
Contents lists available at ScienceDirect

Computational and Structural Biotechnology Journal

journal homepage: www.elsevier.com/locate/csbj

Review article

Developing and reusing bioinformatics data analysis pipelines using
scientific workflow systems

Marine Djaffardjy a,⁎, George Marchment a, Clémence Sebe a, Raphael Blanchet b,
Khalid Bellajhame c, Alban Gaignard b, Frédéric Lemoine d,e, Sarah Cohen-Boulakia a

a Universite Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay 91405, France
b Nantes Université, CNRS, INSERM, l’institut du thorax, 8 quai Moncousu, Nantes F-44000, France
c PSL, Universite Paris-Dauphine, LAMSADE, Place du Maréchal de Lattre de Tassigny, Paris 75775, France
d Institut Pasteur, Université Paris Cité, G5 Evolutionary Genomics of RNA Viruses, 28, rue du Dr Roux, Paris 75015, France
e Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France, 28, rue du Dr Roux, Paris 75015, France

a r t i c l e i n f o

Article history:
Received 27 October 2022
Received in revised form 3 March 2023
Accepted 3 March 2023
Available online 7 March 2023

Keywords:
Scientific workflows
Bioinformatics
Reuse
Reproducibility

a b s t r a c t

Data analysis pipelines are now established as an effective means for specifying and executing bioinfor-
matics data analysis and experiments. While scripting languages, particularly Python, R and notebooks, are
popular and sufficient for developing small-scale pipelines that are often intended for a single user, it is now
widely recognized that they are by no means enough to support the development of large-scale, shareable,
maintainable and reusable pipelines capable of handling large volumes of data and running on high per-
formance computing clusters. This review outlines the key requirements for building large-scale data pi-
pelines and provides a mapping of existing solutions that fulfill them. We then highlight the benefits of
using scientific workflow systems to get modular, reproducible and reusable bioinformatics data analysis
pipelines. We finally discuss current workflow reuse practices based on an empirical study we performed
on a large collection of workflows.

© 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Contents

1. Introduction . 2076
2. Difficulties in the development of bioinformatics pipelines. 2076

2.1. Pipeline development . 2077
2.2. Pipeline testing . 2077
2.3. Deployment . 2077
2.4. Maintenance . 2077
2.5. Reproducing. 2077
2.6. Reuse . 2077

3. Landscape of available solutions . 2077
3.1. Generic elements of solutions . 2077

3.1.1. Supporting pipeline development. 2077
3.1.2. Tracing data for testing and reuse . 2078
3.1.3. Ensuring pipelines to stand over time and place . 2078

3.2. Scientific workflow systems . 2079
3.2.1. Supporting pipelines life cycle with scientific workflows . 2079
3.2.2. Workflow example from the ICAN project . 2079

4. Workflow systems and bioinformatics pipelines reuse. 2080

Computational and Structural Biotechnology Journal 21 (2023) 2075–2085

https://doi.org/10.1016/j.csbj.2023.03.003
2001-0370/© 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

]]]]
]]]]]]

⁎ Corresponding author.
E-mail address: marine.djaffardjy@lri.fr (M. Djaffardjy).

http://www.sciencedirect.com/science/journal/20010370
www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2023.03.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2023.03.003
https://doi.org/10.1016/j.csbj.2023.03.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.03.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.03.003&domain=pdf
mailto:marine.djaffardjy@lri.fr

4.1. Collection of workflows . 2080
4.2. Workflow owners and contributors . 2080
4.3. Identifying reused workflows . 2081
4.4. Identifying reused processors . 2082

4.4.1. Comparative processor reuse study between nextflow and snakemake . 2082
4.4.2. Comparative nextflow processor reuse study: role of nf-core. 2082

4.5. Identifying reused tools . 2082
5. Discussion and perspectives. 2082

CRediT authorship contribution statement . 2084
Declaration of Competing Interest . 2084
References . 2084

1. Introduction

The availability of large dataset along with data transformation
and analysis tools, has revolutionized how bioinformaticians con-
duct computational experiments [1]. These data analyses are in-
creasingly performed through pipelines implemented using
scripting languages or notebooks [2]. These pipelines link and in-
tertwine data transformation and analysis tools to convert raw input
data into results that allow scientists to gain insights and draw
conclusions about the validity of a hypothesis or known fact.

The above approach, mainly involving custom scripts, has been
extensively used for small-scale experiments involving a small
number of datasets and a small number of analysis and transfor-
mation tools [3]. For instance, in the case a single user (bioinfor-
matician) is responsible for the design and the execution of the
pipeline as well as the analysis of its results, she or he has prior
knowledge of the datasets involved and the analysis tools being
used. It is also fair to assume that the pipeline is being run on a
single local and homogeneous computing environment.

However, with the above approach, developing large and complex
pipelines handling massive amounts of data becomes challenging [4,5],
especially when teams with different expertise and operating in a
distributed (and potentially heterogeneous) computing execution en-
vironment are involved. In addition, it does not facilitate pipeline
sharing and reuse [3]. A moderately sized pipeline can quickly become
difficult to understand and maintain, and even more difficult to reuse
by third parties. This has become a major concern as bioinformaticians
(and scientists in general) are expected to share their resources, in-
cluding datasets, analysis tools, and also pipelines, in a form that can be
readily understood and reused by peers.

The objective of this review article is threefold.
Firstly, we highlight the barriers that need to be overcome to

enable the development, sharing and reuse of large-scale pipelines.
Secondly, we show that scientific workflows (e.g., [6–8]), in

combination with other auxiliary technologies, such as tool re-
gistries [9], address some of these barriers. Even though scientific
workflow systems are not new, they have been around for over two
decades, and are now mature enough to be used routinely. The first
generation of scientific workflow systems (e.g., Taverna [10]) was
designed for users with a low level of programming skills and fea-
tured a workbench to compose workflows by graphically dragging
and dropping “modules” and linking them together. Thus, these
systems had little acceptance among proficient bioinformatics de-
velopers. In recent years, however, there has been an emergence of a
new generation of scientific workflow systems, notably Nextflow [7]
and Snakemake [6]. These script-based systems offer developers
significant control over workflow design, configuration and execu-
tion. This second generation of workflow systems has gained wider
acceptance among bioinformaticians as they address many of the
challenges faced by pipeline developers and users. Thirdly, we focus
on reuse, one of the major benefits that can be drawn from scientific
workflows. In particular, we examine the practical impact of work-
flow reuse by thoroughly examining a pool of real-world workflows.

Accordingly, the article is structured as follows. We begin by
outlining the challenges that need to be overcome to enable the
management of large-scale pipelines in section 2. We then present
elements of solutions that can be adopted to overcome some of
these hurdles, particularly scientific workflows, in section 3. We
report on an empirical analysis that examines the state of workflow
reuse in practice in section 4, before concluding and discussing the
paper in section 5.

2. Difficulties in the development of bioinformatics pipelines

This section outlines why managing large-scale pipelines
throughout all stages of their life cycle, from development to sharing
and reuse (see Fig. 1) is a difficult task.

To illustrate such difficulties, we use a few real examples en-
countered during the large scale biomedical project “understanding
the pathophysiology of IntraCranial ANeurysm” (ICAN). ICAN aims to
better understand and predict the development and rupture of in-
tracranial aneurysms [11,12]. For this study, biologists and physicians
have set up a large collection of biological samples from a population
of 3000 individuals. This bio-collection has been used to generate
and analyse various types of data, including genomic sequencing
data, cerebral vascular organ neuroimaging data, and clinical data
(like family history and lifestyle). This data is used to create pre-
dictive models for assessing the risk of development and rupture of
intracranial aneurysms. Integrating and analysing such hetero-
geneous data requires specific expertise and a wide variety of soft-
ware tools, which makes the implementation, execution and sharing
among the project stakeholders (and ultimately the community) a
difficult task.

