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a b s t r a c t

Data analysis pipelines are now established as an effective means for specifying and executing bioinfor-
matics data analysis and experiments. While scripting languages, particularly Python, R and notebooks, are 
popular and sufficient for developing small-scale pipelines that are often intended for a single user, it is now 
widely recognized that they are by no means enough to support the development of large-scale, shareable, 
maintainable and reusable pipelines capable of handling large volumes of data and running on high per-
formance computing clusters. This review outlines the key requirements for building large-scale data pi-
pelines and provides a mapping of existing solutions that fulfill them. We then highlight the benefits of 
using scientific workflow systems to get modular, reproducible and reusable bioinformatics data analysis 
pipelines. We finally discuss current workflow reuse practices based on an empirical study we performed 
on a large collection of workflows.

© 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural 
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ 

licenses/by-nc-nd/4.0/).
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1. Introduction

The availability of large dataset along with data transformation 
and analysis tools, has revolutionized how bioinformaticians con-
duct computational experiments [1]. These data analyses are in-
creasingly performed through pipelines implemented using 
scripting languages or notebooks [2]. These pipelines link and in-
tertwine data transformation and analysis tools to convert raw input 
data into results that allow scientists to gain insights and draw 
conclusions about the validity of a hypothesis or known fact.

The above approach, mainly involving custom scripts, has been 
extensively used for small-scale experiments involving a small 
number of datasets and a small number of analysis and transfor-
mation tools [3]. For instance, in the case a single user (bioinfor-
matician) is responsible for the design and the execution of the 
pipeline as well as the analysis of its results, she or he has prior 
knowledge of the datasets involved and the analysis tools being 
used. It is also fair to assume that the pipeline is being run on a 
single local and homogeneous computing environment.

However, with the above approach, developing large and complex 
pipelines handling massive amounts of data becomes challenging [4,5], 
especially when teams with different expertise and operating in a 
distributed (and potentially heterogeneous) computing execution en-
vironment are involved. In addition, it does not facilitate pipeline 
sharing and reuse [3]. A moderately sized pipeline can quickly become 
difficult to understand and maintain, and even more difficult to reuse 
by third parties. This has become a major concern as bioinformaticians 
(and scientists in general) are expected to share their resources, in-
cluding datasets, analysis tools, and also pipelines, in a form that can be 
readily understood and reused by peers.

The objective of this review article is threefold.
Firstly, we highlight the barriers that need to be overcome to 

enable the development, sharing and reuse of large-scale pipelines.
Secondly, we show that scientific workflows (e.g., [6–8]), in 

combination with other auxiliary technologies, such as tool re-
gistries [9], address some of these barriers. Even though scientific 
workflow systems are not new, they have been around for over two 
decades, and are now mature enough to be used routinely. The first 
generation of scientific workflow systems (e.g., Taverna [10]) was 
designed for users with a low level of programming skills and fea-
tured a workbench to compose workflows by graphically dragging 
and dropping “modules” and linking them together. Thus, these 
systems had little acceptance among proficient bioinformatics de-
velopers. In recent years, however, there has been an emergence of a 
new generation of scientific workflow systems, notably Nextflow [7]
and Snakemake [6]. These script-based systems offer developers 
significant control over workflow design, configuration and execu-
tion. This second generation of workflow systems has gained wider 
acceptance among bioinformaticians as they address many of the 
challenges faced by pipeline developers and users. Thirdly, we focus 
on reuse, one of the major benefits that can be drawn from scientific 
workflows. In particular, we examine the practical impact of work-
flow reuse by thoroughly examining a pool of real-world workflows.

Accordingly, the article is structured as follows. We begin by 
outlining the challenges that need to be overcome to enable the 
management of large-scale pipelines in section 2. We then present 
elements of solutions that can be adopted to overcome some of 
these hurdles, particularly scientific workflows, in section 3. We 
report on an empirical analysis that examines the state of workflow 
reuse in practice in section 4, before concluding and discussing the 
paper in section 5.

2. Difficulties in the development of bioinformatics pipelines

This section outlines why managing large-scale pipelines 
throughout all stages of their life cycle, from development to sharing 
and reuse (see Fig. 1) is a difficult task.

To illustrate such difficulties, we use a few real examples en-
countered during the large scale biomedical project “understanding 
the pathophysiology of IntraCranial ANeurysm” (ICAN). ICAN aims to 
better understand and predict the development and rupture of in-
tracranial aneurysms [11,12]. For this study, biologists and physicians 
have set up a large collection of biological samples from a population 
of 3000 individuals. This bio-collection has been used to generate 
and analyse various types of data, including genomic sequencing 
data, cerebral vascular organ neuroimaging data, and clinical data 
(like family history and lifestyle). This data is used to create pre-
dictive models for assessing the risk of development and rupture of 
intracranial aneurysms. Integrating and analysing such hetero-
geneous data requires specific expertise and a wide variety of soft-
ware tools, which makes the implementation, execution and sharing 
among the project stakeholders (and ultimately the community) a 
difficult task.

