parenchyma. An expert observer visually inspected 
the output masks. An example of the resultant image after applying the 
lung parenchyma workflow to a CT image from a patient with COVID-19 
is presented in Fig. 5B. These results confirmed the optimal performance 
of the U-NET network, as expected. Similarly, all 20 CT images from 
LISD were processed using the same workflow. 

Fig. 4. U-NET architecture.  
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3.2. Evaluation of COVID-19 lesion volume estimation. 

Lesion segmentation results for selected subjects within the 
INCMNSZ dataset are presented in Fig. 6. A visual comparison is made in 
four patients with CT scans from both high and low resolutions. Similar 
slices are selected for spatial correspondence. The following images are 
shown for each patient: (1) The input body image used for PACO, (2) The 
multiclass PACO output mask, and (3) The lesion overlapping on the 
body image. It is important to recall that the lesion mask results from 
multiplying the PACO output segmentation and the parenchyma mask. 
This figure discloses that segmentation with the proposed methodology 
correctly locates the disease areas on both CT modalities. 

Furthermore, Fig. 6 illustrates the main limitations of the proposed 
methodology. For both image resolutions, non-disease regions appear on 
the lesion mask, mainly due to the intensity level, which is the same as 
diseased areas. These non-lesion regions are vasculature, airways, and in 
some cases, voxels of the body (out of the parenchyma) that were miss- 

classified by the U-net as parenchyma. 
The mean difference in the percentage of the lesion between high 

and low-resolution images is 10 %; this value could interest clinicians in 
locations where high-resolution images are difficult to access. In this 
scenario, an error of 10 % could be acceptable, considering that the 
algorithm could estimate the percentage of lesions on a low-resolution 
image and that the relationship between survived and deceased pa
tients remains the same for both resolutions. 

3.3. Validation 

All 20 volumes from LISD were used for validation, with a mean DSC 
value of 0.58 and a median of 0.66. The lowest DSC values correspond to 
the volumes with fewer lesion regions on the ground-truth masks, where 
the areas delimited by the radiologists are minimal. It is worth 
mentioning that drawing an initial contour within the affected area is 
challenging in these cases. For PACO is more difficult to detect these 
small regions, and even when the region is detected, it possibly locates 
the lesion in different positions than the ground truth; in these cases, the 
DSC is very low because there is no overlap between the segmentation 
mask and the ground truth mask. It is essential to mention that in these 
cases, the mentioned regions have areas of around one to six pixels. 

The obtained DSC value is near the value of 0.7 achieved by [29], 
and the main difference is that this methodology does not require a 
ground truth dataset of COVID-19 lesion segmentations; it just needs 
parenchyma segmentation to train the first network, but parenchyma 
segmentations are more accessible than COVID-19 related lesions 
segmentations. 

Fig. 5. U-NET parenchyma segmentation result (masks and cropped image).  

Table 1 
U-NET K-Fold Cross Validation.  

Fold Training 
Loss 

Training 
DSC 

Validation 
Loss 

Validation 
DSC 

1  0.0649  0.9351  0.0688  0.9312 
2  0.0680  0.9320  0.0583  0.9417 
3  0.0499  0.9501  0.0442  0.9557 
4  0.0634  0.9366  0.0608  0.9392 
5  0.0578  0.9422  0.0565  0.9434 
Average  0.0608  0.9392  0.0577  0.9423  
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3.4. Comparison of lesion percentages between survived and deceased 
patients. 

The proposed workflow was applied to low and high-resolution im
ages of the 295 patients and the percentage of lesions per patient was 
obtained. All 295 patients, were categorized into two groups according 
to their clinical outcome, survived or deceased. Fig. 7 compares the 
lesion-related percentages observed for each of these groups. 

A Saphiro-Wilk test showed non-normality with a p-value of 2.3 ×
10− 2 and 2.5 × 10− 4 for low and high-resolution groups, respectively. 
Also, a two-sample F-test for equal variances was computed between 
survived and deceased patients. The p-value was 0.39 and 0.77 for high 
and low-resolution groups, indicating different variances in both CT 
modalities for survived and deceased groups. Wilcoxon rank-sum test 
revealed different medians for survived and deceased groups in both CT 
modalities with a p-value of 9.1 × 10− 4 in low-resolution CT and 5.1 ×
10− 5 for high-resolution images. 

Fig. 8 shows examples of two patients with an unexpected percent
age of the lesion. On the left, the HRCT shows a low percentage of le
sions, but the patient died. However, visual inspection of HRCT of 
patients with this outcome shows that they have more consolidation 
areas than others. In the first image, dorsal consolidation can be 
observed; the algorithm cannot detect it because these regions have the 
same intensities as the rest of the body outside the parenchyma. On the 
right is the opposite case, where a patient survived, but the HRCT shows 
a high amount of lesion; the patients with this characteristic have much 
damage, mainly reticulation, crazy-paving pattern, and ground-glass 
opacities but almost no consolidation. 

