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Abstract
Orexins are excitatory neuropeptides, which are predominantly associated with feeding behavior, sleep-
wake cycle and energy homeostasis. The orexinergic system comprises of HCRTR1 and HCRTR2, 
G-protein-coupled receptors of rhodopsin family and the endogenous ligands processed from HCRT 
pro-hormone, Orexin A and Orexin B. These neuropeptides are biosynthesized by the orexin neurons 
present in the lateral hypothalamus area, with dense projections to other brain regions. The orexin-
receptor signaling is implicated in various metabolic as well as neurological disorders, making it a 
promising target for pharmacological interventions. However, there is limited information available 
on the collective representation of the signal transduction pathways pertaining to the orexin-orexin re-
ceptor signaling system. Here, we depict a compendium of the Orexin A/B stimulated reactions in the 
form of a basic signaling pathway map. This map catalogs the reactions into five categories: molecular 
association, activation/inhibition, catalysis, transport, and gene regulation. A total of 318 downstream 
molecules were annotated adhering to the guidelines of NetPath curation. This pathway map can be uti-
lized for further assessment of signaling events associated with orexin-mediated physiological functions 
and is freely available on WikiPathways, an open-source pathway database (https://www.wikipathways.
org/index.php/Pathway:WP5094).
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List of abbreviations
CNS  Central Nervous System
HCRT  Hypocretin
GPCR  G protein-coupled receptor
HCRTR1  Hypocretin receptor 1
HCRTR2  Hypocretin receptor 2
OX1R  Orexin receptor 1
OX2R  Orexin receptor 2
Ox-A  Orexin A
Ox-B  Orexin B
OXR  Orexin receptors
PPIs  Protein-protein interactions
BioPAX  Biological Pathway Exchange
SBML  Systems Biology Markup Language
PKA  Protein kinase A
PKC  Protein kinase C
PLC  Phospholipase C
PLD  Phospholipase D
IP3  Inositol-3-phosphate
MAPK  Mitogen activated protein kinases
GRK  G Protein-Coupled Receptor Kinase

Introduction

Orexins are excitatory neuropeptides, which have a primary 
role in the regulation of feeding behavior, sleep or wakeful-
ness and energy homeostasis (Yamanaka et al. 1999; Sut-
cliffe and de Lecea 2000; Willie et al. 2001). In 1998, the 
presence of orexins was independently identified by two 
groups; Sakurai et al. 1998 who named it “orexin” after the 
Greek word orexis, which means appetite and de Lecea et al. 
1998 who called it “hypocretin” due to its expression in the 
hypothalamus as well as sequence homology with gut pep-
tide hormone secretin. Orexins, also known as hypocretins 
(Hcrt), are produced by the neurons of the dorsolateral and 
perifornical area of the hypothalamus (de Lecea et al. 1998; 
Sakurai et al. 1998). While the cell bodies of orexinergic 
neurons are confined to the hypothalamus, dense projections 
are found all over the brain in regions such as the limbic sys-
tem, thalamus and brain stem, implying complex functions 
(Peyron et al. 1998). Monoaminergic neurons are innervated 
by orexin neurons, they specifically activate noradrenergic 
neurons in the locus coeruleus, dopaminergic neurons in the 
ventral tegmental region, and histaminergic neurons in the 
tuberomammillary nucleus (Hagan et al. 1999; Yamanaka et 
al. 2002; Kohlmeier et al. 2008).

The HCRT gene, which has two exons and one intron 
encoding a 131-amino-acid precursor polypeptide, is 
located on chromosome 17q21-q24 (Sakurai et al. 1999). 

The two subtypes of orexin which are synthesized from 
this single pro-hormone preprohypocretin/prepro-orexin, 
include orexin A/hypocretin 1 and orexin B/hypocretin 
2 (Ebrahim et al. 2003). Pre-prohypocretin is cleaved at 
unique sites to yield the two mature peptides upon removal 
of the N-terminal secretory signal sequence (Chieffi et al. 
2017). Orexin A (Ox-A) is a 33 amino acid long peptide 
with two intrachain disulfide bonds, which has N-terminal 
proglutamyl residue and C-terminal amidation. Orexin B 
(Ox-B) is a 28 amino acid long peptide and the C-terminal 
is almost similar to Ox-A (Tsujino and Sakurai 2009). Orex-
ins exert their function by binding to its cognate G-protein–
coupled receptors (GPCRs), orexin receptor type 1 (OX1R, 
also named as Hcrtr-1) and type 2 (OX2R, or Hcrtr-2) that 
exhibit 64% amino acid identity (Sakurai 2005). OX1R has 
a higher affinity (~ 5–100-fold greater) towards Ox-A than 
Ox-B, whereas, OX2R has similar affinities to both Ox-A 
and Ox-B (Sakurai et al. 1998; Ammoun et al. 2003). The 
existence of two receptors and selective binding of agonists 
may be responsible for the cellular diversity of the orexin-
orexin receptor functions.