Fig. 1. Life cycle of a bioinformatics pipeline. 
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2.1. Pipeline development

The first type of problem we can define is related to the actual 
development of the pipeline, which usually involves multiple pro-
gramming languages and software environments.

In the ICAN project, sequencing data is analyzed with multiple 
tools (e.g., BWA [13], GATK[14], Picard Tools [15]), and statistical 
analyses are performed using Python and R librairies1 in Jupyter 
Notebooks [2]. The identification of the right tools to use is a first 
barrier to overcome. The combination of these multiple tools, lan-
guages and environments adds a layer of complexity to the devel-
opment of the pipeline.

2.2. Pipeline testing

Code testing constitutes the next difficulty. Whether it is func-
tional unit testing (testing one part of the program in isolation), 
integration testing (testing the combination of multiple parts of the 
program), or environment testing (testing how the program can be 
run on various platforms), requires significant effort from the pipe-
line developer(s) to delineate the boundaries of a test (which part of 
a pipeline to test), and to specify the test cases (selecting example 
inputs and defining expected outputs).

2.3. Deployment

Most pipelines cannot be run locally, on a single server con-
taining all the necessary data. They usually need to be deployed on a 
large-scale High Performance Computing (HPC) infrastructure. This 
deployment step can be tedious, time-consuming, and requires a 
technical expertise beyond programming (see [16]). Executing a pi-
peline on a HPC cluster requires setting the computing tasks in the 
right order, this is called a job submission. For example, the chal-
lenges lie in executing the right commands to submit jobs on the 
right waiting queue, with the right amount of CPUs and memory, 
task success or failure (e.g., manually check whether the jobs fin-
ished successfully, and re-submit them if necessary), availability of 
computing nodes and deployed workloads (e.g., choosing the right 
queue depending on the planned run time or memory require-
ments).

2.4. Maintenance

Maintaining consistency and robustness of the pipeline over time 
is crucial. However, given the complexity of the pipelines, a pre-
viously functioning pipeline may experience failure or produce un-
expected results due to one or more of the following causes: changes 
in hardware environment, changes in software environment (e.g., 
tools are no longer available or have been updated) or changes in 
datasets (for example, reference genome sequences are constantly 
evolving). This may require regular updates of the pipeline itself.

2.5. Reproducing

Ensuring a pipeline can be run over time (maintenance) and over 
site (deployment) is directly related to the ability to reproduce its 
results. A pipeline that runs successfully at one site may not work at 
another site, or may yield unexpected results, due to a different 
cluster scheduler, hardware, or software environment.

2.6. Reuse

Reusing an analysis pipeline cannot be performed if the pipeline 
is not reproducible. In other words, Reproducibility is the basis of 
cumulative science: if the pipeline has been designed to be re-
producible then there is hope for it to be more easily shared and 
reused (in part or in whole) by third parties.

Three needs should be met for reuse.
First, for pipelines to be shared and reused, they must be easily 

understandable to determine their relevance and how they can be 
reused in different analyses. Here both pipeline documentation and 
pipeline modularity (were pipelines are not written as linear code/ 
scripts) play a key role.

Second, once developed, pipelines should be made available in 
registries that enable developers and curators to document, share 
with a team or community, or publish pipelines. Pipeline registries 
must have the capability to track a pipeline’s history over time, 
various versions and modifications of a pipeline may be developed 
(to adapt to changes in the execution environment and/or to changes 
in functional needs).

Third, in addition to sharing pipelines, sharing their constituting 
“modules”, that are called processors, can help developers save va-
luable time during development. These processors should be docu-
mented with dedicated metadata and annotations in order to be 
easily found.

3. Landscape of available solutions

In this section, we present elements of solutions to the problems 
described in the previous section. We will first focus on generic 
solutions for managing tools, environments, and code. These ele-
ments of solutions are generic, meaning they do not rely on the 
specific language or technology used to develop the pipelines: pi-
pelines can be developed as scripts, notebooks, or scientific work-
flows.

We then describe a specific solution to manage pipelines, namely 
using scientific workflow systems, and show how this solves several of 
the major problems encountered.

3.1. Generic elements of solutions

Available solutions can be used to support different facets of 
pipeline management. Fig. 2 summarizes generic solutions to deal 
with the multiple layers of pipeline management: data, pipeline, 
environment, and execution layers.

3.1.1. Supporting pipeline development
3.1.1.1. Identifying the right tools to use. As mentioned earlier, 
bioinformatics pipelines are rarely made of purely new pieces of 
code. Rather, they make calls to existing tools. In this regard, 
bio.tools [17] provides an element of solution by offering a large 
repository of bioinformatics tools. As of January 2023, bio.tools 
provides 27,538 entries. bio.tools is the successor of Biocatalogue 
[18], the pioneer tool repository.

