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a b s t r a c t

Across biological systems, a number of genomic processes, including transcription, replication, DNA repair, and 
transcription factor binding, display intrinsic directionalities. These directionalities are reflected in the asymmetric 
distribution of nucleotides, motifs, genes, transposon integration sites, and other functional elements across the 
two complementary strands. Strand asymmetries, including GC skews and mutational biases, have shaped the 
nucleotide composition of diverse organisms. The investigation of strand asymmetries often serves as a method to 
understand underlying biological mechanisms, including protein binding preferences, transcription factor inter-
actions, retrotransposition, DNA damage and repair preferences, transcription-replication collisions, and muta-
genesis mechanisms. Research into this subject also enables the identification of functional genomic sites, such as 
replication origins and transcription start sites. Improvements in our ability to detect and quantify DNA strand 
asymmetries will provide insights into diverse functionalities of the genome, the contribution of different mu-
tational mechanisms in germline and somatic mutagenesis, and our knowledge of genome instability and evo-
lution, which all have significant clinical implications in human disease, including cancer. In this review, we 
describe key developments that have been made across the field of genomic strand asymmetries, as well as the 
discovery of associated mechanisms.
© 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 
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1. Introduction

The DNA double helix shows rotational symmetry, whereas a 
number of biological processes such as transcription, replication, 
DNA repair, and transcription factor binding have intrinsic direc-
tionalities [1,2]. Chargaff’s first parity rule, conceived over 70 years 
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ago, states that the number of adenines (As) equals the number of 
thymines (Ts), while the number of guanines (Gs) equals the number 
of cytosines (Cs) [3]; this parity rule can be explained by base 
complementarity in double-stranded DNA. Chargaff’s second parity 
rule states that in long genomic windows, nucleotide sequences on 
the two complementary strands are found with approximately the 
same frequency [4,5]. Although this rule is most accurate for long 
nucleotide sequences [4], it holds true for most double-stranded 
DNA organisms, with the notable exception of certain symbiotes [6].

In contrast to Chargaff’s first parity rule, which was explained by 
the elucidation of the double stranded DNA structure, a compre-
hensive explanation for the second rule has not yet been found. 
Although there are no clear evolutionary advantages associated with 
it, the second law has been observed across diverse organisms [7]. In 
addition, it is not attributed to a single biological mechanism, but is 
likely the result of multiple genomic processes [7]. Nevertheless, 
some research has pointed to inversions and inverted transposition 
events being major contributors to the validity of this rule [8,9], 
while other models have proposed stem-loop structures [10] and 
duplication events [11] as potential explanations.

Importantly, when investigating particular genomic localities, 
there are clear deviations from the second parity rule, which can be 
attributed to specific functional elements. Biological processes, such 
as transcription and replication, possess intrinsic directionality, 
therefore resulting in the heterogeneous distribution of information. 
Identification of strand asymmetries can therefore enable the de-
tection of biological mechanisms, the identification of novel genomic 
elements, and the characterization of selective environmental con-
straints. At the same time, strand asymmetry analyses can improve 
computational models across biological domains, such as in the es-
timation of the likelihood of mutagenesis, the identification of driver 
mutations, in cis-regulatory logic, in evolution, and in disease. In this 
review, we provide an overview of multiple biological processes that 
result in the asymmetric distribution of genomic information and 
demonstrate the utility of strand asymmetries as a tool to decipher 
new biological mechanisms.

2. Strand asymmetries shape the nucleotide composition of 
diverse genomes

In transcription, which is a directional process, the elongating 
RNA polymerases synthesize nascent RNA complementary to the 
template strand (Fig. 1a). During replication, the leading strand is 
replicated continuously, whereas the lagging strand is replicated in 
short Okazaki fragments [12,13] (Fig. 1b). Because DNA polymerases 
must add nucleotide monomers in the 5' and 3' directions, a dis-
continuous polymerization with Okazaki fragments on the lagging 
orientation is necessary.

Transcriptional and replicative strand asymmetries refer to the 
asymmetric distribution of information such as nucleotides or motifs 
between the leading and lagging strands or between the template 
and non-template strands respectively. Both forms of asymmetry 
have been observed in the genomes of diverse organisms including 
prokaryotes, eukaryotes, and viruses [14–22]. These intrinsically 
asymmetric processes result in mutational asymmetries between 
the two DNA strands and have shaped the genomes of organisms 
across the tree of life [23]. For example, cytosine deamination occurs 
primarily at single-stranded DNA, resulting in C to T mutations. The 
likelihood of cytosine deamination is significantly higher on the 
leading-strand [22], and there is a higher repair rate on the lagging 
strand for C > T mutations [24]. As a result, in most studied bacteria, 
the leading strand has an excess of Gs and Ts relative to Cs and As 
[25]. Borrelia burgdorferi, a bacterium that causes Lyme disease, is 
one of the species with the most pronounced leading / lagging nu-
cleotide asymmetries [26].