The binding of orexins to the respective receptors acti-
vates at least three subtypes of G-proteins (Gq/11, Gi/0, and 
Gs) or other proteins such as β-arrestins. This subsequently 
controls the activation of downstream signaling cascades 
such as phospholipases, ion channels, and protein kinases 
(Leonard and Kukkonen 2014). As described in previous 
studies, the elevation of intracellular calcium (Ca2+) is a 
hallmark of orexin action in expression systems (Lund et 
al. 2000). Orexin receptors activate PKC in CNS neurons, 
which possibly necessitates PLC activity and may thus cor-
relate with IP3-triggered Ca2+ release (Ammoun et al. 2006; 
Johansson et al. 2008). OX1R couples to Gq/11 class of 
G-proteins, whereas, OX2R couples to Gq and Gi class of 
G-proteins. Additionally, stimulation of OX1R and OX2R 
is associated with the activation of the p38-MAPK sig-
naling pathway and increases the level of phosphorylated 
ERK1/2 via Gq/PLC/PKC cascade, but not the PKA path-
way (Milasta et al. 2005; Wenzel et al. 2009). The binding 
of orexins and the receptors also results in the stimulation 
of phospholipase D (PLD)/phosphatidic acid (PA), phos-
pholipase A (PLA)/arachidonic acid (AA), PI3K/Akt and 
MTORC1 (ERK1/2-Akt-mediated) pathways (Johansson et 
al. 2008; Sokołowska et al. 2012; Turunen et al. 2012; Wang 
et al. 2014). Orexin signaling involves the activation of clas-
sical GPCR signaling as well as other intracellular signal 
transduction mechanisms.

Orexin signaling is critical in the regulation of feed-
ing, energy metabolism (Haynes et al. 1999; Edwards et 
al. 1999; Moriguchi et al. 1999), gastrointestinal system 
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(Kirchgessner and Liu 1999) and modulation of sense of 
pain (van den Pol 1999). They are also postulated to have 
roles in regulating neuroendocrine functions by altering the 
levels of corticotropin, gonadotropin, glucocorticoids and 
insulin (van den Pol et al. 1998; Ida et al. 2000; Sutcliffe and 
de Lecea 2000; Ziolkowska et al. 2005). Further, orexins 
also play an essential role in neuroprotection, regulation of 
apoptosis and inflammation (Butterick et al. 2012; Xiong et 
al. 2013; Sokołowska et al. 2014). Of the two ligands, Ox-A 
has potent neuroprotective and immuno-regulatory actions 
(Yuan et al. 2011; Duffy et al. 2019). The orexin/receptor 
system is ectopically expressed in a number of neurological 
disorders, implying that it plays a role in their occurrence 
and pathogenesis. Defects in the orexin/receptor system 
have been linked to human narcolepsy in multiple studies 
(Lin et al. 1999; Burgess et al. 2010; Hasegawa et al. 2014). 
It is also strongly correlated to drug addiction, especially 
to alcohol, nicotine, and cocaine (Smith et al. 2009; Moor-
man et al. 2017), Alzheimer’s disease (Fronczek et al. 2012; 
Liguori et al. 2016; Gabelle et al. 2017), schizophrenia 
(Nishino et al. 2002; Dalal et al. 2003; Huang et al. 2014) 
and depression (Salomon et al. 2003).

Orexins, with both neuroprotective and immunomodu-
latory properties, have emerged as a promising new class 
of biological agents for the treatment of immune-mediated 
CNS disorders such as narcolepsy, metabolic and neuro-
logical disorders. However, a comprehensive understanding 
of the signaling mechanisms underlying the orexin recep-
tor is missing. The development of a consolidated map of 
orexinergic signaling could be appreciated for the definitive 
assignment of mechanisms underlying orexin/receptor-pro-
moted functions. This will aid in the generation of orexin/
receptor-targeted pharmacological therapies for the success-
ful treatment of disorders.