Fig. 1. Life cycle of a bioinformatics pipeline.

M. Djaffardjy, G. Marchment, C. Sebe et al. Computational and Structural Biotechnology Journal 21 (2023) 2075–2085

2076

2.1. Pipeline development

The first type of problem we can define is related to the actual
development of the pipeline, which usually involves multiple pro-
gramming languages and software environments.

In the ICAN project, sequencing data is analyzed with multiple
tools (e.g., BWA [13], GATK[14], Picard Tools [15]), and statistical
analyses are performed using Python and R librairies1 in Jupyter
Notebooks [2]. The identification of the right tools to use is a first
barrier to overcome. The combination of these multiple tools, lan-
guages and environments adds a layer of complexity to the devel-
opment of the pipeline.

2.2. Pipeline testing

Code testing constitutes the next difficulty. Whether it is func-
tional unit testing (testing one part of the program in isolation),
integration testing (testing the combination of multiple parts of the
program), or environment testing (testing how the program can be
run on various platforms), requires significant effort from the pipe-
line developer(s) to delineate the boundaries of a test (which part of
a pipeline to test), and to specify the test cases (selecting example
inputs and defining expected outputs).

2.3. Deployment

Most pipelines cannot be run locally, on a single server con-
taining all the necessary data. They usually need to be deployed on a
large-scale High Performance Computing (HPC) infrastructure. This
deployment step can be tedious, time-consuming, and requires a
technical expertise beyond programming (see [16]). Executing a pi-
peline on a HPC cluster requires setting the computing tasks in the
right order, this is called a job submission. For example, the chal-
lenges lie in executing the right commands to submit jobs on the
right waiting queue, with the right amount of CPUs and memory,
task success or failure (e.g., manually check whether the jobs fin-
ished successfully, and re-submit them if necessary), availability of
computing nodes and deployed workloads (e.g., choosing the right
queue depending on the planned run time or memory require-
ments).

2.4. Maintenance

Maintaining consistency and robustness of the pipeline over time
is crucial. However, given the complexity of the pipelines, a pre-
viously functioning pipeline may experience failure or produce un-
expected results due to one or more of the following causes: changes
in hardware environment, changes in software environment (e.g.,
tools are no longer available or have been updated) or changes in
datasets (for example, reference genome sequences are constantly
evolving). This may require regular updates of the pipeline itself.

2.5. Reproducing

Ensuring a pipeline can be run over time (maintenance) and over
site (deployment) is directly related to the ability to reproduce its
results. A pipeline that runs successfully at one site may not work at
another site, or may yield unexpected results, due to a different
cluster scheduler, hardware, or software environment.

2.6. Reuse

Reusing an analysis pipeline cannot be performed if the pipeline
is not reproducible. In other words, Reproducibility is the basis of
cumulative science: if the pipeline has been designed to be re-
producible then there is hope for it to be more easily shared and
reused (in part or in whole) by third parties.

Three needs should be met for reuse.
First, for pipelines to be shared and reused, they must be easily

understandable to determine their relevance and how they can be
reused in different analyses. Here both pipeline documentation and
pipeline modularity (were pipelines are not written as linear code/
scripts) play a key role.

Second, once developed, pipelines should be made available in
registries that enable developers and curators to document, share
with a team or community, or publish pipelines. Pipeline registries
must have the capability to track a pipeline’s history over time,
various versions and modifications of a pipeline may be developed
(to adapt to changes in the execution environment and/or to changes
in functional needs).

Third, in addition to sharing pipelines, sharing their constituting
“modules”, that are called processors, can help developers save va-
luable time during development. These processors should be docu-
mented with dedicated metadata and annotations in order to be
easily found.

3. Landscape of available solutions

In this section, we present elements of solutions to the problems
described in the previous section. We will first focus on generic
solutions for managing tools, environments, and code. These ele-
ments of solutions are generic, meaning they do not rely on the
specific language or technology used to develop the pipelines: pi-
pelines can be developed as scripts, notebooks, or scientific work-
flows.

We then describe a specific solution to manage pipelines, namely
using scientific workflow systems, and show how this solves several of
the major problems encountered.

3.1. Generic elements of solutions

Available solutions can be used to support different facets of
pipeline management. Fig. 2 summarizes generic solutions to deal
with the multiple layers of pipeline management: data, pipeline,
environment, and execution layers.

3.1.1. Supporting pipeline development
3.1.1.1. Identifying the right tools to use. As mentioned earlier,
bioinformatics pipelines are rarely made of purely new pieces of
code. Rather, they make calls to existing tools. In this regard,
bio.tools [17] provides an element of solution by offering a large
repository of bioinformatics tools. As of January 2023, bio.tools
provides 27,538 entries. bio.tools is the successor of Biocatalogue
[18], the pioneer tool repository.

3.1.1.2. Developing pipelines. The “Pipeline layer” defined in Fig. 2
provides elements of solution for pipeline implementation. They
include Notebooks (e.g., Jupyter) and scientific workflows (e.g.,
Snakemake, Nextflow). Notebooks are increasingly used as a mean
to share and display source code while interactively providing a
visualization of the results [2]. Workflow systems will be described
in section 3.2.

On the left hand side of Fig. 2, a few examples of software able to
support collaborative development are presented. Bioinformatics
developers use various IDE (integrated development environments)
equipped with plugins; they work in collaborative platforms like 1 https://github.com/ICAN-aneurysms/RIA-predict

M. Djaffardjy, G. Marchment, C. Sebe et al. Computational and Structural Biotechnology Journal 21 (2023) 2075–2085

2077

https://github.com/ICAN-aneurysms/RIA-predict

GitHub or GitLab to share and review code. In this domain, Git has
become the universal reference to manage code version and colla-
boration.

3.1.2. Tracing data for testing and reuse
Once a first version of the pipeline has been developed, the

testing phase may start and needs dedicated datasets. The “Data
layer” defined in Fig. 2 represents the datasets consumed and pro-
duced during an execution of a given bioinformatics pipeline. Re-
presenting and tracing such data provenance in a uniform way is key,
both for testing and documenting pipelines which will allow reuse.

Elements of solutions include the W3C PROV recommendation2

that offers a highly generic model for exchanging provenance data
on the Web. As PROV does not explicitly provide all the concepts
necessary for modeling pipelines or their executions, several PROV-
compliant extension languages co-exist: wfprov,3 prov-wf [19] and
ProvONE.4

A recent initiative to annotate scientific datasets with lightweight
provenance metadata has been introduced, namely, RO-crate.5 It
benefits from Schema.org annotations [20], a controlled vocabulary
initially proposed to increase the findability of digital objects on
the web.

3.1.3. Ensuring pipelines to stand over time and place
3.1.3.1. Deployment. The “Execution layer” defined in Fig. 2
represents the various execution infrastructures, from cloud to
cluster or grid. Developers must ensure their pipelines are able to
run in such various configurations. For example, in HPC cluster
environments, different schedulers may be available (e.g., SLURM
[21], PBS [22], LSF or SGE). Even if they solve some difficulties (job
scheduling, parallel execution, queue management, etc.), users still
have to interact with potentially heterogeneous schedulers, to
submit the right jobs in the right order, and to deal with re-
submission of failed job executions.

Many tips and solutions have been suggested to handle pipeline
job submissions in these environments (see [16]). However,

workflow systems, described in section 3.2, currently constitute one
of the easiest solution.

3.1.3.2. Maintenance, reproducibility and reuse. The “Environment
layer”, defined in Fig. 2, displays several approaches that have
been proposed to describe, store and share the execution
environment of the pipeline and its scientific context. Capturing
this information is key to ensure the pipeline maintenance and thus
reproducibility, its ability to continue running over time, and
therefore make it reuseable by third parties.