3.1.1.2. Developing pipelines. The “Pipeline layer” defined in Fig. 2
provides elements of solution for pipeline implementation. They 
include Notebooks (e.g., Jupyter) and scientific workflows (e.g., 
Snakemake, Nextflow). Notebooks are increasingly used as a mean 
to share and display source code while interactively providing a 
visualization of the results [2]. Workflow systems will be described 
in section 3.2.

On the left hand side of Fig. 2, a few examples of software able to 
support collaborative development are presented. Bioinformatics 
developers use various IDE (integrated development environments) 
equipped with plugins; they work in collaborative platforms like 1 https://github.com/ICAN-aneurysms/RIA-predict
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GitHub or GitLab to share and review code. In this domain, Git has 
become the universal reference to manage code version and colla-
boration.

3.1.2. Tracing data for testing and reuse
Once a first version of the pipeline has been developed, the 

testing phase may start and needs dedicated datasets. The “Data 
layer” defined in Fig. 2 represents the datasets consumed and pro-
duced during an execution of a given bioinformatics pipeline. Re-
presenting and tracing such data provenance in a uniform way is key, 
both for testing and documenting pipelines which will allow reuse.

Elements of solutions include the W3C PROV recommendation2

that offers a highly generic model for exchanging provenance data 
on the Web. As PROV does not explicitly provide all the concepts 
necessary for modeling pipelines or their executions, several PROV- 
compliant extension languages co-exist: wfprov,3 prov-wf [19] and 
ProvONE.4

A recent initiative to annotate scientific datasets with lightweight 
provenance metadata has been introduced, namely, RO-crate.5 It 
benefits from Schema.org annotations [20], a controlled vocabulary 
initially proposed to increase the findability of digital objects on 
the web.

3.1.3. Ensuring pipelines to stand over time and place
3.1.3.1. Deployment. The “Execution layer” defined in Fig. 2
represents the various execution infrastructures, from cloud to 
cluster or grid. Developers must ensure their pipelines are able to 
run in such various configurations. For example, in HPC cluster 
environments, different schedulers may be available (e.g., SLURM 
[21], PBS [22], LSF or SGE). Even if they solve some difficulties (job 
scheduling, parallel execution, queue management, etc.), users still 
have to interact with potentially heterogeneous schedulers, to 
submit the right jobs in the right order, and to deal with re- 
submission of failed job executions.

Many tips and solutions have been suggested to handle pipeline 
job submissions in these environments (see [16]). However, 

workflow systems, described in section 3.2, currently constitute one 
of the easiest solution.

3.1.3.2. Maintenance, reproducibility and reuse. The “Environment 
layer”, defined in Fig. 2, displays several approaches that have 
been proposed to describe, store and share the execution 
environment of the pipeline and its scientific context. Capturing 
this information is key to ensure the pipeline maintenance and thus 
reproducibility, its ability to continue running over time, and 
therefore make it reuseable by third parties.

Three families of solutions co-exist.
First, virtualization technologies such as VMware,6 KVM,7 Vir-

tualBox,8 and Vagrant9 can be used (and have been widely used in 
the past) to package or “freeze” pipeline software environments. As 
they require storing and executing the entire runtime environment 
(including the operating system), these solutions are particularly 
expensive.

The second kind of solutions are based on containers and re-
present remarkable and lightweight alternatives. They only capture 
specific dependencies required by applications, and share low-level 
components provided by the operating system. The containers are 
built from recipes, simple text files describing how they are con-
structed, and facilitating their composition, management and 
sharing. Examples include OpenVZ,10 LXC,11 and more widely used in 
bioinformatics: Docker [23], and Singularity [24].

The third kind of solutions are based on package management 
systems, such as Conda.12 They facilitate tool and dependency in-
stallation, environment management and sharing (to some extent), 
but do not completely solve the heterogeneity of execution ma-
chines and operating systems. They are also often used to easily 
create containers (e.g., BioContainers [25,26]).

These tools are a huge step forward for maintenance, reprodu-
cibility and reuse. However, they are still difficult to integrate in 

Fig. 2. Generic elements of solutions. Analysis can be defined with four layers: Data, pipeline, software environment, and execution layers. On each layer some elements of 
solutions which are widely used nowadays.

2 https://www.w3.org/TR/prov-overview/
3 http://purl.org/wf4ever/wfprov
4 http://vcvcomputing.com/provone/provone.html
5 https://www.researchobject.org/ro-crate

6 https://www.vmware.com/
7 https://www.linux-kvm.org
8 https://www.virtualbox.org/
9 https://www.vagrantup.com/

10 https://openvz.org/
11 https://linuxcontainers.org/
12 http://conda.pydata.org
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pipelines, which is the responsibility of the developer. Again, 
workflows systems are a great help in orchestrating all these solu-
tions together.