These asymmetries are frequently quantified with GC-skew and 
AT-skew, which measure statistical deviations of guanines or ade-
nines between the two strands and which have been used to identify 
the location of replication origins, elucidate the direction of re-
plication, and even to validate genome assemblies [27–29]. In the 
human genome, there is an enrichment of Gs and Ts relative to As 
and Cs on the non-template strand of genes [30]. Since the non- 
template DNA remains single-stranded for longer, while the tem-
plate strand is used for the synthesis of the nascent RNA, cytosine 
deamination can explain the observed nucleotide asymmetries [31]. 
GC-skews favor the formation of non-canonical secondary structures 
including G-quadruplexes and R-loops, which are known to influ-
ence gene regulation and have also been associated with RNA 
polymerase pause sites in CpG island promoters [32–35] (Fig. 1c-d).

In both prokaryotes and eukaryotes, a larger number of genes are 
usually found in the leading orientation [36,37]. This phenomenon 
has been explained by a lower mutation rate, by competition be-
tween replication and gene expression [37], and as a way to limit 
collisions between the transcription and replication machineries 
[38] (Fig. 1e). A collision with the replication fork can halt tran-
scription by the RNA polymerase in either orientation, and head-on 
collisions are the most common way replication is interrupted 
[39,40] (Fig. 1e-f). Collisions can be a source of genomic instability, 
and prokaryotic genomes are therefore structured in ways that limit 
the number of collision events. Across 1552 studied bacterial and 
archaeal species, more than 90% of them subsequently display pre-
ference for their coding genes on the leading strand [41]. For in-
stance, in the bacterium Bacillus subtilis, 75% of genes are transcribed 
in the same orientation as the direction of replication [42].

Further supporting this model, genes that are highly expressed 
and essential genes, such as ribosomal genes, which would experi-
ence more frequent collisions due to a higher density of elongating 
RNA polymerases, tend to be found on the leading strand [38,43–46]. 
For example, only 6% of essential genes are found on the lagging 
strand in Bacillus subtilis [47]; these essential genes found on the 
lagging strand in Bacillus subtilis have a higher rate of point muta-
tions and non-synonymous mutations, indicating that they undergo 
faster adaptive evolution [48]. In addition to essential genes, longer 
operons are more likely to be found on the leading strand [48,49]. As 
a result, head-on replication–transcription collisions result in a 
higher rate of mutagenesis than co-directional collisions, and there 
is a bias for co-orientation of transcription with replication that has 
been shaped by selection pressures [36]. In addition, essential genes 
tend to be at earlier positions in operon units in order to be more 
highly expressed [50], indicating how organismal genomes can be 
arranged to maximize protein efficacy.

In eukaryotic cells, multiple mechanisms are in place to limit 
collisions. These involve the separation of replication and tran-
scription domains during S-phase [51,52], replication fork barriers 
[53], coordinated changes between replication and transcription 
timing across different tissues or during differentiation [54], and a 
higher frequency of genes in early replicating domains [54,55]. 
Nevertheless, replication-transcription collisions still occur in eu-
karyotic cells, particularly in the longer genes that require more time 
to be transcribed [56]. Collisions between the replication and tran-
scription machineries are a cause of DNA damage, genomic in-
stability, and recombination in eukaryotic cells [57].

Gene expression can be a mechanism that safeguards genome 
integrity. The testis is the tissue that expresses the highest number 
of genes in mammals; this results in a reduced mutation rate for the 
transcribed strand due to transcription-coupled repair, and in turn, 
leads to reduced population diversity across the expressed genes 
[58]. A study that investigated the contribution of transcriptional 
strand asymmetries in the usage of energetically cheaper nucleo-
tides (“U”,”C”) in synonymous sites across 1550 prokaryotic genomes 
found substantial asymmetries resulting in strand-specific 
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nucleotide usage [59]. The observed asymmetries were due to re-
plication-related, transcriptional-related, and translational-related 
selection, and selection constraints were particularly amplified with 
higher expression levels [59].

3. Strand asymmetries in genes and gene features

The orientation of genes is often biased, and one extreme case of 
this is polycistronic gene expression, in which all genes have the 
same directionality. Prokaryotic operons are polycistronic, while the 
vast majority of eukaryotic mRNAs are monocistronic. However, it 
has been noted that polycistronic mRNAs can be rarely found in 
eukaryotic genomes [60–62]. Genes are heterogeneously distributed 
across the human genome. There are gene deserts, large genomic 
regions in which genes are largely absent, as well as gene clusters, in 
which gene density is significantly higher [63,64]. This observation 
can be explained by common proximity-based regulation of multiple 
genes; genes are over-represented in early-replicating re-
gions [65,66].