Three families of solutions co-exist.
First, virtualization technologies such as VMware,6 KVM,7 Vir-

tualBox,8 and Vagrant9 can be used (and have been widely used in
the past) to package or “freeze” pipeline software environments. As
they require storing and executing the entire runtime environment
(including the operating system), these solutions are particularly
expensive.

The second kind of solutions are based on containers and re-
present remarkable and lightweight alternatives. They only capture
specific dependencies required by applications, and share low-level
components provided by the operating system. The containers are
built from recipes, simple text files describing how they are con-
structed, and facilitating their composition, management and
sharing. Examples include OpenVZ,10 LXC,11 and more widely used in
bioinformatics: Docker [23], and Singularity [24].

The third kind of solutions are based on package management
systems, such as Conda.12 They facilitate tool and dependency in-
stallation, environment management and sharing (to some extent),
but do not completely solve the heterogeneity of execution ma-
chines and operating systems. They are also often used to easily
create containers (e.g., BioContainers [25,26]).

These tools are a huge step forward for maintenance, reprodu-
cibility and reuse. However, they are still difficult to integrate in

Fig. 2. Generic elements of solutions. Analysis can be defined with four layers: Data, pipeline, software environment, and execution layers. On each layer some elements of
solutions which are widely used nowadays.

2 https://www.w3.org/TR/prov-overview/
3 http://purl.org/wf4ever/wfprov
4 http://vcvcomputing.com/provone/provone.html
5 https://www.researchobject.org/ro-crate

6 https://www.vmware.com/
7 https://www.linux-kvm.org
8 https://www.virtualbox.org/
9 https://www.vagrantup.com/

10 https://openvz.org/
11 https://linuxcontainers.org/
12 http://conda.pydata.org

M. Djaffardjy, G. Marchment, C. Sebe et al. Computational and Structural Biotechnology Journal 21 (2023) 2075–2085

2078

https://www.w3.org/TR/prov-overview/
http://purl.org/wf4ever/wfprov
http://vcvcomputing.com/provone/provone.html
https://www.researchobject.org/ro-crate
https://www.vmware.com/
https://www.linux-kvm.org
https://www.virtualbox.org/
https://www.vagrantup.com/
https://openvz.org/
https://linuxcontainers.org/
http://conda.pydata.org

pipelines, which is the responsibility of the developer. Again,
workflows systems are a great help in orchestrating all these solu-
tions together.

3.2. Scientific workflow systems

Scientific workflow systems [1] have been designed to help
bioinformatics scientists to design and execute workflows at mul-
tiple levels [27] throughout pipelines life cycle. Scientific workflow
systems define workflows as a chain of processors, each performing
specific bioinformatics operations by encapsulating a tool or a script.
These processors are chained together by data flow: the input of a
processor is connected to the output of the previous one, which
determines the order in which they are executed.

Pioneer systems include Taverna [10], Kepler [28] and VisTrails
[29] have been excellent research prototypes, but are no longer
maintained. Over the past decade, three systems - Galaxy [8], Sna-
kemake [6], and Nextflow [30] - have reached a good level of ma-
turity and are now frequently used by bioinformaticians for
managing their data analysis.

The main difference between Galaxy and the other two is the
targeted users. While Galaxy targets end-users without program-
ming skills (workflow development is made by drag-and-drop ac-
tions on predefined steps), Nextflow and Snakemake target
bioinformaticians who are proficient in scripting languages, making
them increasingly popular in a community with growing develop-
ment skills.

We will now review scientific workflow systems, especially
Snakemake and Nextflow, in light of their ability to provide solutions
at each stage of the pipeline life cycle.

3.2.1. Supporting pipelines life cycle with scientific workflows
Scientific workflow systems play a central role in the orchestra-

tion of all the layers described in Fig. 2, and act at all stages of pi-
pelines life cycle.

3.2.1.1. Development. Workflows propose an abstract representation
of pipelines, allowing easily mixing multiple programming
languages and tools. In workflow implementations, scripts are
encapsulated: each step of the analysis is described in a unified
form, a processor, in a language specific to the workflow system. A
processor contains a script (e.g., Python, R, Shell) or a call to a
bioinformatics tool (available in the software environment). The
encapsulation defines an interface (in the programming point-of-
view) as simple as possible: inputs (data types and parameters),
outputs, and executions are specified in a language and a format
recognized by the workflow system.

3.2.1.2. Pipeline testing. The abstract representation of pipelines
provided by workflow systems facilitates testing, which can be
then performed within a single development environment.
Integration tests and deployment tests are then performed within
workflow systems, still in the same development environment.

Snakemake proposes a dedicated unit test framework, it is also
possible in Nextflow to implement unit tests via nf-core [31] (de-
scribed in next paragraphs).

3.2.1.3. Deployment. As orchestrators of all the analysis layers
(processing, execution, tools and environment, see section 2 and
Fig. 2), workflows schedule job execution using workflow structure,
monitor job execution and re-submission (success and failure), and
manage job submissions on a large diversity of HPC infrastructures
with almost no effort from the developer.

More precisely, workflow systems allow the underlying execu-
tion machines (local, clustered, cloud, etc.) to be completely de-
coupled from the workflow implementation, by separating the

workflow logic from its configuration (which machine and scheduler
it runs on). As for the optimization of execution, workflow systems
add a layer of task scheduling on top of the operating system that
executes the task and the HPC scheduler (e.g., SLURM), therefore
allowing to fully leverage the parallel nature of the workflow to
execute the tasks in the right order and distribute them on all the
available computing resources. Workflow systems supporting dis-
tributed scheduling have been discussed in detail in [32].

3.2.1.4. Maintenance and reproducibility. Workflow systems make
use of containers (Docker/Singularity) or environments (Conda). In
doing so, they decouple the implementation of each step from its
environment configuration (which determines the container it runs
in). They are able to manage both the software environment (via
Docker, Singularity, Conda) and the execution environment.
Maintaining and updating the software and execution
environments used by a workflow, thus making it reproducible,
becomes simpler as a result.

3.2.1.5. Sharing/Reuse. To increase their reusability, workflows can
be composed of independent processors that can be reused and
chained to form new workflows. With encapsulation and
modularity, sub-workflows can be created, allowing designers to
partially hide workflow complexity and facilitate the reuse of its
individual units.

For example, Snakemake proposes several levels of encapsulation
and modularity: “wrappers” encapsulate steps, “includes” include an
external workflow in the current one, and “modules” define external
workflows. Since the transition to the second version of its language
(DSL2), Nextflow also offers increased encapsulation and modularity.
In particular, DSL2 defines “modules” and “sub-workflows” that
allow individual processes (i.e., steps) and sub-workflows to be used
across several workflows.

A second element of solution for sharing and reusing workflows
is also facilitated by workflow repositories. A few of them have been
developed in the past, such as myExperiment [33] (pioneer system),
CrowdLabs [34] or SHIWA [35] to name a few. These repositories are
no longer maintained as they were associated to Taverna, Kepler and
VisTrails systems. Currently active repositories include the Galaxy
repository [36] and WorkflowHub [37] (the successor of myExperi-
ment). Other initiatives propose databases of curated workflows,
such as nf-core [31] (42 workflows) and sequana [38] (11 workflows)
for Nextflow and Snakemake respectively. However, GitHub remains
the most important source of workflows, with several thousands of
bioinformatics workflows available to users. We shall get back to this
point in the next section.

3.2.2. Workflow example from the ICAN project
The ICAN project is a very good illustration of the needs met in

large-scale multidisciplinary health projects. In particular in such
projects, due to legal constraints regarding the protection of
personal data, it is not possible to relocate data from one partner’s
site to another. Pipelines must be deployed at the site of the data-
holding partner. It is thus crucial to follow good practices during
the entire pipeline life cycle. This facilitates the pipeline sharing
among partners, ensuring the pipeline runs properly and delivers
the expected results, even in HPC environments differing from the
development and testing environment. Importantly, the use of
standards over proprietary languages for specifying the pipeline
and its configuration, as well as for specifying software and ex-
ecution environments is crucial to achieve a good level of re-
producibility.