3.2. Scientific workflow systems

Scientific workflow systems [1] have been designed to help 
bioinformatics scientists to design and execute workflows at mul-
tiple levels [27] throughout pipelines life cycle. Scientific workflow 
systems define workflows as a chain of processors, each performing 
specific bioinformatics operations by encapsulating a tool or a script. 
These processors are chained together by data flow: the input of a 
processor is connected to the output of the previous one, which 
determines the order in which they are executed.

Pioneer systems include Taverna [10], Kepler [28] and VisTrails 
[29] have been excellent research prototypes, but are no longer 
maintained. Over the past decade, three systems - Galaxy [8], Sna-
kemake [6], and Nextflow [30] - have reached a good level of ma-
turity and are now frequently used by bioinformaticians for 
managing their data analysis.

The main difference between Galaxy and the other two is the 
targeted users. While Galaxy targets end-users without program-
ming skills (workflow development is made by drag-and-drop ac-
tions on predefined steps), Nextflow and Snakemake target 
bioinformaticians who are proficient in scripting languages, making 
them increasingly popular in a community with growing develop-
ment skills.

We will now review scientific workflow systems, especially 
Snakemake and Nextflow, in light of their ability to provide solutions 
at each stage of the pipeline life cycle.

3.2.1. Supporting pipelines life cycle with scientific workflows
Scientific workflow systems play a central role in the orchestra-

tion of all the layers described in Fig. 2, and act at all stages of pi-
pelines life cycle.

3.2.1.1. Development. Workflows propose an abstract representation 
of pipelines, allowing easily mixing multiple programming 
languages and tools. In workflow implementations, scripts are 
encapsulated: each step of the analysis is described in a unified 
form, a processor, in a language specific to the workflow system. A 
processor contains a script (e.g., Python, R, Shell) or a call to a 
bioinformatics tool (available in the software environment). The 
encapsulation defines an interface (in the programming point-of- 
view) as simple as possible: inputs (data types and parameters), 
outputs, and executions are specified in a language and a format 
recognized by the workflow system.

3.2.1.2. Pipeline testing. The abstract representation of pipelines 
provided by workflow systems facilitates testing, which can be 
then performed within a single development environment. 
Integration tests and deployment tests are then performed within 
workflow systems, still in the same development environment.

Snakemake proposes a dedicated unit test framework, it is also 
possible in Nextflow to implement unit tests via nf-core [31] (de-
scribed in next paragraphs).

3.2.1.3. Deployment. As orchestrators of all the analysis layers 
(processing, execution, tools and environment, see section 2 and 
Fig. 2), workflows schedule job execution using workflow structure, 
monitor job execution and re-submission (success and failure), and 
manage job submissions on a large diversity of HPC infrastructures 
with almost no effort from the developer.

More precisely, workflow systems allow the underlying execu-
tion machines (local, clustered, cloud, etc.) to be completely de-
coupled from the workflow implementation, by separating the 

workflow logic from its configuration (which machine and scheduler 
it runs on). As for the optimization of execution, workflow systems 
add a layer of task scheduling on top of the operating system that 
executes the task and the HPC scheduler (e.g., SLURM), therefore 
allowing to fully leverage the parallel nature of the workflow to 
execute the tasks in the right order and distribute them on all the 
available computing resources. Workflow systems supporting dis-
tributed scheduling have been discussed in detail in [32].

3.2.1.4. Maintenance and reproducibility. Workflow systems make 
use of containers (Docker/Singularity) or environments (Conda). In 
doing so, they decouple the implementation of each step from its 
environment configuration (which determines the container it runs 
in). They are able to manage both the software environment (via 
Docker, Singularity, Conda) and the execution environment. 
Maintaining and updating the software and execution 
environments used by a workflow, thus making it reproducible, 
becomes simpler as a result.

3.2.1.5. Sharing/Reuse. To increase their reusability, workflows can 
be composed of independent processors that can be reused and 
chained to form new workflows. With encapsulation and 
modularity, sub-workflows can be created, allowing designers to 
partially hide workflow complexity and facilitate the reuse of its 
individual units.

For example, Snakemake proposes several levels of encapsulation 
and modularity: “wrappers” encapsulate steps, “includes” include an 
external workflow in the current one, and “modules” define external 
workflows. Since the transition to the second version of its language 
(DSL2), Nextflow also offers increased encapsulation and modularity. 
In particular, DSL2 defines “modules” and “sub-workflows” that 
allow individual processes (i.e., steps) and sub-workflows to be used 
across several workflows.