In addition, gene pairing has been observed to be common across 
eukaryotic species, with genes being found in different orientations 
[67]. Gene pairs can be found in three orientations, which are tail to 
head, head to head, and tail to tail [66]. Genes in close proximity to 
each other are found more frequently in the head to head orienta-
tion, and this was observed for metabolism, DNA repair genes, 
housekeeping genes, and an unbiased set, while the expression of 
nearby genes has also been found to be correlated [68,69].

Transcription in eukaryotes is inherently bidirectional, and anti-
sense transcripts can arise from this process [70]. In contrast to 
mRNA transcripts, most of these antisense transcripts are unstable 
[71] and can be used for co-option and generation of new genes. 
However, it remains unclear what the exact mechanisms are that 
confer directional transcription. Long non-coding RNAs (lncRNAs) 
can be produced in the sense or antisense orientation of protein- 
coding genes [72]. For example, in yeast, the transcription factor 
Rap1 restricts transcription to the divergent orientation [73]; it re-
mains unknown if additional transcription factors contribute to this 
effect.

Furthermore, key transcription initiation and termination signals, 
such as the TATA-box and the polyadenylation signal, display not 
only positional constraints but also intrinsic directionalities [74–76], 
and such directionalities have been used to identify genic regions 
[77,78]. Nucleotide strand asymmetries have also been observed 
relative to splice sites [79,80]. Strand asymmetries can be found in 
motifs associated with the splicing code, which are used for the 
recognition of core splicing signals, such as the 3’ and 5’ splice sites.

Exons and introns display opposite nucleotide strand asymme-
tries. In introns, Ts are more frequent than As and Gs are more 
abundant than Cs, a trend that is reversed in exons in both humans 
and mice [79]. This could serve as a mechanism to discriminate 
between exons and introns. Interestingly, intronless genes, in which 
splicing is absent, do not display these patterns [79]. Furthermore, 
the observed asymmetry trends do not translate to yeast. Zhang et al. 
found that exonic splicing enhancers and exonic splicing silencers 

Fig. 1. Strand asymmetries associated with replication and transcription. A. Orientation of transcription fork, displaying the template and non-template strands and the gen-
eration of a nascent RNA. B. Replication fork schematic showing continuous replication in one orientation and discontinuous replication with Okazaki fragments in the opposite 
strand. Topoisomerase, helicase, and polymerases are crucial enzymes in this process. C. GC-skews favor formation of secondary structures such as R-loops. D. G-quadruplex at the 
template strand can impede RNA polymerase movement, whereas at the non-template strand, it can facilitate transcription. E-F. Replication-transcription collisions are a cause of 
instability and can result in replication fork arrest, premature transcription termination and genomic instability. Types include E. co-directional collisions and F. head-on collisions 
(Created with BioRender.com).
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display strand asymmetry patterns, and they utilized the observed 
strand asymmetry patterns to identify novel splicing regulatory 
elements. Another study found significant strand asymmetries in the 
distribution of G-quadruplexes between the template and non- 
template orientations relative to splice sites and provided evidence 
for their roles in the modulation of alternative splicing events [81]. 
As a result, a number of studies have used the inherent directionality 
in transcription initiation, splicing, and termination signals to 
identify mechanisms of gene regulatory control.

4. Mutational strand asymmetries and insights in operative 
biological processes

Throughout our lives, cells in the human body acquire and ac-
cumulate somatic mutations. Processes that cause the accumulation 
of somatic mutations can be divided into exogenous, such as UV light 
exposure, and endogenous, such as defects in DNA repair and oxi-
dative damage (Fig. 2a). Therefore, mutational processes con-
tinuously shape the genome of somatic cells. Uncontrolled clonal 
expansion, usually through the accumulation of cancer driver mu-
tations, can result in cancer development [82]. The vast majority of 
mutations in a cancer genome are passenger mutations, which have 
little to no effect on tumor progression. However, they can serve as 
signatures of operative mutational processes and also inform us 
about mutational strand asymmetries [83]; asymmetries can be in-
ferred from the mutated nucleotides, depending on their frequency 
in leading versus lagging and template versus non-template or-
ientations. DNA damage in either of the two complementary bases 
results in the same mutated site, and as a result, the base of the 
original DNA damage cannot be deduced with standard sequencing 
methods. However, substitution mutations at a reference nucleotide 
can be oriented on the template or the non-template strand relative 
to the transcriptional direction or on the leading or lagging strands 
relative to the directionality of the replication fork. Studies that have 
profiled the replicative and transcriptional strand biases relative to 
replication origins and transcription start sites have shown specific 
mutational patterns around those genomic sites [84,85].