As highlighted previously, scientific workflow systems provide
concrete answers to such needs. We introduce one example of a
workflow developed in the context of the ICAN project which per-
forms data analysis (quality control). Our workflow has been

M. Djaffardjy, G. Marchment, C. Sebe et al. Computational and Structural Biotechnology Journal 21 (2023) 2075–2085

2079

developed in Snakemake, it is called BAM_QC 13 and is depicted in
Fig. 3. Such a workflow assesses the quality of raw sequencing data
by computing several useful metrics (e.g. sequence length, level of
contamination or percentage of sequences mapped onto the re-
ference genome) on all the samples. The results of this workflow are
used to decide whether to accept or reject the samples.

Each step of the workflow is implemented as a rule in Snakemake
(see Fig. 4), a rule specifies i) its inputs and outputs, ii) the script to
execute, and iii) its configuration (software environment and ex-
ecution machines to use), usually documented in an independent
file. While this workflow is rather simple, it would have been more
difficult to satisfy all the requirements described in section 2 (in
terms of reuse, maintenance, etc.) without a scientific workflow
system.

By using a workflow system, the pipeline code (which imple-
ments the logic of the experiment or data analysis) is decoupled
from the input datasets and the configuration setup. This allows the
same workflow (code) to be portable and executable using different
input datasets and across different environments/platforms.

4. Workflow systems and bioinformatics pipelines reuse

In this section, we present the results of a comprehensive study
we conducted on the reuse of scientific workflows. Our aim is to
show how these workflow systems are being used in practice by the
bioinformatics community and gain a better understanding of reuse
practices. While previous studies (e.g., [39]) focused on Taverna [10]
and Galaxy [8] workflow systems, our study is the first to consider
the increasingly popular Snakemake [6] and Nextflow [30] workflow
systems.

To do so, we studied the reuse of Nextflow and Snakemake
workflows available on GitHub.

After presenting how we have collected workflows, we will in-
troduce our results through three main points. First, workflow reuse
through the perspective of repository owners and contributors is
studied. Second, reuse practices are examined by comparing work-
flow code (copy paste, forks, etc.). Third, reuse of individual work-
flow steps between users is analyzed. While these aspects are mainly
quantitative, we will then shift to a qualitative perspective about
reuse by examining the bioinformatics operations executed in the
collected workflows.

The source code for the data collection and the reuse analyses is
available on three GitHub repositories: extraction of information

from Snakemake workflows,14 extraction of information from
Nextflow workflows15 and experiments and Figures of the papers.16

4.1. Collection of workflows

Figure 5 illustrates our approach for extracting and collecting
information about the workflows used in our study. We im-
plemented and executed the three software components (CrawlWF,
ParsWF, and WF2BT) to search, extract, parse and annotate Snake-
make and Nextflow workflows from GitHub.

After workflow collection and extraction from GitHub, CrawlWF
harvests GitHub metadata to associate each workflow with its owner
(who owns the repository) and contributors (who contributed to the
repository). ParsWF then examines the content of the repository, and
retains only the well-formed workflow files by syntactically
checking Nextflow and Snakemake specifications. It then extracts
information about the workflow steps (workflow processors). Finally,
WF2BT annotates workflow steps with metadata retrieved from the
bio.tools [9] registry. WF2BT proceeds in three steps: (i) extracts the
shell script from the processor implementation; (ii) extracts the
command names from the shell script to constitute a set of candi-
date tools; (iii) matches the candidate tools to the list of tool names
in bio.tools. Candidate tools that could not be matched to the bio.-
tools registry (no match with any bio.tool name) were compared to
biocontainers [25] metadata, as each container is associated with
bio.tools identifiers and comes with a list of shell commands it
provides. That way, WF2BT lists the set of tools used by each pro-
cessor and which have a bio.tools entry.

Using the above approach, as of May 2022, CrawlWF was able to
extract 1790 Nextflow and 3866 Snakemake workflows. Of these,
ParsWF retained 1675 well-formed Nextflow and 2946 well-formed
Snakemake workflows (Fig. 6 provides the evolution of the number
of Snakemake and Nextflow workflows available on GitHub in the
past eight years). From these, WF2BT retained only 1186 Nextflow
and 1257 Snakemake matched-tools workflows (containing at least
one processor associated with at least one tool in bio.tools), which
represents a total of 2443 retained workflows. Such workflows
contain respectively 9652 and 5888 matched-tools processors (in-
dividual processors for which at least one tool has a bio.tools entry).

Matched-tools processors and matched-tools workflows are the
objects of interest in the rest of the study.

4.2. Workflow owners and contributors

We first focus on how the workflows are distributed among re-
pository/workflows owners and contributors. To do so, we have
extracted this information from GitHub using CrawlWF. Each work-
flow is associated to exactly one owner (the owner of the GitHub
repository), and potentially several contributors (the GitHub users
that have at least contributed once to the repository).

We found that the 1186 Nextflow and 1257 Snakemake matched-
tools workflows were owned by 650 and 535 owners respectively.
This represents a total of 1166 workflow owners (19 owners pub-
lished both Nextflow and Snakemake workflows). Considering the
ten owners who have provided the largest number of workflows in
Nextflow and Snakemake (top ten owners), they have actually
published 15% of all Nextflow and of all Snakemake workflows. We
are thus not in a situation where workflows are systematically

Fig. 3. Schematic representation of BAM_QC, the workflow performing sample
quality control. It is made of 7 steps: i) InsertCompute and StatsInserts estimate the
length of the sequence fragments, ii) SamRun and catStats compute several statistics
about mapping, and iii) somalier_extract and somalier_relate compute relatedeness
between samples.

13 Code available at https://github.com/r-blanchet/BAM_QC

14 https://github.com/mdjaffardjy/Snakemake_workflow_analysis#snakemake_
workflow_analysis/blob/main/README.md

15 https://github.com/mdjaffardjy/AnalyseDonneesNextflow#
analysedonneesnextflow/blob/main/README.md

16 https://github.com/mdjaffardjy/Reuse_in_processes#reuse_in_processes/blob/
main/README.md

M. Djaffardjy, G. Marchment, C. Sebe et al. Computational and Structural Biotechnology Journal 21 (2023) 2075–2085

2080

https://github.com/r-blanchet/BAM_QC
https://github.com/mdjaffardjy/Snakemake_workflow_analysis#snakemake_workflow_analysis/blob/main/README.md
https://github.com/mdjaffardjy/Snakemake_workflow_analysis#snakemake_workflow_analysis/blob/main/README.md
https://github.com/mdjaffardjy/AnalyseDonneesNextflow#analysedonneesnextflow/blob/main/README.md
https://github.com/mdjaffardjy/AnalyseDonneesNextflow#analysedonneesnextflow/blob/main/README.md
https://github.com/mdjaffardjy/Reuse_in_processes#reuse_in_processes/blob/main/README.md
https://github.com/mdjaffardjy/Reuse_in_processes#reuse_in_processes/blob/main/README.md

uploaded by a restricted number of owners. Interestingly, 31%
(Snakemake) vs. 42% (Nextflow) authors have published at least two
workflows. There exists a set of owners who provide several work-
flows to the community, and overall, workflow authors in general
produce several workflows and are willing to share their workflows.

While these results have been obtained on workflow owners,
similar trends are observed on workflow contributors (in Nextflow,
37% of contributors have contributed to two workflows or more, and
this figure reaches 44% for Snakemake).