A second element of solution for sharing and reusing workflows 
is also facilitated by workflow repositories. A few of them have been 
developed in the past, such as myExperiment [33] (pioneer system), 
CrowdLabs [34] or SHIWA [35] to name a few. These repositories are 
no longer maintained as they were associated to Taverna, Kepler and 
VisTrails systems. Currently active repositories include the Galaxy 
repository [36] and WorkflowHub [37] (the successor of myExperi-
ment). Other initiatives propose databases of curated workflows, 
such as nf-core [31] (42 workflows) and sequana [38] (11 workflows) 
for Nextflow and Snakemake respectively. However, GitHub remains 
the most important source of workflows, with several thousands of 
bioinformatics workflows available to users. We shall get back to this 
point in the next section.

3.2.2. Workflow example from the ICAN project
The ICAN project is a very good illustration of the needs met in 

large-scale multidisciplinary health projects. In particular in such 
projects, due to legal constraints regarding the protection of 
personal data, it is not possible to relocate data from one partner’s 
site to another. Pipelines must be deployed at the site of the data- 
holding partner. It is thus crucial to follow good practices during 
the entire pipeline life cycle. This facilitates the pipeline sharing 
among partners, ensuring the pipeline runs properly and delivers 
the expected results, even in HPC environments differing from the 
development and testing environment. Importantly, the use of 
standards over proprietary languages for specifying the pipeline 
and its configuration, as well as for specifying software and ex-
ecution environments is crucial to achieve a good level of re-
producibility.

As highlighted previously, scientific workflow systems provide 
concrete answers to such needs. We introduce one example of a 
workflow developed in the context of the ICAN project which per-
forms data analysis (quality control). Our workflow has been 
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developed in Snakemake, it is called BAM_QC 13 and is depicted in 
Fig. 3. Such a workflow assesses the quality of raw sequencing data 
by computing several useful metrics (e.g. sequence length, level of 
contamination or percentage of sequences mapped onto the re-
ference genome) on all the samples. The results of this workflow are 
used to decide whether to accept or reject the samples.

Each step of the workflow is implemented as a rule in Snakemake 
(see Fig. 4), a rule specifies i) its inputs and outputs, ii) the script to 
execute, and iii) its configuration (software environment and ex-
ecution machines to use), usually documented in an independent 
file. While this workflow is rather simple, it would have been more 
difficult to satisfy all the requirements described in section 2 (in 
terms of reuse, maintenance, etc.) without a scientific workflow 
system.

By using a workflow system, the pipeline code (which imple-
ments the logic of the experiment or data analysis) is decoupled 
from the input datasets and the configuration setup. This allows the 
same workflow (code) to be portable and executable using different 
input datasets and across different environments/platforms.

4. Workflow systems and bioinformatics pipelines reuse

In this section, we present the results of a comprehensive study 
we conducted on the reuse of scientific workflows. Our aim is to 
show how these workflow systems are being used in practice by the 
bioinformatics community and gain a better understanding of reuse 
practices. While previous studies (e.g., [39]) focused on Taverna [10]
and Galaxy [8] workflow systems, our study is the first to consider 
the increasingly popular Snakemake [6] and Nextflow [30] workflow 
systems.

To do so, we studied the reuse of Nextflow and Snakemake 
workflows available on GitHub.

After presenting how we have collected workflows, we will in-
troduce our results through three main points. First, workflow reuse 
through the perspective of repository owners and contributors is 
studied. Second, reuse practices are examined by comparing work-
flow code (copy paste, forks, etc.). Third, reuse of individual work-
flow steps between users is analyzed. While these aspects are mainly 
quantitative, we will then shift to a qualitative perspective about 
reuse by examining the bioinformatics operations executed in the 
collected workflows.

The source code for the data collection and the reuse analyses is 
available on three GitHub repositories: extraction of information 

from Snakemake workflows,14 extraction of information from 
Nextflow workflows15 and experiments and Figures of the papers.16

4.1. Collection of workflows

Figure 5 illustrates our approach for extracting and collecting 
information about the workflows used in our study. We im-
plemented and executed the three software components (CrawlWF, 
ParsWF, and WF2BT) to search, extract, parse and annotate Snake-
make and Nextflow workflows from GitHub.

After workflow collection and extraction from GitHub, CrawlWF 
harvests GitHub metadata to associate each workflow with its owner 
(who owns the repository) and contributors (who contributed to the 
repository). ParsWF then examines the content of the repository, and 
retains only the well-formed workflow files by syntactically 
checking Nextflow and Snakemake specifications. It then extracts 
information about the workflow steps (workflow processors). Finally, 
WF2BT annotates workflow steps with metadata retrieved from the 
bio.tools [9] registry. WF2BT proceeds in three steps: (i) extracts the 
shell script from the processor implementation; (ii) extracts the 
command names from the shell script to constitute a set of candi-
date tools; (iii) matches the candidate tools to the list of tool names 
in bio.tools. Candidate tools that could not be matched to the bio.-
tools registry (no match with any bio.tool name) were compared to 
biocontainers [25] metadata, as each container is associated with 
bio.tools identifiers and comes with a list of shell commands it 
provides. That way, WF2BT lists the set of tools used by each pro-
cessor and which have a bio.tools entry.