Strand asymmetric segregation of DNA lesions was observed in 
murine liver tumor genomes, resulting in chromosome-scale strand 
asymmetry of mutations [86]. Another study investigated how the 
orientation of the minor groove relative to histones influences 
germline and somatic mutation rate and found differences between 
sites with the DNA minor groove facing toward or away from the 
histones; this was observed across cancer types [87]. Moreover, the 
magnitude of the effect was higher for nucleosomes with strong 
rotational position, further supporting the model [87]. In a recent 
study, asymmetry in the distribution of structural population var-
iants relative to the orientation of repeat elements was detected 
[88]. This likely reflects the jumping events of transposable elements 
in the population. Transposable element re-activation is frequently 
observed in cancer, and application of strand asymmetry analyses in 
structural variant datasets from cancer genomes could provide va-
luable mechanistic insights.

5. Transcriptional strand asymmetries in cancer genomes

Substitution mutations provide valuable information about un-
derlying mutational processes. Previous research has used muta-
tional classification of mutational signatures to further separate the 
standard 96 substitution classification system using the template 
and non-template orientation into 192 possible mutation classes 
[83]. The authors found strong transcriptional strand bias for mu-
tational signatures associated with ultraviolet exposure and tobacco 
smoke among others [83]. In a recent study, a classification system 
for doublet-base substitutions and indel mutations was im-
plemented across 4645 whole-genome and 19,184 whole-exome 

sequenced cancer tumors; the study identified additional mutational 
signatures with transcriptional strand asymmetries, which were also 
associated with tobacco smoke and ultraviolet exposure [89].

DNA damage is preferentially repaired at the template strand of 
expressed genes through transcription-coupled nucleotide excision 
repair (TC-NER), which removes transcription-blocking DNA lesions 
[90,91] (Fig. 2b). In transcription-coupled repair, the recruitment of 
TC-NER correlates with expression levels, and highly transcribed 
genes have the most pronounced mutational strand asymmetries 
[92] (Fig. 2c-d). DNA damage at the non-template strand, however, is 
more likely to escape repair from TC-NER because it does not in-
terfere with RNA polymerase progression and because it remains 
exposed as single stranded DNA, which is more likely to be mutated 
[93]. Therefore, transcription-associated mutations occur in part 
because the non-transcribed strand is single stranded and less pro-
tected from DNA damage and mutagens, which in turn can result in a 
higher rate of mutagenesis [94]. Recently, it was shown that tran-
scription-associated mutagenesis is also observed in both germline 
and somatic mutations of higher eukaryotes at transcribed regions, a 
phenomenon that was previously seen primarily in microorganisms 
[95]. As a result, differences in DNA damage and repair between the 
template and non-template strands in transcribed regions are per-
vasive and can be reconstructed with mutational strand asymmetry 
analyses [96].

The accumulation of tobacco-related carcinogens at guanines in 
lung cancer results in the mutational imbalance of G > T site sub-
stitutions due to the preferential repair of these adducts at the 
template strands of expressed genes [97]. In liver cancer, a muta-
tional signature that is correlated with alcohol consumption shows 
marked patterns associated with expression levels and transcrip-
tion-coupled damage [98] (Fig. 2d). In bladder cancers, the muta-
tional signature SBS92, which is enriched in smokers, has been 
shown to have a strong transcriptional strand asymmetry [99]. An-
other study oriented mononucleotide repeat tracts to observe tran-
scriptional strand asymmetries in indel mutagenesis [100]. There is 
also evidence for significant differences in the strand asymmetries 
between introns and exons because exons are under stronger se-
lection pressure and codon usage preference [101,102]; there is also 
more efficient repair by mismatch repair (MMR) at exons [103]. 
However, transcription strand bias has been associated primarily 
with exogenous processes including tobacco smoking and UV light, 
which in turn are repaired by NER.

6. Replicative strand asymmetries in cancer genomes

Replicative strand biases are observed in cancer genomes, with 
one study showing significant replicative strand asymmetries across 
fourteen cancer types [96] (Fig. 2e). Systematic examination of 
mutational processes has indicated that replicative strand asym-
metries are more common than transcriptional strand asymmetries 
across the mutational signatures examined [96]. In contrast with 
transcriptional strand asymmetries, replicative strand asymmetries 
are linked to endogenous processes; they are associated with repair 
enzyme deficiencies, such as MMR and polymerase ε deficiencies, as 
well as with the activity of the Apolipoprotein B mRNA editing 
catalytic polypeptide-like family (APOBEC) of cytidine deaminases 
[96]. Vöhringer et al. showed that out of twenty mutational sig-
natures examined, nine exhibited significant replicative strand 
asymmetry, while only five showed significant transcriptional strand 
asymmetry [104]. Recently, replicative strand asymmetries have also 
been observed for specific mutational signatures in germline var-
iants [105,106].

