Skip to main content
. 2023 Mar 8;10:1128084. doi: 10.3389/fmed.2023.1128084

Table 2.

The summary of the application of AI in the treatment of CRC.

Theme Year Subject Model Sample Results Ref
Surgical treatment 2020 AI-assisted surgery CNN 300 videos in operation Accuracy = 81.0%; 83.2% (phase; action) (118)
2019 Robot-assisted surgery da Vinci Analyze from 206 RACRS patients RM = 99.3%; 89.6% LN = 16 ± 6; 16 ± 8 LRR = 3.8%; 9.5% (colon; rectal) (119)
2021 AI-assisted LCRS da Vinci Analyze 600 images in 32 videos DC = 0.84 (120)
2022 Evaluate short outcomes Senhance Review outcomes in 55 Senhance assisted LCRC patients Ileocecal resection = 32.7% high anterior resection = 20% D3 dissection = 74.5% (121)
2020 Automatic recognition CNN Recognize 71 Lap-S videos Accuracy = 91.9% (122)
2021 Liver segment resection da Vinci Xi Present a video in a 54-year-old male patient Operative time = 205 min estimated blood loss = 310 mL (123)
2020 Operation analysis AIRAM Test 25 ICG curve patterns Processing time = 48.03 s (24)
Chemoradiotherapy 2019 Assess therapy effect RF Assess performance from 55 patients AUC = 0.86 (117)
2022 Predict PCR after nCRT RAPIDS Study 933 patients AUC = 0.812; sensitivity = 0.888 specificity = 0.740; NPV = 0.929 PPV = 0.512 (124)
2021 Assess therapy effect FFN/LR/SVM Study 226 LARC patients Accuracy = 0.67–0.75% AUC = 0.76–0.83% positive = 67–74%; NPV = 70–78% sensitivity = 68–79% specificity = 66–75% (125)
2018 Predict nCRT effect DNN Study 95 patients Accuracy = 80% (126)
2020 Predict PCR after nCRT ANN Analyze 270 LARC patients VSR = 1.57 (CEA levels) (127)
2022 Predict nCRT effect MSCNN Assess 150 WSI AUC = 0.9337; 0.9091 (Camelyon; MSKCC) (128)
2019 Predict CRT response CNN Study 51 RC patients AUC = 0.83 (129)
2019 Predict nCRT effect LR Study 136 RC patients AUC = 0.751; 0.831; 0.873 sensitivity = 66%; 71%; 75% specificity = 87.22%; 86.11%; 91.67% (pre-nCRT; early; combined) (130)
2020 Predict PCR,TRG, and NAR LR Collect and classify 132 nCRT and TME patients AUC = 0.66; 0.80; 0.80 (NAR; PCR; TAG) (131)
2021 Predict and treat nCRT response CFs-SVM Analysis 428 patients AUC = 0.834; 0.854 (training; validation) (132)
Targeted therapy 2022 Identify therapy targets MCODE Extract four gene expression profile from database Identify 8,931 DEGs in CRC patients (133)
2022 Design CAD approach RF/SVP/CNN Scanning 1,443 approved drugs CAD design approach target p53 for treatment (134)
2022 Monitoring gene expression and drug effect MLP Study CRC cells genes phenomics Mean accuracy = 9.48%↑(single track VS MLP) (135)
2021 Medicine precision ML Study STNs of CRC The model with novel event freesurvival has a greater prediction (136)
2019 Tumor target segmentation CAC-SPP Evaluate two segmentation of tumor targets DSC = 0.78 ± 0.08; 0.85 ± 0.03 (137)

AIRAM, artificial intelligence based real-time analysis microperfusion; AUC, area under the carve; ANN, artificial neural network; CNN, convolutional neutral network; CAD, computer aided drug; CAC, cascaded atrous convolution; DC, dice coefficient; DNN, deep neural network; DEGs, differential expressed genes; DSC, dice similarity coefficient; FFN, feedforward neural network; ICG, indocyanine green; LN, lymph nodes; LRR, locoregional recurrence rate; LCRS, laparoscopic colorectal surgery; Lap-s, laparoscopic sigmoidoscopy; LR, logistic regression; LARC, local advanced rectal cancer; MSCNN, multi-scale convolutional neural network; MCODE, molecular complex detection algorithm; MLP, machine learning phenomics; ML, machine learning; nCRT, neoadjuvant chemoradiotherapy; NPV, negative predictive value; NAR, neoadjuvant rectal score; PCR, pathological complete response; PPV, positive predictive value; RACRS, robot-assisted colorectal surgery; RM, radical margins; RF, random forest; RAPIDS, radiopathomics integrated prediction system; SVM, support vector machine; STNs, signal transduction network; SPP, spatial pyramid pooling; TRG, tumor regression grade; TME, total mesorectal excision; VSR, variable sensitivity ratio.