4.3. Identifying reused workflows

The question of workflow reuse is now explored, considering
complete (whole workflow) rather than partial (workflow parts)
reuse.

To do so, two complementary metrics are used. First, we looked
for exact matches among texts of the workflow codes to detect copy
and paste between workflows. Second, we examined GitHub’s pro-
ject forking to identify workflow reuse. Forking allows a Git user to
explicitly create a new project starting from the code of a parent
project, by copying its full content and history. For each workflow
project, we have access to its number of forks, and so to the number
of times it has been taken as a source of a new workflow.

Fig. 4. Example of a Snakemake rule that estimates the length of sequenced fragments. It specifies its inputs (two cram files), its outputs (one pdf and one txt file), its parameters
(one reference fasta file), its environment (Conda, defined in a yaml file alongside), the number of threads that it will use, and the script to execute (involving the call to two
bioinformatics tools namely Samtools and Picard).

Fig. 5. Workflow extraction and annotation process. It is made of three main software
components: i) CrawlWF searches and extracts workflows from GitHub, ii) ParsWF
parses the workflows to extract meaningful informations, and iii) WF2BT matches
workflow processors to bio.tools annotations.

Fig. 6. Evolution of the monthly and cumulative number of Nextflow and Snakemake workflows available on GitHub since 2014.

M. Djaffardjy, G. Marchment, C. Sebe et al. Computational and Structural Biotechnology Journal 21 (2023) 2075–2085

2081

As a result, we did not find any pair of workflows with identical
source code. Then looking at the number of forks provided more
interesting insights. Table 1 provides the number of Nextflow and
Snakemake workflows forked more than n times (n = 3, 5, 10, 50). As
a reminder, the total number of workflows is 1, 186 and 1, 257, re-
spectively in Nextflow and Snakemake. This means, for instance, that
there are 45 Nextflow and 57 Snakemake workflows which have
been forked more than 10 times.

A close look at workflow forking revealed two predominant
practices: (i) a workflow is forked, the copy then undergoes mod-
ifications to re-purpose the workflow to a new context of use, (ii) a
popular workflow is forked to create a stable, unchanged snapshot
for its current users, allowing the original workflow to continue to
evolve to meet new users’ needs. In both cases, the original and
forked workflows are deemed not to be identical. In view of the
above, it is assumed in this paper that, while workflow reuse was
identified via the presence of forking, the workflows were modified
sufficiently to not be considered identical by the other metric.

4.4. Identifying reused processors

Another objective of this study is to identify fine-grain reuse,
notably by detecting copy-paste followed by slight modifications of
processors by users. Detecting such similar processors can be per-
formed using plagiarism tools [40] or following the methods also
used in other studies [41,42]. Plagiarism tools are more suited to
longer code than processor code, we thus chose to follow the same
direction as previous reuse studies [40] by using the Levenshtein’s
distance (as implemented in jellyfish17) classically normalized by the
size of the processor. As a result the normalized distance lies be-
tween 0 (no similarity) and 1 (identical codes).

In order to identify reuse (as copy-paste and slight changes), we
thus deemed two processors similar if their Levenshtein’s similarity
score was higher than 0.85. This threshold has been chosen based on
an inspection of the similar processors obtained considering four
values of threshold (0.80, 0.85, 0.90 and 0.95). As a result, 0.85 ap-
peared to be the best value to account for the action of copy-pasting
followed by slight changes. We then formed “groups” of processor
occurrences using this threshold. Each group represents a unique
processor gathering all the highly similar processor occurrences.

4.4.1. Comparative processor reuse study between nextflow and
snakemake

Barplots in Fig. 7 represent the distribution of the number of
workflows a processor is reused in (reuse across workflows) in
Nextflow and Snakemake. As Nextflow and Snakemake have ap-
proximately the same amount of workflows, we do not normalize
the quantity of workflows.

The barplot of Fig. 7 shows that the reuse profile is similar be-
tween Nextflow and Snakemake. Interestingly, the most reused
processors are more frequently reused in Nextflow than in Snake-
make. Looking at the ”top-x processors” (the x processors that are
found in the most workflows), Nextflow processors are more reused
across workflows: the top-25 processors are reused in 3.34% (resp.
1.85%) of Nextflow (resp. Snakemake) processors; the top-30

processors are reused in 2.42% of Nextflow processors and 0.93% of
Snakemake processors.

4.4.2. Comparative nextflow processor reuse study: role of nf-core
nf-core [31] being a well-known curated repository of Nextflow

workflows, the next experiment aims to investigate whether nf-core
has an impact on reuse of processors in Nextflow workflows.

In this experiment.

• an nf-core workflow is a workflow whose owner is nf-core.

• a non-nf-core workflow has an owner different from nf-core.

• an nf-core processor is a processor that is used in at least one nf-
core workflow.

• a non-nf-core processor is a processor which is never used in an
nf-core workflow.

Considering only non-nf-core workflows, the question is: is there
a difference between nf-core processors reuse and non-nf-core
processors reuse?

Figure 8 represents the distribution of nf-core processor reuse
(top) versus the distribution non-nf-core processors reused (bottom)
in non-nf-core workflows. It can be observed that nf-core processors
reuse is slightly higher than the reuse of non-nf-core processors.

4.5. Identifying reused tools

We now focus on identifying the kind of operations users im-
plemented in their workflows using the bioinformatics tools used as
a proxy. In order to identify reuse of tools, we count the number of
times each tool is used considering all workflow processors.

When studying the tools used in processors, we found that some
of them were widely used, as much as 2841 times, indicating that
many users performed very similar tasks.

When looking at the list of the most used tools (top tools) for
Nextflow and Snakemake, we notice that 9 out of 10 top tools are
common between Nextflow and Snakemake. In the following, we
will focus on the 14 tools which are common between the top 20
tools of Nextflow and Snakemake. Such tools are presented in
Table 2.

While some tools are used for generic bioinformatics data pro-
cessing (e.g. Samtools), a number of them are domain-specific tools
performing specific bioinformatic tasks and reflecting trends of tool
usage in bioinformatics workflows (e.g. QIIME for microbiome ana-
lysis). Not surprisingly, toolkits, mappers and quality control tools
are widely used, as they are involved in many workflows (even
several times in some workflows) for different types of analysis: BWA
and FastQC are used prior to most sequence data analyses, and
Samtools is used for multiple tasks (e.g., converting between map-
ping formats, filtering reads) involved in different kinds of analyses
(e.g., RNA-Seq, SNP calling).

Generally, we find that (i) a few tools are widely re-used, and (ii)
widely used tools depend little on the workflow system used, as the
top used tools are almost the same in Nextflow and Snakemake.

The next section discusses the paper and in particular the results
obtained in this study of reuse.

5. Discussion and perspectives

An increasing number of papers highlight the benefits of using
scientific workflow systems to develop complex pipelines instead of
considering only (python, R or bash) scripts. In [52], authors em-
phasize how Nextflow, Snakemake and Galaxy are helpful solutions
to design, execute and share large-scale multi-omics pipelines. In
[1], authors focus on the ability of workflow systems to design re-
producible experiments. Good practices papers have also emerged:
[53] provides guidelines to develop scientific workflows in the

Table 1
Percentage of Nextflow and Snakemake workflows that have been forked more than 3,
5, 10 and 50 times.

Threshold 3 5 10 50

Nextflow 13.7% 7.8% 3.8% 0.8%
Snakemake 14.5% 7.9% 4.6% 0.2%

17 https://GitHub.com/jamesturk/jellyfish

M. Djaffardjy, G. Marchment, C. Sebe et al. Computational and Structural Biotechnology Journal 21 (2023) 2075–2085

2082

https://GitHub.com/jamesturk/jellyfish

context of high-throughput sequencing data analysis; [54] guides
developers of research software in developing computational tools
fully utilized in workflow management systems.