In humans, leading and lagging strand DNA synthesis is per-
formed primarily by polymerase ε and polymerase δ respectively 
[107–109]. MMR or polymerase ε deficiencies result in pronounced 
replicative strand asymmetries in the distribution of mutations, 
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which indicates that these enzymes normally balance the likelihood 
of mutation during DNA replication [96]. It has also been observed 
that in certain cases, the magnitude of the replicative strand 
asymmetry can be associated with replication timing, with earlier 
replicating regions showing more pronounced replicative strand 
asymmetry in cancer genomes with polymerase ε deficiencies 
[96,110] (Fig. 2f). Polymerase δ mutations in the exonuclease domain 
have also been reported; they are associated with increased mut-
ability and show replicative strand asymmetries [111]. MMR also 
impacts the mutation rate between early and late replicating re-
gions. Late replicating regions accumulate a higher number of mu-
tations, while an MMR deficiency terminates this pattern [112]. 
Lujan et al. examined the contribution of MMR to replicative strand 
asymmetries with yeast as the model system and found that there is 
higher MMR efficiency for lagging-strand DNA polymerase α and 
DNA polymerase δ than for the leading-strand DNA polymerase ε 
[113]. Recent studies have also provided experimental proof for the 
roles of different repair enzymes in the observed mutational strand 
asymmetries. Zou et al. showed that the gene knockout of repair 
genes such as MSH6, MSH2 and MLH1 resulted in replication strand 
asymmetry effects in isogenic cell models [114], providing further 
experimental evidence regarding the contribution of the DNA mis-
match repair system to mutational strand asymmetries. Knock outs 

of other DNA repair genes such as EXO1 and RNF168 showed specific 
transcription strand asymmetry effects [114].

Mutations associated with APOBEC, a cytidine deaminase with 
important roles in antiviral defense, cause off-target mutagenesis in 
the genome, especially at single-stranded DNA sites. There is evi-
dence for episodic APOBEC mutagenesis across multiple cancer 
types [115,116]. The APOBEC mutational signatures show a pre-
ference for early-replicating regions and highly expressed genes 
[117] with replicative strand asymmetry [22,96] due to deamination 
of the lagging strand template during DNA replication [118]. APOBEC 
is also linked to kataegis, which is characterized by local strand- 
coordinated hypermutation [92] (Fig. 2e).

7. Orientation preferences in repeat elements

Transposable elements, originally discovered by McClintock 
[119], were initially thought of as junk DNA; however, this view has 
in many ways been disproven. Repeat elements represent a sig-
nificant portion of the human genome and have contributed to its 
structure, functionalities, and evolution, while also contributing to 
genetic diversity between people. It is estimated that repetitive 
elements comprise two thirds of the human genome [120]. Some 
studies have suggested that transposable elements might offer an 

Fig. 2. Mutational strand asymmetries. A. DNA damage from exogenous and endogenous processes can lead to the accumulation of somatic mutations and eventually can result in 
cancer development. B. Nucleotide excision repair schematic showing removal of transcription-blocking DNA lesions. C. In transcription-coupled repair, DNA damage at the non- 
template strand is more likely to escape repair from the TC-NER, leading to mutational strand asymmetries. With regards to transcription-coupled DNA damage, there is a lack of 
protection of the non-template strand during transcription, also leading to mutational strand asymmetry. D. Lowly expressed genes have higher mutation rates, while highly 
expressed genes have lower mutation rates. TC-NER activity is associated with expression levels and this results in an association between transcriptional strand asymmetry in 
mutations and expression levels. E. Deficiencies of proteins such as MMR or polymerase ε can lead to replicative strand asymmetries. F. Early replication timing is associated with 
lower mutation rates, while late replication timing is associated with higher mutation rates. For certain mutational processes, the replicative strand asymmetry aggravates with 
replication timing between early and late replicating regions. Schematics 2d and 2 f provide a model and do not include real data (Created with BioRender.com).
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explanation for Chargaff's second parity rule [8] and account for the 
inversion events that could explain this rule [4,9]. However, the in-
tegration of these elements is not random and exhibits biases in the 
sequence context and orientation preference [121–124], as well as 
for preference for repeat pairs and clustering of repeat elements 
[125–127].