Using the above approach, as of May 2022, CrawlWF was able to 
extract 1790 Nextflow and 3866 Snakemake workflows. Of these, 
ParsWF retained 1675 well-formed Nextflow and 2946 well-formed 
Snakemake workflows (Fig. 6 provides the evolution of the number 
of Snakemake and Nextflow workflows available on GitHub in the 
past eight years). From these, WF2BT retained only 1186 Nextflow 
and 1257 Snakemake matched-tools workflows (containing at least 
one processor associated with at least one tool in bio.tools), which 
represents a total of 2443 retained workflows. Such workflows 
contain respectively 9652 and 5888 matched-tools processors (in-
dividual processors for which at least one tool has a bio.tools entry).

Matched-tools processors and matched-tools workflows are the 
objects of interest in the rest of the study.

4.2. Workflow owners and contributors

We first focus on how the workflows are distributed among re-
pository/workflows owners and contributors. To do so, we have 
extracted this information from GitHub using CrawlWF. Each work-
flow is associated to exactly one owner (the owner of the GitHub 
repository), and potentially several contributors (the GitHub users 
that have at least contributed once to the repository).

We found that the 1186 Nextflow and 1257 Snakemake matched- 
tools workflows were owned by 650 and 535 owners respectively. 
This represents a total of 1166 workflow owners (19 owners pub-
lished both Nextflow and Snakemake workflows). Considering the 
ten owners who have provided the largest number of workflows in 
Nextflow and Snakemake (top ten owners), they have actually 
published 15% of all Nextflow and of all Snakemake workflows. We 
are thus not in a situation where workflows are systematically 

Fig. 3. Schematic representation of BAM_QC, the workflow performing sample 
quality control. It is made of 7 steps: i) InsertCompute and StatsInserts estimate the 
length of the sequence fragments, ii) SamRun and catStats compute several statistics 
about mapping, and iii) somalier_extract and somalier_relate compute relatedeness 
between samples.

13 Code available at https://github.com/r-blanchet/BAM_QC

14 https://github.com/mdjaffardjy/Snakemake_workflow_analysis#snakemake_ 
workflow_analysis/blob/main/README.md

15 https://github.com/mdjaffardjy/AnalyseDonneesNextflow# 
analysedonneesnextflow/blob/main/README.md

16 https://github.com/mdjaffardjy/Reuse_in_processes#reuse_in_processes/blob/ 
main/README.md
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uploaded by a restricted number of owners. Interestingly, 31% 
(Snakemake) vs. 42% (Nextflow) authors have published at least two 
workflows. There exists a set of owners who provide several work-
flows to the community, and overall, workflow authors in general 
produce several workflows and are willing to share their workflows.

While these results have been obtained on workflow owners, 
similar trends are observed on workflow contributors (in Nextflow, 
37% of contributors have contributed to two workflows or more, and 
this figure reaches 44% for Snakemake).

4.3. Identifying reused workflows

The question of workflow reuse is now explored, considering 
complete (whole workflow) rather than partial (workflow parts) 
reuse.

To do so, two complementary metrics are used. First, we looked 
for exact matches among texts of the workflow codes to detect copy 
and paste between workflows. Second, we examined GitHub’s pro-
ject forking to identify workflow reuse. Forking allows a Git user to 
explicitly create a new project starting from the code of a parent 
project, by copying its full content and history. For each workflow 
project, we have access to its number of forks, and so to the number 
of times it has been taken as a source of a new workflow.

Fig. 4. Example of a Snakemake rule that estimates the length of sequenced fragments. It specifies its inputs (two cram files), its outputs (one pdf and one txt file), its parameters 
(one reference fasta file), its environment (Conda, defined in a yaml file alongside), the number of threads that it will use, and the script to execute (involving the call to two 
bioinformatics tools namely Samtools and Picard).

Fig. 5. Workflow extraction and annotation process. It is made of three main software 
components: i) CrawlWF searches and extracts workflows from GitHub, ii) ParsWF 
parses the workflows to extract meaningful informations, and iii) WF2BT matches 
workflow processors to bio.tools annotations.

Fig. 6. Evolution of the monthly and cumulative number of Nextflow and Snakemake workflows available on GitHub since 2014. 
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As a result, we did not find any pair of workflows with identical 
source code. Then looking at the number of forks provided more 
interesting insights. Table 1 provides the number of Nextflow and 
Snakemake workflows forked more than n times (n = 3, 5, 10, 50). As 
a reminder, the total number of workflows is 1, 186 and 1, 257, re-
spectively in Nextflow and Snakemake. This means, for instance, that 
there are 45 Nextflow and 57 Snakemake workflows which have 
been forked more than 10 times.