The originality of the present paper is to consider all the stages of
the bioinformatics pipeline life cycle and for each stage both elicit
the problems encountered and provide an overview of a series of
solutions. More precisely, we have first presented generic elements
of solutions, that can be used in the development of any kind of
pipeline. We have then focused on scientific workflow systems and
especially on the new generation of workflow systems - Snakemake
and Nextflow - that provide significant technical advancements:
native support of containers help capturing the execution environ-
ment, making pipelines more easily reproducible thus easier to
share and re-execute. Such workflow management systems also help
integrating all components of a pipeline, such as tools, scripts and
bash commands in a seamless way. Furthermore, the modularity of
workflow languages makes it easier to isolate single steps, not only

making the pipelines easier for others to understand but also facil-
itating reuse of the workflow steps.

Another major contribution of this paper is a quantitative and
qualitative study of reuse of in-use Snakemake and Nextflow
workflows. Our study reveals that there is already effective reuse
and provides three main conclusions. First, between a third and half
of the workflow owners have implemented more than one workflow.
Second, we found evidence of reuse in the source code of processors.
Third, we have highlighted a set of tools that are regularly used
among pipelines implemented as workflows. Previous reuse studies
were performed ten years ago on the earliest systems. In particular,
[39] considered a set of 898 workflows from the Taverna system. The
conclusions of [39] differ from ours. Regarding authorship, we
showed that the top 10 workflow owners published 15% of the
workflows (compared to 62% previously), which indicates that
workflow system usage is no longer limited to a restricted com-
munity of experts, but to a growing range of scientists. As a

Fig. 7. Distribution of processors reuse across workflows in Nextflow and Snakemake.

Fig. 8. Distribution of processors reuse across non nf-core workflows. Both nf-core and non nf-core processors are considered.

M. Djaffardjy, G. Marchment, C. Sebe et al. Computational and Structural Biotechnology Journal 21 (2023) 2075–2085

2083

consequence, authors are now more willing to share and reuse
workflows with each other. Our study finally reveals that the ex-
istence of dedicated curated repositories such as nf-core helps to
promote reuse practices.

For an even broader adoption of workflow systems, the main
perspectives are to provide ways to discover, retrieve and compare
workflows. This point has been considered in the previous genera-
tion of workflow systems [41] and is still pointed out by editorials
[55], very recent community papers [56] and review papers [3].
Earlier approaches based on the Taverna workflow systems (finding
workflows [57], [42], indexing workflows [58], recommending
workflows [59,33,60]) are unfortunately not well adapted to the new
generation of systems and repositories where workflows are more
heterogeneous in terms of specification and widely spread on the
Web. Technical and algorithmic challenges remain to deal with the
distributed and continuously growing and evolving nature of (git
based) workflow repositories [55,56].

Last but not least, a key aspect to achieve in the following years for
a wider adoption of workflows by users and for an increase of the
workflow reuse practices is directly related to the ability to identify
high-quality, namely, FAIR workflows. The ’FAIR Guiding Principles for
scientific data management and stewardship’ [61] provides guidelines
to improve the Findability, Accessibility, Interoperability, and Reuse of
digital assets. Applying FAIR principles to scientific workflows [62,63] is
particularly important as it includes defining metrics e.g. to assess the
ability of a workflow to be reproduced or reused, thus providing key
quality information to workflow (re)users.

CRediT authorship contribution statement

Marine Djaffardjy: Investigation, Software, Writing – original
draft. George Marchment: Software. Clémence Sebe: Software.
Raphael Blanchet: Resources, Writing – review & editing. Khalid
Bellajhame: Writing – review & editing. Alban Gaignard:
Supervision, Investigation, Writing – original draft, Writing – review
& editing. Frédéric Lemoine: Writing – review & editing. Sarah
Cohen-Boulakia: Supervision, Investigation, Writing – original draft,
Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Cohen-Boulakia S, Belhajjame K, Collin O, Chopard J, Froidevaux C, Gaignard A,
Hinsen K, Larmande P, LeBras Y, Lemoine F, Mareuil F, Ménager H, Pradal C,
Blanchet C. Scientific workflows for computational reproducibility in the life
sciences: status, challenges and opportunities. Fut Gen Comput Syst
2017;75:284–98.

[2] A. Rule, A. Birmingham, C. Zuniga, I. Altintas, S.-C. Huang, R. Knight, N. Moshiri,
M.H. Nguyen, S.B. Rosenthal, F. Pérez, et al., Ten simple rules for writing and
sharing computational analyses in jupyter notebooks (2019).

[3] Wratten L, Wilm A, Göke J. Reproducible, scalable, and shareable analysis pi-
pelines with bioinformatics workflow managers. Nat Methods
2021;18(10):1161–8.

[4] Van Vliet M. Seven quick tips for analysis scripts in neuroimaging. PLoS Comput
Biol 2020;16(3):e1007358.

[5] Spjuth O, Bongcam-Rudloff E, Hernández GC, Forer L, Giovacchini M, Guimera
RV, Kallio A, Korpelainen E, Kańduła MM, Krachunov M, et al. Experiences with
workflows for automating data-intensive bioinformatics. Biol Direct
2015;10(1):1–12.

[6] Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine.
Bioinformatics 2012;28(19):2520–2.

[7] J.P. Kurs, M. Simi, F. Campagne, Nextflowworkbench: Reproducible and reusable
workflows for beginners and experts, bioRxiv (2016). 10.1101/041236.

[8] Afgan E, Nekrutenko A, Grüning BA, Blankenberg D, Goecks J, Schatz MC,
Ostrovsky AE, Mahmoud A, Lonie AJ, Syme A, Fouilloux A, Bretaudeau A,
Nekrutenko A, Kumar A, Eschenlauer AC, DeSanto AD, Guerler A, Serrano-Solano
B, Batut B, Grüning BA, Langhorst BW, Carr B, Raubenolt BA, Hyde CJ, Bromhead
CJ, Barnett CB, Royaux C, Gallardo C, Blankenberg D, Fornika DJ, Baker D, Bouvier
D, Clements D, de Lima Morais DA, Tabernero DL, Lariviere D, Nasr E, Afgan E,
Zambelli F, Heyl F, Psomopoulos F, Coppens F, Price GR, Cuccuru G, Corguillé GL,
Kuster GV, Akbulut GG, Rasche H, Hotz H-R, Eguinoa I, Makunin I, Ranawaka IJ,
Taylor JP, Joshi J, Hillman-Jackson J, Goecks J, Chilton JM, Kamali K, Suderman K,
Poterlowicz K, Yvan LB, Lopez-Delisle L, Sargent L, Bassetti ME, Tangaro MA, van
den Beek M, Čech M, Bernt M, Fahrner M, Tekman M, Föll MC, Schatz MC, Crusoe
MR, Roncoroni M, Kucher N, Coraor N, Stoler N, Rhodes N, Soranzo N, Pinter N,
Goonasekera NA, Moreno PA, Videm P, Melanie P, Mandreoli P, Jagtap PD, Gu Q,
Weber RJM, Lazarus R, Vorderman RHP, Hiltemann S, Golitsynskiy S, Garg S, Bray
SA, Gladman SL, Leo S, Mehta SP, Griffin TJ, Jalili V, Yves V, Wen V, Nagampalli
VK, Bacon WA, de Koning W, Maier W, Briggs PJ. The galaxy platform for ac-
cessible, reproducible and collaborative biomedical analyses: 2022 update.
Nucleic Acids Res 2022;50(W1):W345–51. https://doi.org/10.1093/nar/gkac247

[9] Ison J, Ienasescu H, Chmura P, Rydza E, Menager H, Kalaš M, Schwammle V,
Gruning B, Beard N, Lopez R, Duvaud S, Stockinger H, Persson B, Var^ekova RS,
Raček T, Vondrašek J, Peterson H, Salumets A, Jonassen I, Hooft R, Nyronen T,
Valencia A, Capella S, Gelpi J, Zambelli F, Savakis B, Leskošek B, Rapacki K,
Blanchet C, Jimenez R, Oliveira A, Vriend G, Collin O, Van Helden J, Løngreen P,
Brunak S. The bio.tools registry of software tools and data resources for the life
sciences. Genome Biol 2019;20(1):1–4. https://doi.org/10.1186/s13059-019-
1772-6

[10] Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, Soiland-
Reyes S, Dunlop I, Nenadic A, Fisher P, et al. The taverna workflow suite: de-
signing and executing workflows of web services on the desktop, web or in the
cloud. Nucleic Acids Res 2013:gkt328.