In the human genome, long interspersed nuclear elements (LINE) 
and short interspersed nuclear elements (SINE) show significant 
transcriptional and replicative strand asymmetries, while long 
terminal repeats (LTRs) exhibit pronounced transcriptional strand 
asymmetries [88]. LINE-1 (L1) elements are the most abundant 
subclass, comprising around 17% of the human genome [128]. Only 
approximately 100 L1 sites are still retrotransposition competent in 
the germline [129] and in disease [130]. The L1 distribution in the 
human genome shows a preference for the leading strand orienta-
tion relative to the replication direction [124] and for the template 
strand orientation in transcribed regions [123,131] (Fig. 3a). Even 
though there is a higher density of L1 elements at late replicating 
regions, integration is more likely to occur at early-replicating sites, 
suggesting that evolutionary selection contributes to the observed 
patterns in the genome. Interestingly, the smaller subset of in-
tegrations at the non-template orientation are much more likely to 
be pathogenic or disease-causing [132]. However, when L1 repeats 
are present in introns in the template orientation, they can cause 
premature termination of transcription due to a polyadenylation 
signal within the L1 element [133,134] (Fig. 3b). On the other hand, 
an antisense promoter in the L1 repeat, with opposite orientation 
than the open reading frames of the repeat, can drive transcription 

of nearby genes [135] (Fig. 3c); this has implications for both evo-
lution and disease.

Similarly, LTRs are more frequently found in the template or-
ientation, and Alu repeats, which are a subset of SINE elements, also 
show a preference for the template orientation [136]. In lncRNAs, Alu 
repeats tend to be tolerated in the template strand across gene re-
gions, whereas in the non-template strand, they tend to be found at 
the 3’ end [137]. Alu repeats are likely to be found clustered, closely 
positioned, and in direct orientation to one another [138,139]. The 
orientation preference of multiple endogenous repeat elements for 
the template orientation in transcribed regions could be due to in-
terference with transcription-associated signals in the non-template 
strand orientation, including splicing and polyadenylation motifs. 
Alu repeats in opposite orientations can form hairpin structures, in 
turn impacting biological processes such as alternative splicing and 
nuclear retention [125] (Fig. 3d). Overall, the orientation preference 
for the template strand across multiple endogenous repeat element 
categories could reflect the tendency to reduce the number of col-
lisions between reverse transcription and gene transcription.

8. Orientation preferences in transcription factor binding

The orientation of DNA motifs in the genome impacts diverse 
biological processes, including gene regulation, through its effect on 
co-operative transcription factor binding at cis-regulatory elements 
(Fig. 4a). Combinatorial transcription factor binding is instrumental 
in organizing gene expression patterns across developmental time 
points and tissues [140,141]. Even though only a limited number of 

Fig. 3. The effects of repeat element orientation. A. L1 shows an integration preference for the template strand and leading strand orientations. B. Polyadenylation signals within 
L1 repeats in introns in the template orientation can result in premature termination of transcription. C. Antisense promoters in L1 repeats can drive transcription of nearby genes. 
D. Two Alu repeats in opposite orientations can form hairpin structures (Created with BioRender.com).
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studies have thoroughly investigated the impact of TFBS orientation, 
there is important evidence to suggest that TFBS orientation is a 
major factor in gene regulatory grammar [142–144]. TFBSs can be 
oriented relative to transcription direction and relative to one an-
other (Fig. 4b-c). The orientation of homotypic or heterotypic tran-
scription factor motif pairs is biased across the genome, and their 
relative orientation impacts homotypic and heterotypic transcrip-
tion factor complex formation [143–148] (Fig. 4d-e).

At short inter-motif distances, the TFBS orientations impact 
protein-protein interactions (PPIs). In addition, even though the 
consensus TFBS motif of many TFs is palindromic, providing two 
templates for binding, there are significant binding biases depending 
on the orientation when considering flanking nucleotides [149]. 
There is also evidence to suggest that transcription factor pairs can 
bind to composite motifs with orientation and proximity preferences 
and that the composite motif sequences can differ from the con-
stituent motif sequences of the individual transcription factors [142]
(Fig. 4f). In the human transcriptome, the transcription factor 
binding sites for almost half of the transcription factors display 
strand asymmetry preference, which cannot be fully explained by 
nucleotide composition biases between the template and non-tem-
plate strands [88]. The observed asymmetries could reflect binding 
preferences and not form impediments for RNA polymerase pro-
gression. Similarly, both at promoter upstream and downstream 
regions, there is orientation bias for a number of transcription fac-
tors [88]. In plants, orientation preference of TFBSs has been 

observed close to the transcription start site, which was attributed to 
background strand asymmetries in the dinucleotide composition of 
promoter upstream regions [150]. An association with expression 
levels was not identified.

At the core promoter, a number of motifs are positioned with 
respect to orientation, distance, and order preferences. For instance, 
transcription initiation in TATA-box-containing promoters requires 
the orientation and correct positioning of promoter-related motifs, 
including the initiation element, the TATA-box, and the upstream 
and downstream promoter elements, among others [74,75]. Reversal 
of the TATA-box orientation can significantly reduce transcription 
levels [151]. In promoters with TATA and Inr motifs, correct spacing 
and orientation are important constituents for a synergistic effect 
[152]. At the 5’ end of the first intron in the non-template strand, G- 
quadruplexes and GrIn1 motifs have been shown to be associated 
with promoter-proximal pausing [153].