Methodology

A literature search was executed in PubMed with key terms 
including ‘orexin, its aliases’ and ‘signaling’. Research 
articles excluding reviews were selected with information 
pertaining to the stimulation of orexin receptors. Following 
NetPath criteria, we have classified the annotated reactions 
into five categories; molecular association, (protein-protein 
interactions), catalysis (post-translational modifications, 
binding and cleavage), transport (translocation/transport 
of proteins between subcellular compartments), activation/
inhibition, and, finally, gene regulation at the mRNA and/or 
protein level (both up and downregulation). The reactions 
pertaining to the orexin signaling pathway were filtered using 
NetPath criteria (Kandasamy et al. 2009, 2010) as described 
previously; Galanin receptor signaling (Gopalakrishnan et 

al. 2021), Serotonin (Sahu et al. 2018), oxytocin receptor 
(Chatterjee et al. 2016), Oncostatin M (Dey et al. 2013), 
AGE/RAGE signaling (Soman et al. 2013), MIF signal-
ing (Subbannayya et al. 2015), IL33 signaling (Pinto et 
al. 2018), prolactin signaling (Radhakrishnan et al. 2012), 
FGF-1/FGFR (Raju et al. 2014), and VEGF-A/VEGFR2 
(Sunitha et al. 2019) signaling pathways. The reactions were 
then represented in the form of a map with relevant informa-
tion about orexin signaling using PathVisio, an open-source, 
free pathway depiction tool (van Iersel et al. 2008). The 
reactions were exported to WikiPathways, an open-source 
biological pathway database for the scientific community 
(Pico et al. 2008; Kelder et al. 2009). In addition, the path-
way reactions and the map were subjected to manual review 
by internal curation experts and also by a pathway authority.

Results and discussion

We designed a literature search term to identify research 
articles that would provide information on orexin recep-
tor signaling. The search term “OREXIN” OR “HYPO-
CRETIN” OR “HCRT” OR “OX” OR “NRCLP1” OR 
“PPOX” OR “HCRT1” OR “HCRT2” OR “HYPOCRE-
TIN1” OR “HYPOCRETIN2” OR “OX1” OR “OX2” OR 
“OREXIN1” OR “OREXIN2” OR “OX1R” OR “OX2R” 
OR “HCRTR1” OR “HCRTR2” OR “OREXIN 1 RECEP-
TOR” OR “OREXIN 2 RECEPTOR” OR"HYPOCRETIN 
1 RECEPTOR” OR “HYPOCRETIN 2 RECEPTOR” AND 
(“SIGNALING” OR “PATHWAY” OR “SIGNALLING”) 
yielded 5,548 PubMed articles, among which 125 articles 
were selected for manual curation of reactions based on 
the NetPath annotation criteria described in (Kandasamy et 
al. 2009, 2010). We identified a total of 318 downstream 
signaling reactions, which include, 23 transport, 31 cataly-
sis events (post-translational modifications), 15 molecular 
associations, 23 activation/inhibition reactions and a total of 
226 gene regulation events comprising 56 reactions reported 
at protein and 170 reactions at mRNA level. A compendium 
of these annotated reactions is represented as a systematic 
pathway map in Fig. 1. This pathway map was generated on 
the standalone free pathway drawing tool, PathVisio (van 
Iersel et al. 2008) and is made freely accessible on https://
www.wikipathways.org/index.php/Pathway:WP5094. 
The data pertaining to the pathway is presented in a stan-
dard community exchange format, Biological PAthway 
eXchange (BioPAX) (Demir et al. 2010) Level 3 (OWL). 
The entire data can be downloaded in .png, .pdf and .svg 
image formats as well as in .txt format from the WikiPath-
ways (Pico et al. 2008; Kelder et al. 2009). A supplementary 
table (Supplementary Table S1) provides all the annotated 
reactions with a brief description of each.
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in rat NPY neurons in a Gq/PLC/IP3/PKC dependent man-
ner upon stimulation of OXIR by Ox-A, a Gi/0 mediated 
decrease in the intracellular Ca2+ levels was elicited by 
Ox-A/B stimulated OX2R in rat POMC neurons (Muroya 
et al. 2004). Another interesting study performed on rat 
INS-1E cells revealed a TRPV calcium channel-mediated 
Ca2+ influx on OX1R stimulation, leading to a rise in insu-
lin secretion and cell proliferation (Skrzypski et al. 2016). 
Taken together, the calcium signaling downstream of OXRs 
is implicated in several physiological functions including 
regulation of feeding behavior, synthesis and release of hor-
mones like catecholamines, nociception and integration of 
the neural systems involved in maintaining wakefulness, 
energy homeostasis, sensory processing and other auto-
nomic functions (Xia et al. 2009; Ozcan et al. 2010; Naka-
mura et al. 2010; Nemoto et al. 2013).