A close look at workflow forking revealed two predominant 
practices: (i) a workflow is forked, the copy then undergoes mod-
ifications to re-purpose the workflow to a new context of use, (ii) a 
popular workflow is forked to create a stable, unchanged snapshot 
for its current users, allowing the original workflow to continue to 
evolve to meet new users’ needs. In both cases, the original and 
forked workflows are deemed not to be identical. In view of the 
above, it is assumed in this paper that, while workflow reuse was 
identified via the presence of forking, the workflows were modified 
sufficiently to not be considered identical by the other metric.

4.4. Identifying reused processors

Another objective of this study is to identify fine-grain reuse, 
notably by detecting copy-paste followed by slight modifications of 
processors by users. Detecting such similar processors can be per-
formed using plagiarism tools [40] or following the methods also 
used in other studies [41,42]. Plagiarism tools are more suited to 
longer code than processor code, we thus chose to follow the same 
direction as previous reuse studies [40] by using the Levenshtein’s 
distance (as implemented in jellyfish17) classically normalized by the 
size of the processor. As a result the normalized distance lies be-
tween 0 (no similarity) and 1 (identical codes).

In order to identify reuse (as copy-paste and slight changes), we 
thus deemed two processors similar if their Levenshtein’s similarity 
score was higher than 0.85. This threshold has been chosen based on 
an inspection of the similar processors obtained considering four 
values of threshold (0.80, 0.85, 0.90 and 0.95). As a result, 0.85 ap-
peared to be the best value to account for the action of copy-pasting 
followed by slight changes. We then formed “groups” of processor 
occurrences using this threshold. Each group represents a unique 
processor gathering all the highly similar processor occurrences.

4.4.1. Comparative processor reuse study between nextflow and 
snakemake

Barplots in Fig. 7 represent the distribution of the number of 
workflows a processor is reused in (reuse across workflows) in 
Nextflow and Snakemake. As Nextflow and Snakemake have ap-
proximately the same amount of workflows, we do not normalize 
the quantity of workflows.

The barplot of Fig. 7 shows that the reuse profile is similar be-
tween Nextflow and Snakemake. Interestingly, the most reused 
processors are more frequently reused in Nextflow than in Snake-
make. Looking at the ”top-x processors” (the x processors that are 
found in the most workflows), Nextflow processors are more reused 
across workflows: the top-25 processors are reused in 3.34% (resp. 
1.85%) of Nextflow (resp. Snakemake) processors; the top-30 

processors are reused in 2.42% of Nextflow processors and 0.93% of 
Snakemake processors.

4.4.2. Comparative nextflow processor reuse study: role of nf-core
nf-core [31] being a well-known curated repository of Nextflow 

workflows, the next experiment aims to investigate whether nf-core 
has an impact on reuse of processors in Nextflow workflows.

In this experiment. 

• an nf-core workflow is a workflow whose owner is nf-core.

• a non-nf-core workflow has an owner different from nf-core.

• an nf-core processor is a processor that is used in at least one nf- 
core workflow.

• a non-nf-core processor is a processor which is never used in an 
nf-core workflow.

Considering only non-nf-core workflows, the question is: is there 
a difference between nf-core processors reuse and non-nf-core 
processors reuse?

Figure 8 represents the distribution of nf-core processor reuse 
(top) versus the distribution non-nf-core processors reused (bottom) 
in non-nf-core workflows. It can be observed that nf-core processors 
reuse is slightly higher than the reuse of non-nf-core processors.

4.5. Identifying reused tools

We now focus on identifying the kind of operations users im-
plemented in their workflows using the bioinformatics tools used as 
a proxy. In order to identify reuse of tools, we count the number of 
times each tool is used considering all workflow processors.

When studying the tools used in processors, we found that some 
of them were widely used, as much as 2841 times, indicating that 
many users performed very similar tasks.

When looking at the list of the most used tools (top tools) for 
Nextflow and Snakemake, we notice that 9 out of 10 top tools are 
common between Nextflow and Snakemake. In the following, we 
will focus on the 14 tools which are common between the top 20 
tools of Nextflow and Snakemake. Such tools are presented in 
Table 2.

While some tools are used for generic bioinformatics data pro-
cessing (e.g. Samtools), a number of them are domain-specific tools 
performing specific bioinformatic tasks and reflecting trends of tool 
usage in bioinformatics workflows (e.g. QIIME for microbiome ana-
lysis). Not surprisingly, toolkits, mappers and quality control tools 
are widely used, as they are involved in many workflows (even 
several times in some workflows) for different types of analysis: BWA 
and FastQC are used prior to most sequence data analyses, and 
Samtools is used for multiple tasks (e.g., converting between map-
ping formats, filtering reads) involved in different kinds of analyses 
(e.g., RNA-Seq, SNP calling).

