Skip to main content
. 2023 Mar 8;10:1128084. doi: 10.3389/fmed.2023.1128084

Table 1.

The summary of the application of AI in the diagnosis of CRC.

Theme Year Subject Model Sample Result Ref
Endoscopic diagnosis 2018 Polyp detection CNN 155 videos AUC = 0.87 (40)
2019 Neoplasia detection CNN 685 subjects ADR = 54.8% (41)
2020 Adenoma detection DL 386 patients AMR = 13.89% (42)
2022 Neoplasia detection CNN 230 subjects AMR = 15.5% (43)
2020 Polyp and adenoma detection CNN 308 patients ADR = 0.289;0.367(polyp; adenoma) (44)
2020 Polyp detection YOLO 150 patients PDR = 38.7% (45)
2022 Polyp and adenoma detection CNN 1,434 patients PDR = 40.8% ADR = 20.1% (46)
2021 Adenoma detection CADe 1,076 patients ADR = 21.27% (47)
2021 Polyp DL 2,352 patients detection PDR = 38.8% (48)
2019 Polyp and adenoma detection DL 522 patients ADR = 29.1% PDR = 64.93% (49)
2021 Adenoma detection CNN 358 patients AMR = 13.8% (50)
Non-invasive screening 2022 Cancer diagnosis and stage RF/SVM/DT 521 samples Average accuracy = 99.81% F1 value = 0.9968 accuracy = 99.88%recall = 99.5% (51)
2021 Biomarkers screening SVM/LR/RF/kNN/NB 1,164 electronic medical records AUC = 0.849 (52)
2019 Cancer detection LR/SVM 817 plasma samples Mean AUC = 0.92 mean sensitivity = 85% specificity = 85% (53)
2020 Cancer screening ML 289 healthy individuals and 983 patients Specificity = 0.89 sensitivity = 0.72 (54)
2019 Mutation detection CP-ANN 312 tissue samples Sensitivity = 100% specificity = 87.5% accuracy = 93.8% (55)
2020 Gene detection DL 8,836 samples Mean AUROC = 0.92 AUPRC = 0.63 (56)
2020 Gene identification LASSO 480 CRC and 41 normal tissues AUC = 0.6923 (training set; 3-year) AUC = 0.7328 (training set; 5-year) AUC = 0.6803 (testing set; 3-year) AUC = 0.7035 (testing set; 5-year) (57)
2021 Gene detection CGANs 256 patients (training cohort 1) 1457 patients (training cohort 2) AUROC = 0.742 (training cohort 1) AUROC = 0.757 (training cohort 2) AUROC = 0.743 (synthetic data) AUROC = 0.777 (mixed data) (58)
Histopathologic diagnosis 2021 Image learning DELR 500–3,000 samples AUC > 0.95 (59)
2022 Histopathologic segmentation CNN/TL 25 WSIs DSI = 82.74% ± 1.77 accuracy = 87.07% ± 1.56 f1-score value = 82.79% ± 1.79 (60)
2021 Distinguish CRLM DL/CNN/ICC 93 CRLM patients AUC = 0.69 (61)
2020 Histopathologic classification CNN/RNN 4,036 WSIs AUC = 0.96; 0.99(adenocarcinoma; adenoma) (62)
2021 Histopathologic segmentation PCA/DWT 351 specimens Dice = 0.804 ± 0.125 (63)
2021 Image classification ANN/SVM 5,000 histopathology image tiles Performance accuracy = 95.3% (64)
2022 Histopathologic screening DL/ML 294 WSIs AUC = 0.917 sensitivity = 97.4% (65)
2022 Histopathologic classification DL/CNN 1,865 pathological images AUC = 0.995; 0.998 (66)
2022 Image grading CNN/HCCANet 630 images Overall accuracy = 87.3% average AUC = 0.9 (67)
2019 Survival prediction TL/CNN 862 HE images Accuracy>94% (68)
2019 Cancer diagnosis CNN/RE/kNN/LR/NB/SVM 357 images Accuracy = 87–95% (69)
Radiologic diagnosis 2019 Preoperative Assessment MLP/LR/SCM/DT/RF/KNN 3T-MRI imaging from 152 patients AUC = 0.809; 0.746 sensitivity = 76.2%; 79.3% specificity = 74.1%; 72.2% (MLP; RF) (70)
2021 Cancer response prediction ML MRI scanning from 72 patients AUC = 0.793 (71)
2021 Image segmentation U-Net T2WI segmentation from 300 LARC patients Mean DSC = 0.675 median DSC = 0.702 (72)
2020 RC Circumferential Evaluation Faster R-CNN detect 12,258 T2WIs Accuracy = 0.932 sensitivity = 0.838 specificity = 0.956 (73)
2022 CRCLM early diagnosis FM CT scan from 30 patients Precision = 100% overall accuracy = 93.3% recall = 77.8% (74)
2021 Tissue assessment ResNet OCT differentiate from 43, 968 cancer and 41, 639 norm ROIs AUC = 0.975 (75)
2021 Diagnosis detection DLLD 4,386 CT images from 502 patients Sensitivity = 81.82% false positives = 1.330 (76)
2021 Metastasis prediction DLRS Collect and predict from 235 nCRT patients AUC = 0.894 (77)
2019 Accurate segmentation LAGAN CT scan and segment from 223 CRC patients DSC = 90.82%; 91.54% (FCN32; U-Net) (78)
2020 Metastasis prediction ResNet CT scan from 192 CRLM patients AUC = 0.903 (79)
2022 Cancer segmentation U-Net/CNN Analysis 201 MRI images DSC = 0.727; 0.930; 0.917 (tumor; rectum; mesorectum) (80)
2020 Predict response DL T2W MRI predict 383 participants AUC = 0.99 (81)
2021 Detect differentiation RF 169 CT images segmentation from 63 patients AUC = 0.91 sensitivity = 82% specificity = 85% (82)
2021 Improve prognostication RF MRI identifies 94 lesions from 55 patients AUC = 0.94 (83)
2020 Real-time diagnosis DL 26,000 OCT images AUC = 0.998 (84)

ADR, adenoma detection rate; AUC, area under the curve; AMR, adenoma miss rate; AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic; ANN, artificial neural network; CADe, computer-aided detection; CRCLM, colorectal cancer liver metastasis; CNN, convolutional neural network; CGANs, conditional generative adversarial networks; CRC, colorectal cancer; CP-ANN, counter propagation artificial neural network; DL, deep learning; DSI, dice similarity index; DWT, discrete wavelet transform; DELR, deep embedded-based logical regression; DLLD, deep learning based lesion detection algorithm; DLRS, deep leaning radiomic signature; DSC, dices similarity coefficient; DT, decision trees; FCN, fully conventional network; FM, Formal Methods; ICC, intra-class correlation coefficient; kNN, nearest neighbors; LR, logical regression; LARC, local advanced rectal cancer; LASSO, least absolute shrinkage and section operator; LAGAN, label assignment generative adverbial network; ML, machine learning; MSI, microsatellite instability; NB, naive baves; OCT, optical coherence tomography; PCA, principal component analysis; PDR, polyp detection rate; RNN, recurrent neural networks; RC, rectal cancer; RF, random forest; ResNet, residual network; SVM, support vector machine; TL, transfer leaning; TWI, T2-weighted images; U-net, U-shaped neutral network; WSI, whole slide images.