4. Discussion 

Visual inspection of the final masks confirmed that the proposed 
pipeline successfully identifies lesions. However, this mask has addi
tional areas that do not belong to lesioned tissue. These areas can be seen 
in Fig. 6, which correspond to lung airways and vasculature. Also, tissue 
outside the lung parenchyma can be mislabeled as part of the final mask. 
These errors are due to mistakes in the U-NET output. It is worth 
recalling that such an output is used to modify the lesion mask provided 
by the PACO algorithm. If the lung-parenchyma segmentation has mis
labeled regions outside the lung, these regions can also be mislabeled as 
lesions. However, the 0.589 mean DSC value and the 0.66 median DSC 
value led us to think that the final lesion mask is still a good approxi
mation compared to manual segmentation (gold standard), with the 
advantage that it does not require a lot of segmented images to train for 
lesion detection. The proposed pipeline looks promising, considering the 
lack of labeled data and the results of other works that used the same 
LISD dataset. Besides, for this methodology over-fitting is not a problem 
that is common for training with a small dataset. In addition, our pro
posed method could be repeatable for new images because no model is 
fitted to the data. It is worth remembering that the best DSC value ob
tained with a neural network for the same dataset is 0.7 [29]. 

The k-fold cross-validation results suggest that the chosen U-NET 
architecture is optimal for the lung-parenchyma segmentation task. Due 
to the lack of publicly available data, the training and validation sets 
contain non-COVID-19 images. This training strategy could affect per
formance when dealing with COVID-19 images. The next step to 
improve the proposed methodology would be to visually inspect every 

Fig. 6. Examples of COVID-19 lesion segmentation with the PACO algorithm in low and high resolution CT images from four patients.  

D.E. Rodriguez-Obregon et al.                                                                                                                                                                                                                



Biomedical Signal Processing and Control 85 (2023) 104905

9

lung parenchyma predicted by the U-NET. Then, a manual correction 
should be performed. These corrected images can be used as a new 
training dataset to retrain the network. 

Statistical tests confirmed differences between the predicted lesion 

percentages of survived and deceased patients. Thus, it can be used as an 
indicator of patient prognosis. It is worth noting that this result remains 
consistent, even when low-resolution CT images are used instead of 
high-resolution scans. Additionally, there is a low range of variability 

Fig. 7. Box plots for percentages of the lesion in survived and deceased patients.  

Fig. 8. Lesion mask comparison between survived patients with a high number of estimated lesions and deceased patients with a low number of estimated lesions.  
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between the lesion percentage estimate in both resolutions (mean dif
ference of 10.15 %). This also suggests that this metric may be used in 
various CT acquisition protocols at different slice thickness degrees 
without compromising the lesion estimate. 

Despite the difference in the survived and deceased groups, there is a 
significant overlap between groups. This is mainly because there are 
patients with a low percentage of lesions who died and patients with 
high percentages who survived; see Fig. 8. 

The deceased patients with low percentages of lesions have more 
consolidation areas than other patients, who usually present only 
ground-glass opacities, reticulation, and crazy paving patterns. The 
PACO algorithm does not detect these consolidation regions because 
they have the same intensity level as the body; these consolidation re
gions are then segmented as body and make the estimated percentage of 
lesions take a lower value than the real. The degree of consolidation 
could be related to severe disease and the patient’s death. However, this 
miss-classification of the algorithm for consolidation regions could 
decrease the difference in percentages of lesions for both groups. In 
contrast, the patients who survived but had many lesions did not have 
consolidation areas. Again, this could be related to their survival, the 
treatment, and the patient’s reaction to the medicine. 

Clinical outcome for COVID-19 patients is multifactorial. Gender 
(male), age (oldest is worst), comorbidities (hypertension and obesity 
increase risk), immunological conditions (immunosuppression increases 
adverse outcomes), hypoxia (early oxygen therapy improves outcomes), 
and still many others not yet defined. This study found a trend between 
the amount of lung parenchyma volume involved and the risk of dying, 
but many other factors were not considered. Adding them to the analysis 
may improve accuracy. We also found that there is a difference between 
the type of lesion and not just the amount of area involved. Indeed, the 
earlier patients present a more extensive involvement of damage to the 
lungs; the worst prognosis may be expected, and the time frame is 
essential for conclusions. 

5. Conclusions 

Our proposed pipeline successfully labeled affected lung tissue in CT 
images. Exceptions of mislabeled regions include airways, vasculature, 
and segmentation mistakes from the lung parenchyma. Despite these 
errors, the workflow allows to estimate the lung lesion percentage. 

The core of our methodology uses a semi-supervised probabilistic 
region contour algorithm to detect the lesion. The proposed algorithm 
performed similarly to previously proposed neural network architec
tures on high and low-resolution CT scans. Compared to other ap
proaches based mainly on convolutional neural networks, it does not 
require high volumes of data for training, thus avoiding common over
fitting problems. 

At the same time, this work reveals that the percentage of the lesion 
shows a statistically significant difference between survived and 
deceased patients. This finding enforces the possibility of using such a 
measure as a quantitative indicator to evaluate the prognosis of severe 
COVID-19 patients. 

To our knowledge, most of recent publications regarding COVID-19 
lesion segmentation focus on AI algorithms. Unfortunately, the lack of 
essential amounts of labeled data restrains their performance. Thus, a 
semi-supervised approach such as the one herein may be a successful 
alternative. Our segmentation results are comparable with those in 
literature according to the obtained DSC values, without the expense of 
training an AI algorithm to segment the lesion. In addition, no other 
work has compared performance between low and high-resolution CT 
images. 

In this work, for PDF estimation, only intensity information was 
used; however, the PACO algorithm allows the use of multivariate in
formation by transforming images to other domains. Then, the assess
ment of a multivariate PDF scheme could be explored in future work. In 
addition, an extended classification evaluation at a pixel level using 

indices such as accuracy and specificity should be considered. Finally, a 
comprehensive validation with other publicly available datasets may 
provide more evidence about the performance of the proposed 
methodology. 
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