With regards to enhancers, studies that have investigated their 
mechanism of function have led to the proposition of two models, 
and there is currently evidence to support both of them. The “en-
hanceosome model” states that the function of the enhancer is de-
pendent on the orientation, positioning, and order of TF binding 
sites, with changes in them resulting in significant changes in the 
enhancer’s activity [154] (Fig. 4g). The interferon-beta (IFN-beta) 
enhanceosome, which is highly conserved and for which an atomic 
model of cooperative TF binding has been produced, provided the 
first evidence to support the enhanceosome model [155,156]. For 

Fig. 4. Transcription factor orientation and cis-regulatory grammar. A. Key transcription initiation and termination signals depicting the TATA-box and polyadenylation signal. B. 
and C. The orientation of a TFBS relative to the transcriptional direction in promoter upstream regions influences expression. D. and E. Orientation of TFBSs relative to each other. F. 
The orientation of TFBSs relative to each other influences transcription factor binding. G. Current models of enhancer activity include the enhancesome, billboard, and collective 
models. H. The orientation of CTCF is important for the formation of enhancer-promoter interactions and transcriptional activation. I. Convergent CTCF sites can create loops, but 
divergent CTCF sites disrupt the 3D structure (Created with BioRender.com).
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example, within the IFN-beta enhanceosome, the ATF-2–c-jun het-
erodimer binds in a specific orientation which is necessary for the 
formation of the complex between ATF-2–c-jun and interferon reg-
ulatory factor 3 [157].

Second, the “billboard model”, which is also referred to as the 
information display model, proposes a more flexible structure for 
enhancer grammar in which the combination, orientation, order, and 
distance of cognate motifs are not fixed, but can instead vary 
without impacting enhancer function [157,158] (Fig. 4g). In this 
model, only the binding sites themselves are critical. A number of 
studies have provided support for the billboard model [159,160], 
indicating that both the enhanceosome and billboard models are 
likely to be true dependent on the specific enhancer.

Multiple studies have provided experimental evidence for the 
effect of orientation and spacing in cis-regulation. In a breakthrough 
study, researchers performed consecutive affinity-purification sys-
tematic evolution of ligands by exponential enrichment (CAP-SELEX) 
experiments, with which they examined 9400 TF–TF–DNA interac-
tions. Interestingly, they were able to show that both the orientation 
and distance between the TF motifs determined heterodimer for-
mation for a plethora of TF pairs [142]. Using massively parallel re-
porter assays (MRPAs), the orientation of enhancer tiles was found to 
have limited effects on expression levels [161]. However, this study 
did not capture orientation differences of individual TFs or of TF 
pairs within the enhancer tiles.

The transcription factor Yin-Yang can act as an activator or a 
repressor depending on motif orientation and positioning [162]. The 
orientation of the nuclear receptor for 1,25-dihydroxyvitamin D3 
response elements in the basal promoter of the human calbindin 
D9k gene and the rat osteocalcin gene can change the expression 10- 
fold, and therefore, the orientation of the response elements dra-
matically influences the transcriptional response [163]. GABP–CREB1 
motifs tend to be spaced with a one or two base pair gap with the 
two motifs in opposite orientations [164]. In the case of AP-1 tran-
scription factor, the motif orientation, as well as its flanking base 
pairs at AP-1 binding sites, influence homo- and hetero-dimeriza-
tion, and heterodimers of Fos and Jun bind in a preferred orientation 
[149,165,166]. In the IFN-β enhanceosome, the ATF-2–c-jun hetero-
dimer does not show an orientation preference in the absence of IRF- 
1, whereas in its presence, it adopts an orientation-specific binding 
[157]. Therefore, in this particular case, the sequence orientation and 
the presence of specific proteins dictates the orientation of hetero-
dimeric transcription factor binding. Another example of orientation 
preference has been observed in the NF-κB p50-p65 heterodimer, 
which is controlled by half-sites in the κB motif [167,168].