Generally, we find that (i) a few tools are widely re-used, and (ii) 
widely used tools depend little on the workflow system used, as the 
top used tools are almost the same in Nextflow and Snakemake.

The next section discusses the paper and in particular the results 
obtained in this study of reuse.

5. Discussion and perspectives

An increasing number of papers highlight the benefits of using 
scientific workflow systems to develop complex pipelines instead of 
considering only (python, R or bash) scripts. In [52], authors em-
phasize how Nextflow, Snakemake and Galaxy are helpful solutions 
to design, execute and share large-scale multi-omics pipelines. In 
[1], authors focus on the ability of workflow systems to design re-
producible experiments. Good practices papers have also emerged: 
[53] provides guidelines to develop scientific workflows in the 

Table 1 
Percentage of Nextflow and Snakemake workflows that have been forked more than 3, 
5, 10 and 50 times. 

Threshold 3 5 10 50

Nextflow 13.7% 7.8% 3.8% 0.8%
Snakemake 14.5% 7.9% 4.6% 0.2%

17 https://GitHub.com/jamesturk/jellyfish
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context of high-throughput sequencing data analysis; [54] guides 
developers of research software in developing computational tools 
fully utilized in workflow management systems.

The originality of the present paper is to consider all the stages of 
the bioinformatics pipeline life cycle and for each stage both elicit 
the problems encountered and provide an overview of a series of 
solutions. More precisely, we have first presented generic elements 
of solutions, that can be used in the development of any kind of 
pipeline. We have then focused on scientific workflow systems and 
especially on the new generation of workflow systems - Snakemake 
and Nextflow - that provide significant technical advancements: 
native support of containers help capturing the execution environ-
ment, making pipelines more easily reproducible thus easier to 
share and re-execute. Such workflow management systems also help 
integrating all components of a pipeline, such as tools, scripts and 
bash commands in a seamless way. Furthermore, the modularity of 
workflow languages makes it easier to isolate single steps, not only 

making the pipelines easier for others to understand but also facil-
itating reuse of the workflow steps.

Another major contribution of this paper is a quantitative and 
qualitative study of reuse of in-use Snakemake and Nextflow 
workflows. Our study reveals that there is already effective reuse 
and provides three main conclusions. First, between a third and half 
of the workflow owners have implemented more than one workflow. 
Second, we found evidence of reuse in the source code of processors. 
Third, we have highlighted a set of tools that are regularly used 
among pipelines implemented as workflows. Previous reuse studies 
were performed ten years ago on the earliest systems. In particular, 
[39] considered a set of 898 workflows from the Taverna system. The 
conclusions of [39] differ from ours. Regarding authorship, we 
showed that the top 10 workflow owners published 15% of the 
workflows (compared to 62% previously), which indicates that 
workflow system usage is no longer limited to a restricted com-
munity of experts, but to a growing range of scientists. As a 

Fig. 7. Distribution of processors reuse across workflows in Nextflow and Snakemake. 

Fig. 8. Distribution of processors reuse across non nf-core workflows. Both nf-core and non nf-core processors are considered. 
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consequence, authors are now more willing to share and reuse 
workflows with each other. Our study finally reveals that the ex-
istence of dedicated curated repositories such as nf-core helps to 
promote reuse practices.

For an even broader adoption of workflow systems, the main 
perspectives are to provide ways to discover, retrieve and compare 
workflows. This point has been considered in the previous genera-
tion of workflow systems [41] and is still pointed out by editorials 
[55], very recent community papers [56] and review papers [3]. 
Earlier approaches based on the Taverna workflow systems (finding 
workflows [57], [42], indexing workflows [58], recommending 
workflows [59,33,60]) are unfortunately not well adapted to the new 
generation of systems and repositories where workflows are more 
heterogeneous in terms of specification and widely spread on the 
Web. Technical and algorithmic challenges remain to deal with the 
distributed and continuously growing and evolving nature of (git 
based) workflow repositories [55,56].

Last but not least, a key aspect to achieve in the following years for 
a wider adoption of workflows by users and for an increase of the 
workflow reuse practices is directly related to the ability to identify 
high-quality, namely, FAIR workflows. The ’FAIR Guiding Principles for 
scientific data management and stewardship’ [61] provides guidelines 
to improve the Findability, Accessibility, Interoperability, and Reuse of 
digital assets. Applying FAIR principles to scientific workflows [62,63] is 
particularly important as it includes defining metrics e.g. to assess the 
ability of a workflow to be reproduced or reused, thus providing key 
quality information to workflow (re)users.
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