Orexin neurons in the hypothalamus have a role in post-
synaptic neurotransmitter release (Peltonen et al. 2009), 
which include the release of glutamate, GABA as well as 
acetylcholine (Kodama and Kimura 2002; Davis et al. 2003; 
Bernard et al. 2006; Dong et al. 2006). The release of glu-
tamate and acetylcholine downstream of OXRs in rat locus 
coeruleus and somatosensory cortex, respectively, are impli-
cated in the promotion of wakefulness or arousal thus affect-
ing the sleep-wake cycle (Kodama and Kimura 2002; Dong 
et al. 2006). The release of these neurotransmitters from the 
pre-synaptic nerve terminal can also be mediated by a sec-
ondary metabolite, 2-arachidonoyl glycerol (2-AG), which 
facilitates retrograde paracrine signaling as an effect of OXR 
stimulation. The interaction between orexin and cannabinoid 
receptors (CB1), upon OX1R activation, is attributed to the 
release of secondary metabolites. For instance, a PLC or 
PLD-activated DAGL mediated 2-AG release followed by 
arachidonic acid (AA) release was observed in HEK293 and 
Neuro 2 A cells expressing the human OX1R gene (Turunen 
et al. 2012). Interestingly, a similar PLC/DAGL medi-
ated increase in 2-AG leads to the generation of inhibitory 
inputs on dopaminergic neurons in rat brain regions such 
as the nucleus accumbens (NAc) and the ventral tegmental 
area (VTA). This rise in 2-AG in turn induces an associa-
tion of the dopamine receptor D2 (DRD2) and β-arrestin 2 
(ARRB2) leading to the desensitization of DRD2 resulting 
in the regulation of the mesolimbic dopaminergic circuitry 
(Tunisi et al. 2021). Additionally, the release of AA is also 
involved in providing feedback to Ca2+ influx under Ox-A 
stimulation of OX1R in CHO-hOX1 cells (Turunen et al. 
2010) as depicted in the map (Fig. 1). This release of AA 
coincided with the release of other high potency lipid mes-
sengers in this cell system, suggesting a role of orexin in the 
regulation of the lipid signaling system.

Under OXR stimulation we observed the adenylyl cyclase 
(AC) mediated cyclic AMP (cAMP) cascade to be seemingly 

The orexinergic neuropeptides (Ox-A and Ox-B) are 
known to be evolutionarily conserved across several mam-
malian species and are thus predicted to have important 
implications in several physiological conditions (Wong et 
al. 2011). The initiation of signaling by the orexin neuro-
peptides (Ox-A and Ox-B) ensues with the ligand binding 
to orexin receptors (OXRs) and the subsequent activation of 
G-protein subtypes. Initial studies point towards the strong 
association of OXRs with Gq (Sakurai et al. 1998; Smart 
et al. 1999) coupled with PLC-mediated calcium elevation 
(Kukkonen 2016) in the regulation of feeding behavior. 
However, over the years several studies have also indicated 
an orexin stimulated differential association of OXRs with 
other G-protein sub-types, such as Gi/0 and Gs in tissues 
other than the hypothalamus (Randeva et al. 2001; Hol-
mqvist et al. 2005; Karteris et al. 2005). This differential 
G-protein activation downstream of OX1R and OX2R can 
also be attributed to the ligand used for receptor stimulation. 
OX1R stimulated by Ox-A/B and OX2R stimulated Ox-B 
activated a Gq mediated PLC/PKC cascade ultimately lead-
ing to phosphorylation-based activation of the ERK path-
way. Whereas, Ox-A stimulated OX2R achieved the same 
through a Gs/AC mediated PKA cascade. The activation of 
the JNK or p38 pathways, however, was mediated via Gi-
coupled OX1R or OX2R, respectively (Tang et al. 2008; 
Ramanjaneya et al. 2009).