[11] Bourcier R, Scouarnec SL, Bonnaud S, Karakachoff M, Bourcereau E, Heurtebise-
Chrétien S, Menguy C, Dina C, Simonet F, Moles A, Lenoble C, Lindenbaum P,
Chatel S, Isidor B, Génin E, Deleuze J-F, Schott J-J, Marec HL, Loirand G, Desal H,
Redon R. Rare coding variants in angptl6 are associated with familial forms of
intracranial aneurysm. Am J Hum Genet 2018;102(1):133–41.

[12] Rousseau O, Karakachoff M, Gaignard A, Bellanger L, Bijlenga P,
ConstantDitBeaufils P, L’Allinec V, Levrier O, Aguettaz P, Desilles J-P, Michelozzi
C, Marnat G, Vion A-C, Loirand G, Desal H, Redon R, Gourraud P-A, Bourcier R.
Location of intracranial aneurysms is the main factor associated with rupture in
the ican population. J Neurol, Neurosurg Psychiatry 2021;92(2):122–8. https://
doi.org/10.1136/jnnp-2020-324371

[13] Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler
transform. Bioinformatics 2009;25(14):1754–60.

[14] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella
K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis toolkit: a mapreduce
framework for analyzing next-generation dna sequencing data. Genome Res
2010;20(9):1297–303.

[15] Broad Institute, Picard tools, 〈http://broadinstitute.github.io/picard/〉 (Accessed:
2022/10/24; version 2.27.4).

[16] Alnasir JJ. Fifteen quick tips for success with hpc, ie, responsibly bashing that
linux cluster. PLOS Comput Biol 2021;17(8):e1009207.

[17] Ison J, Rapacki K, Ménager H, Kalaš M, Rydza E, Chmura P, Anthon C, Beard N,
Berka K, Bolser D, et al. Tools and data services registry: a community effort to
document bioinformatics resources. Nucleic Acids Res 2016;44(D1):D38–47.

[18] Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M, Wolstencroft K,
Aleksejevs S, Stevens R, Pettifer S, et al. Biocatalogue: a universal catalogue of
web services for the life sciences. Nucleic Acids Res 2010:gkq394.

[19] F. Costa, V. Silva, D. de Oliveira, K.A. C.S. Ocaña, E.S. Ogasawara, J. Dias, M.
Mattoso, Capturing and querying workflow runtime provenance with PROV: a
practical approach, in: Joint 2013 EDBT/ICDT Conferences, EDBT/ICDT ’13, Genoa,
Italy, March 22, 2013, Workshop Proceedings, 2013, pp. 282–289.

Table 2
14 tools in common between the top 20 Nextflow tools and the top 20 Snakemake
tools. # NF: Number of Nextflow processors in which they appear, # SM: Number of
Snakemake processors in which they appear. Category: (i) genomic toolkits (GT), (ii)
sequence mappers (MAP), (iii) quality control (QC) tools, and (iv) domain-specific
tools (DST).

Tool # NF # SM Category

Samtools 2841 2045 GT
BEDTools[43] 384 603 GT
BCFtools[44] 929 360 GT
BWA 412 356 MAP
GATK 1067 269 GT
FastQC[45] 770 236 QC
Bowtie[46] 243 177 MAP
STAR[47] 234 152 MAP
MultiQC[48] 707 137 QC
Minimap2[49] 149 137 MAP
Picard 269 137 GT
seqtk 96 94 GT
Cutadapt[50] 80 81 GT
QIIME[51] 207 90 DST

M. Djaffardjy, G. Marchment, C. Sebe et al. Computational and Structural Biotechnology Journal 21 (2023) 2075–2085

2084

[20] Guha RV, Brickley D, Macbeth S. Schema. org: evolution of structured data on the
web. Commun ACM 2016;59(2):44–51.

[21] M.A. Jette, A.B. Yoo, M. Grondona, Slurm: Simple linux utility for resource man-
agement, in: In Lecture Notes in Computer Science: Proceedings of Job Scheduling
Strategies for Parallel Processing (JSSPP) 2003, Springer-Verlag, 2002, 44–60.

[22] H. Feng, V. Misra, D. Rubenstein, Pbs: a unified priority-based scheduler, in:
Proceedings of the 2007 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, 2007, pp. 203–214.

[23] Boettiger C. An introduction to docker for reproducible research. ACM SIGOPS
Oper Syst Rev 2015;49(1):71–9.

[24] Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific containers for mobility
of compute. PloS One 2017;12(5):e0177459.

[25] daVeigaLeprevost F, Grüning BA, AlvesAflitos S, Röst HL, Uszkoreit J, Barsnes H,
Vaudel M, Moreno P, Gatto L, Weber J, et al. Biocontainers: an open-source and
community-driven framework for software standardization. Bioinformatics
2017;33(16):2580–2.

[26] Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R,
Köster J. Bioconda: sustainable and comprehensive software distribution for the
life sciences. Nat Methods 2018;15(7):475–6.

[27] Pradal C, Artzet S, Chopard J, Dupuis D, Fournier C, Mielewczik M, Nègre V,
Neveu P, Parigot D, Valduriez P, Boulakia SC. Infraphenogrid: a scientific work-
flow infrastructure for plant phenomics on the grid. Future Gener Comp Syst
2017;67:341–53.

[28] Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee EA, Tao J, Zhao
Y. Scientific workflow management and the kepler system. Concurr Comput:
Pract Exp 2006;18(10):1039–65.

[29] Callahan SP, Freire J, Santos E, Scheidegger CE, Silva CT, Vo HT. Vistrails: visua-
lization meets data management. In: Chaudhuri S, Hristidis V, Polyzotis N, edi-
tors. Proceedings of the ACM SIGMOD International Conference on Management
of Data, Chicago, Illinois, USA, June 27–29, 2006. ACM; 2006. p. 745–7. (pp.).

[30] DiTommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C.
Nextflow enables reproducible computational workflows. Nat Biotechnol
2017;35(4):316.

[31] Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, DiTommaso
P, Nahnsen S. The nf-core framework for community-curated bioinformatics pi-
pelines. Nat Biotechnol 2020 38:3 2020;38(3):276–8. https://doi.org/10.1038/
s41587-020-0439-x〈https://www.nature.com/articles/s41587-020-0439-x〉.

[32] Juve G, Chervenak AL, Deelman E, Bharathi S, Mehta G, Vahi K. Characterizing
and profiling scientific workflows. Future Gener Comp Syst 2013;29(3):682–92.

[33] Goble CA, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides D, Newman D,
Borkum M, Bechhofer S, Roos M, Li P, et al. myexperiment: a repository and
social network for the sharing of bioinformatics workflows. Nucleic Acids Res
2010;38(suppl 2):W677–82.

[34] Mates P, Santos E, Freire J, Silva CT. Crowdlabs: Social analysis and visualization
for the sciences. Scientific and Statistical Database Management. Springer; 2011.
p. 555–64. (pp.).