The positioning of TFBSs within a nucleosome influences tran-
scription factor binding, which can subsequently stabilize or desta-
bilize a nucleosome [169,170]. TFBSs can be found at different 
positions, such as near the edge or center of the nucleosome. Fur-
thermore, studies have shown that TFs display directional binding to 
nucleosomes. TFBSs positioned along a nucleosome’s surface can 
face inward or outward. For the TFBSs of many transcription factors, 
especially of ETS and CREB bZIP factors, there is a preference for the 
end of the nucleosomal DNA or for periodic positions on the solvent- 
exposed side of the DNA [171]. This is likely due to steric hindrance 
and scaffolding by the nucleosome, resulting in specific positioning 
and orientation of TFBSs [171]. Furthermore, DNase I hypersensi-
tivity analysis followed by sequencing (DNase-seq) experiments re-
vealed unidirectional opening of chromatin relative to pioneer 
transcription factor motifs, with four out of the eight pioneer tran-
scription factor families opening chromatin in a single orientation 
[172]. Nucleosome oriented binding has been observed for multiple 
pioneer transcription factors, including GATA3 and FOXA1 [173]; 
these TFs are able to bind to closed chromatin, recruit nucleosome 
remodelers, histone modification enzymes, and other transcription 
factors upon binding, and change the accessibility of a cis-regulatory 

region. However, additional research is required to examine the in-
terplay between chromatin structure and the orientation of TFBSs 
and TF complexes.

9. CTCF motif orientation and genome organization

One of the most notable examples has been the CCCTC-binding 
factor (CTCF), which contributes to the formation of topologically- 
associating domains (TADs). Enhancer-promoter interactions are 
constrained within TADs, with the orientation of CTCF sites being 
important for their formation (Fig. 4h). The vast majority of CTCF 
sites are found to be bound by cohesin [174], which is associated 
with transcription factors and present in almost all active enhancer 
regions [175]. CTCF and the cohesin complex colocalize on chro-
matin, and their organization can help regulate three-dimensional 
genome structure through chromatin loop formation [176,177]. 
These protein-mediated loops bring two loci that lie far apart along 
the chromosome into closer physical proximity; the CTCF binding 
sites stop loop extrusion with the ring-like cohesin complex [178]. 
The process of loop extrusion has been shown to link promoters and 
enhancers, be correlated with gene activation, and be conserved 
across both cell types and species [177,179] (Fig. 4i). Interestingly, 
Rao et al. demonstrated that the deletion of CTCF sites interferes 
with loop formation and that after cohesin loss, loop domains dis-
appear [177]. On the other hand, during cohesin recovery, the loop 
domains form again in minutes [177].

Loop extrusion can increase contact between loci that would 
typically lie in different sub-compartments [177]. The genome is 
separated into intervals based on distinctive histone marks, and 
these intervals are assigned to two compartments, A or B [177]. In-
tervals of the same type demonstrate increased contact frequency 
with one another, and loci in a compartment often form contact 
domains. When cohesin is lost, compartmentalization is preserved, 
demonstrating that it does not rely on cohesin, unlike the loop ex-
trusion mechanism [177]. The loop extrusion mechanism interferes 
with compartmentalization by promoting the co-localization of loci 
not necessarily from the same compartment [177]. These loops are 
predominantly formed (greater than 90%) by convergent CTCF motif 
pairs that are asymmetric and face each other [180]. When their 
orientation is reversed, the 3D structure is disrupted (Fig. 4i).

Disruption of the loop extrusion mechanism has been associated 
with cancer due to alterations in enhancer-gene interactions [178]. 
This disruption is a result of the hypermutation of CTCF/cohesin 
binding sites, which are functional and alter CTCF binding, in almost 
all cancer types [175,181]. Skin cancers specifically demonstrate 
distinct asymmetric mutations at CTCF-cohesin binding sites that 
form independently of replication timing; the specific mutations can 
be attributed to UV radiation and uneven nucleotide excision repair 
[181]. This mutation bias points towards cohesin being important for 
stabilization during CTCF-DNA binding and for impairing NER [181].

10. Conclusions

In this review, we have highlighted a number of genomic pro-
cesses that are associated with strand asymmetries and have pre-
sented many of the underlying mechanisms that contribute to the 
asymmetric distribution of genomic features in organismal genomes. 
Strand asymmetries shape the nucleotide composition of viral, 
prokaryotic, and eukaryotic genomes and are genomic signatures of 
the biological processes that shape them. We have also highlighted 
the contribution of strand asymmetries in gene regulation, splicing, 
transcription factor binding, and retrotransposition. In addition, we 
summarize evidence regarding how mutational strand asymmetries 
reveal insights into DNA damage and repair in human health and 
disease. We argue that the implementation of sensitive methods to 
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detect strand asymmetries in biological problems will enable 
breakthroughs in our understanding of genome biology.

The directionality of information in the DNA molecule is reflected 
in the orientation of motifs, genes, and other genomic elements. To 
conclude, an analogy can be drawn between genomic strand asym-
metries and the road code, which dictates the rules by which ve-
hicles have to move around in cities and with traffic signs that give 
instructions to road users. Similar to that, the orientation of motifs, 
genes, and other genomic elements in the genome provides in-
structions on how they should be interpreted.
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