The orexinergic signaling also comprises of the receptor 
association with GPCR kinases such as GRK2 and GRK5, 
and recruitment of the β-arrestin proteins, which aid not 
only in the receptor trafficking but also act as signaling scaf-
folds (Dalrymple et al. 2011; Kukkonen and Leonard 2014; 
Cai et al. 2020). Another established component of the 
OXR signaling is the elevation of intracellular Ca2+. Stud-
ies on neuronal as well as non-neuronal cells have indicated 
a surge of Ca2+ ions on OXR stimulation by either Ox-A 
or Ox-B. This elevation of Ca2+ levels can be attributed to 
both, an influx of extracellular Ca2+ through L-type or DAG 
mediated channels, as well as IP3 mediated release from the 
intracellular Ca2+ stores in the sarcoplasmic reticulum (Ishi-
bashi et al. 2005; Näsman et al. 2006; Xia et al. 2009; Pel-
tonen et al. 2009; Wang et al. 2014). Interestingly, a study 
performed on Odora cells (derived from olfactory sensory 
neurons) revealed the contribution of both extracellular 
Ca2+ influx and intracellular Ca2+ release for the overall ele-
vation of Ca2+ levels downstream of OX1R (Gorojankina 
et al. 2007). However, in the same cell line, the stimulation 
of OX2R led to an elevation of Ca2+ levels only through 
release from intracellular stores. Additionally, the stimula-
tion of both the receptors in the rat arcuate nucleus in an 
agonist-dependent manner regulated the calcium signaling 
reciprocally to modulate feeding behavior (Muroya et al. 
2004). Whilst a significant rise in Ca2+ levels was observed 
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from hypoxic injury and anti-inflammatory actions. OXR 
signaling essentially exerts an anti-inflammatory effect 
by reducing the pro-inflammatory markers such as TNFα, 
IL-1β, IL-6, CXCL8, CXCL2, and NOX4 in a MAPK14 
and NFκB dependent manner (Xiong et al. 2013; Zhang et 
al. 2018; Sun et al. 2018; Wang et al. 2019; Li et al. 2020), in 
cells/tissue insulted with either oxidative or ischemic stress. 
On the other hand, in normal rat paraventricular neurons 
stimulation of OX1R resulted in the upregulation of IL6, 
IL1B, TNF, FOSL1 and AVP mRNA leading to the develop-
ment of hypertension (Huber et al. 2017; Fan et al. 2018). 
Thus, depending on the physiological state, the orexinergic 
system is seen to adapt its downstream signaling to either 
protect the cell or facilitate programmed cell death. Yet, the 
exact cascade or the signaling modalities remains unknown.

The regulation of glucose metabolism is a widely stud-
ied and well-illustrated physiological significance attrib-
uted to orexinergic signaling. In this regard, we curated two 
equally important cascades, both mediated by PI3K/AKT 
activation. One of these includes the AKT/MTOR mediated 
upregulation as well as activation of HIF1A protein which 
then instigates the upregulation of GLUT1 protein, which 
eventually leads to glucose uptake (Wan et al. 2017). This 
study performed on HepG2 cells also revealed the activa-
tion of PDP1, upregulation of PDHB and downregulation of 
LDHA and PDK1 thus, enabling the shift from glycolysis to 
TCA cycle of glucose metabolism. The other cascade, how-
ever, functions downstream of both receptors and proceeds 
via a series of phosphorylation-based activation of PI3K, 
PDK1, AKT, and AS-160, ultimately causing the transloca-
tion of GLUT4 receptor to the plasma membrane and subse-
quent rise in glucose uptake (Skrzypski et al. 2011). Another 
study performed on HEK293 cells and rat hypothalamic tis-
sue revealed several other genes upregulated downstream of 
OX1R stimulated HIF1A upregulation (Sikder and Kodadek 
2007). These include VEGFA, FLT4, SLC2A1, and NOS3.