[35] Korkhov V, Krefting D, Montagnat J, Huu TT, Kukla T, Terstyanszky G, Manset D,
Caan M, Olabarriaga S. Shiwa workflow interoperability solutions for neuroi-
maging data analysis. Stud Health Technol Inf 2012;175.

[36] Blankenberg D, VonKuster G, Bouvier E, Baker D, Afgan E, Stoler N, Taylor J,
Nekrutenko A, et al. Dissemination of scientific software with galaxy toolshed.
Genome Biol 2014;15(2):403.

[37] Goble C, Soiland-Reyes S, Bacall F, Owen S, Williams A, Eguinoa I, Droesbeke B,
Leo S, Pireddu L, Rodríguez-Navas L, et al. Implementing fair digital objects in the
eosc-life workflow collaboratory. Zenodo 2021.

[38] Cokelaer T, Desvillechabrol D, Legendre R, Cardon M. ‘sequana’: a set of snake-
make ngs pipelines. J Open Source Softw 2017;2(16):352.

[39] J. Starlinger, S.C. Boulakia, U. Leser, (re)use in public scientific workflow re-
positories, in: Scientific and Statistical Database Management - 24th
International Conference, SSDBM 2012, Chania, Crete, Greece, June 25–27, 2012,
2012, Proceedings, pp. 361–378.

[40] Novak M, Joy M, Kermek D. Source-code similarity detection and detection tools
used in academia: a systematic review. (may). ACM Trans Comput Educ
2019;19(3). https://doi.org/10.1145/3313290. (may).

[41] Cohen-Boulakia S, Leser U. Search, adapt, and reuse: the future of scientific
workflows. ACM SIGMOD Rec 2011;40(2):6–16.

[42] Starlinger J, Brancotte B, Cohen-Boulakia S, Leser U. Similarity search for sci-
entific workflows. Proc VLDB Endow 2014;7(12):1143–54.

[43] Quinlan AR, Hall IM. Bedtools: a flexible suite of utilities for comparing genomic
features. Bioinformatics 2010;26(6):841–2.

[44] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
Durbin R. The sequence alignment/map format and samtools. Bioinformatics
2009;25(16):2078–9.

[45] Fastqc(Jun 2015). 〈https://qubeshub.org/resources/fastqc〉.
[46] Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat

Methods 2012;9(4):357–9.
[47] Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,

Gingeras TR. Star: ultrafast universal rna-seq aligner. Bioinformatics
2013;29(1):15–21.

[48] Ewels P, Magnusson M, Lundin S, Käller M. Multiqc: summarize analysis results
for multiple tools and samples in a single report. Bioinformatics
2016;32(19):3047–8.

[49] Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
2018;34(18):3094–100.

[50] Martin M. Cutadapt removes adapter sequences from high-throughput se-
quencing reads. EMBnet J 2011;17(1):10–2.

[51] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK,
Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. Qiime allows analysis of high-
throughput community sequencing data. Nat Methods 2010;7(5):335–6.

[52] Krassowski M, Das V, Sahu SK, Misra BB. State of the field in multi-omics re-
search: from computational needs to data mining and sharing. Front Genet
2020;11:610798.

[53] Reiter T, Brooks† PT, Irber† L, Joslin† SE, Reid† CM, Scott† C, Brown CT, Pierce-
Ward NT. Streamlining data-intensive biology with workflow systems.
GigaScience 2021;10(1):1–19. https://doi.org/10.1093/gigascience/giaa140

[54] Brack P, Crowther P, Soiland-Reyes S, Owen S, Lowe D, Williams AR, Groom Q,
Dillen M, Coppens F, Gruning B, Eguinoa I, Ewels P, Goble C. Ten simple rules for
making a software tool workflow-ready. PLoS Comput Biol 2022;18(3):1–11.
https://doi.org/10.1371/journal.pcbi.1009823

[55] Atkinson M, Gesing S, Montagnat J, Taylor I. Scientific workflows: past, present
and future. Future Gener Comput Syst 2017;75:216–27. https://doi.org/10.1016/j.
future.2017.05.041

[56] R.F. DaSilva, H. Casanova, K. Chard, I. Altintas, R.M. Badia, B. Balis, T. Coleman, F.
Coppens, F. DiNatale, B. Enders, et al., A community roadmap for scientific
workflows research and development, in: 2021 IEEE Workshop on Workflows in
Support of Large-Scale Science (WORKS), IEEE, 2021, pp. 81–90.

[57] A. Goderis, D.D. Roure, C. Goble, J. Bhagat, D. Cruickshank, P. Fisher, D.
Michaelides, F. Tanoh, Discovering scientific workflows: The myexperiment
benchmarks, Project report (April 2008). 〈https://eprints.soton.ac.uk/265662/〉.

[58] J. Stoyanovich, B. Taskar, S. Davidson, Exploring repositories of scientific work-
flows, Proceedings of the ACM SIGMOD International Conference on
Management of Data (2010). 10.1145/1833398.1833405.

[59] D. De Roure, C. Goble, Lessons from myExperiment: Two insights into emerging
e-Research practice, UK eScience All Hands Meeting 2009 (2009)6–8. 〈http://
eprints.ecs.soton.ac.uk/17662/〉.

[60] A. Halioui, T. Martin, P. Valtchev, A.B. Diallo, Ontology-based workflow pattern
mining: Application to bioinformatics expertise acquisition, Proceedings of the
ACM Symposium on Applied Computing Part F128005 (2017)824–827. 10.1145/
3019612.3019866.

[61] Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A,
Blomberg N, Boiten J-W, da SilvaSantos LB, Bourne PE, et al. The fair guiding
principles for scientific data management and stewardship. Sci data 2016;3.

[62] Goble C, Cohen-Boulakia S, Soiland-Reyes S, Garijo D, Gil Y, Crusoe MR, Peters K,
Schober D. Fair computational workflows. Data Intell 2020;2(1–2):108–21.
https://doi.org/10.1162/dint_a_00033

[63] Celebi R, Moreira JR, Hassan AA, Ayyar S, Ridder L, Kuhn T, Dumontier M.
Towards FAIR protocols and workflows: the OpenPREDICT use case. PeerJ
Comput Sci 2020;6:1–29. https://doi.org/10.7717/PEERJ-CS.281

M. Djaffardjy, G. Marchment, C. Sebe et al. Computational and Structural Biotechnology Journal 21 (2023) 2075–2085

2085

	Developing and reusing bioinformatics data analysis pipelines using scientific workflow systems
	1. Introduction
	2. Difficulties in the development of bioinformatics pipelines
	2.1. Pipeline development
	2.2. Pipeline testing
	2.3. Deployment
	2.4. Maintenance
	2.5. Reproducing
	2.6. Reuse

	3. Landscape of available solutions
	3.1. Generic elements of solutions
	3.1.1. Supporting pipeline development
	3.1.1.1. Identifying the right tools to use
	3.1.1.2. Developing pipelines
	3.1.2. Tracing data for testing and reuse
	3.1.3. Ensuring pipelines to stand over time and place
	3.1.3.1. Deployment
	3.1.3.2. Maintenance, reproducibility and reuse

	3.2. Scientific workflow systems
	3.2.1. Supporting pipelines life cycle with scientific workflows
	3.2.1.1. Development
	3.2.1.2. Pipeline testing
	3.2.1.3. Deployment
	3.2.1.4. Maintenance and reproducibility
	3.2.1.5. Sharing/Reuse
	3.2.2. Workflow example from the ICAN project

	4. Workflow systems and bioinformatics pipelines reuse
	4.1. Collection of workflows
	4.2. Workflow owners and contributors
	4.3. Identifying reused workflows
	4.4. Identifying reused processors
	4.4.1. Comparative processor reuse study between nextflow and snakemake
	4.4.2. Comparative nextflow processor reuse study: role of nf-core

	4.5. Identifying reused tools

	5. Discussion and perspectives
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