Furthermore, we curated a predominantly upregulated 
set of genes associated with sleep deprivation, osteoblast 
differentiation, adipogenesis, mitochondrial biogenesis and 
modulation of excitatory transmission (Fig. 1) (Yamada et 
al. 2008; Sellayah et al. 2011; Koesema and Kodadek 2017; 
Han et al. 2018).

Conclusion

We attempted to consolidate the reactions relevant to the 
stimulation of orexin receptors by Ox-A and Ox-B, thus 
generate an extensive signaling map. With the relative 
representation of the Ox-A or Ox-B stimulation and their 
associations with the two orexin receptors for the signal-
ing pathway reactions, this collective depiction of the signal 

less prominent when compared with Ca2+ cascades. As 
depicted in the map we curated Gs-mediated increase in 
cAMP, as well as Gi-mediated decrease in cAMP down-
stream to OX2R. Also, a Gs-dependent increase in cAMP 
accumulation was observed under OX1R stimulation in the 
central nervous system (Gorojankina et al. 2007; Tang et al. 
2008; Woldan-Tambor et al. 2011; Urbańska et al. 2012). 
Additionally, studies on human as well as rat adrenocortical 
cells have implicated the role of AC/PKA mediated cortisol 
secretion as well as autocrine-paracrine regulation of adre-
nal glucocorticoid release (Spinazzi et al. 2005; Ziolkowska 
et al. 2005). Apart from glucocorticoid and cortisol signal-
ing, orexins also play an important role in the synthesis 
and secretion of several other endocrine hormones aiding 
the modulation of the hypothalamic-pituitary axis (HPA) 
(Kuru et al. 2000; Al-Barazanji et al. 2001; Xu et al. 2003; 
Ramanjaneya et al. 2009). The differential activation of 
AC downstream of OX1R resulted in an increase of cAMP 
accumulation in the adrenocortical cells led to a rise in cor-
tisol and aldosterone secretion, however, the decrease in 
cAMP accumulation in the medullary cells was associated 
with an increase in epinephrine and norepinephrine release 
(Nanmoku et al. 2002). Some of the enzymes secreted 
downstream of OXRs include amylase and cholecystokinin 
(Harris et al. 2002; Larsson et al. 2003). Among other hor-
mones, we curated and mapped the release of gonadotropin 
hormones (LH and FSH) (Cataldi et al. 2014), serotonin 
(Tao et al. 2006), and testosterone (Barreiro et al. 2004; 
Liguori et al. 2017), as well as a decrease in progesterone 
(Cataldi et al. 2012) under both the receptors. In addition, 
we identified an increase of leptin secretion (Pruszynska-
Oszmalek et al. 2018) in porcine adipocytes and an increase 
in the release of growth hormone in ovine somatotrophs 
(Xu et al. 2003) under the stimulation of OX1R and OX2R, 
respectively. However, the exact mechanism involved in the 
secretion of these hormones is still poorly understood.

A very unique and intriguing phenomenon identified 
among the reactions curated under OXR stimulation is that 
of its dual role in regulating apoptosis. There is a PI3K-
AKT mediated anti-apoptotic function induced through 
OX1R in INS1 cells and rat hepatocytes (Chen et al. 2013; 
Ju et al. 2014), nevertheless, in cancer cell types like HT29-
D4 cells or rat C6 glioma OX1R stimulation are reported to 
induce apoptosis (Rouet-Benzineb et al. 2004; Biegańska et 
al. 2012). This dynamic modulation of the apoptotic path-
way by the OX1R is arbitrated by the activation/inhibition 
of caspases such as CASP3 and CASP7 (Rouet-Benzineb 
et al. 2004; Liu et al. 2015; Wen et al. 2015). This facet of 
apoptotic signaling by the orexinergic systems needs to be 
explored further to enable the use of orexin in cancer thera-
peutics. Apart from its potential anti-tumorigenic role, orex-
inergic neuropeptides are also implicated in neuroprotection 
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transduction mechanisms and the signaling cascades associ-
ated with orexins will help scientists improve the current 
knowledge of the orexinergic system. This pathway illustra-
tion provides the downstream effectors and the varied physi-
ological outcomes associated with differential stimulation 
of orexin receptors. Moreover, this would also serve as a 
reference for up-to-date inclusion of information on orexin 
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sis. Overall, this information could be further utilized for the 
advancement of orexin research in health and disease.
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