Ordered catenation of sequence-tagged sites and multiplexed SNP genotyping by sequencing

Koichiro Higasa and Kenshi Hayashi*

Division of Genome Analysis, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan

Received October 1, 2001; Revised and Accepted November 27, 2001

ABSTRACT

We describe a method for the efficient genotyping of SNPs, involving sequencing of ordered and catenated sequence-tagged sites (OCS). In OCS, short genomic segments, each containing an SNP, are amplified by PCR using primers that carry specially designed extra nucleotides at their 5'-ends. Amplification products are then combined and converted to a concatamer in a defined order by a second round of thermal cycling. The concatenation takes place because the 5'-ends of each amplicon are designed to be complementary to the ends of the presumptive neighboring amplicons. The primer sequences for OCS are chosen using newly developed dedicated software, OCS Optimizer. Using sets of SNPs, we show that at least 10 STSs can be concatenated in a predefined order and all SNPs in the STSs are accurately genotyped by one two-way sequencing reaction.

INTRODUCTION

The genome project has been greatly facilitated by the advent of PCR. With the progress of the Human Genome Project, high quality determination of the nucleotide sequence of the whole reference genome is approaching completion and much effort is now directed towards a thorough characterization of human genome diversity in depth (among many individuals) and at density (at many loci) (1-4). A particular focus concerns single nucleotide polymorphisms (SNPs), which occur at 8×10^{-4} per nucleotide on average in the human genome (5). This abundance, together with their potential as functional variants, has aroused much interest in the identification of SNPs both as pharmacogenomic indicators and as markers in the genome-wide search for the genes responsible for complex diseases or polygenic traits (6). These studies require the genotyping of many SNPs in many individuals (7-9), and efficient genotyping techniques based on various principles have been proposed (10). However, many of them demand new dedicated instruments and the cost of the initial investment is staggeringly high for many laboratories of medium to small scale, not to mention the running costs.

The method of SNP detection with the highest specificity and selectivity is still direct sequencing of PCR products (11), as is apparent from the fact that the validity of almost all new techniques is judged by their concordance or discordance with the results of direct sequencing (10). The advantage of direct sequencing, besides its ease and accessibility for many researchers, is that the information obtained by sequencing is highly redundant. Nucleotide sequences verify unambiguously that the amplified segments are derived from the targeted loci in the genome and are not the products of fortuitous amplifications. Evaluation of the presence or absence of SNPs is supported by the quality of the base calls of the surrounding nucleotides (12–14). The disadvantage of this method is that the critical information in the whole nucleotide sequence is disproportionately small. Using standard kits for sequencing, some 500–1000 nt can be read, but only one is the critical nucleotide under investigation. Therefore, the cost-effectiveness of the method is inevitably low.

We describe here a PCR-based serially multiplexed amplification method by which the throughput of SNP genotyping using direct sequencing is increased at least 10-fold and which has potential utility for small or medium scale genotyping. The method does not require dedicated hardware for sample preparation or detection and only two primers per SNP are used. The technique takes advantage of the sophistication of sequencing technology and the genotypes are objectively determined using the available software for sequence interpretation.

MATERIALS AND METHODS

Principle

The basic idea of sequencing of ordered and catenated sequence-tagged sites (OCS) is illustrated in Figure 1. The primers used in OCS consist of two subsegments, catenation arms and amplification arms, aligned in $5' \rightarrow 3'$ order. A pair of amplification arms (e.g. a–b and d'–c' of the top amplicon in Fig. 1B) is designed to bracket a small genomic region of ≥ 3 nt that contains a SNP. The region defined by the amplification arm pair is called the micro-STS. The sequences of the catenation arms are designed so that they are complementary to the 5' subsegments of the amplification arms of the prospective neighboring amplicons (e.g. e' of the top amplicon versus e of the middle amplicon). Conversely, the 5'-halves of the amplification arms are complementary to the catenation arms of the primers for the prospective neighboring amplicons (e.g. d of the middle amplicon versus d' of the top amplicon).

*To whom correspondence should be addressed. Tel: +81 92 642 6170; Fax: +81 92 632 2375; Email: khayashi@gen.kyushu-u.ac.jp

Figure 1. Schematic representation of the OCS process. Primers consisting of catenation and amplification arms (A) are used to amplify each micro-STS (B, top). The PCR products are micro-STSs with catenation arm sequences attached on both ends (middle). These are then combined and concatenated by the second round of thermal cycling (bottom).

After PCR using these primers, the products are combined and subjected to the second round of thermal cycling. Since each amplicon carries 3' sequences that can prime chain elongation using the prospective neighboring micro-STSs as templates (d–e in the top amplicon versus e'–d' of the middle amplicon), the cycling reaction ultimately results in the production of a concatamer that carries all the micro-STSs connected end-to-end in a predefined order. The full-length concatamer is specifically amplified, because the two terminal primers are present in excess amount. The product is then sequenced to determine the genotypes of all the SNPs contained within it.

Selection of amplification arms for defining micro-STSs

STSs having only one SNP were collected from a public database (http://www.ncbi.nlm.nih.gov/SNP/) (15) and sequences for the amplification arms were defined using the software Primer3 (16). Parameters of the software were chosen to produce the shortest possible micro-STSs, as follows.

A minimum of 3 nt surrounding an SNP were chosen as the core target of amplification. The initial primer size was set to 12, 16 or 20 nt and a deviation of -2 to +5 nt for the primer size was permitted, with a penalty of 1 per nt. The minimum and optimum product size was set to 3 nt longer than the sum of twice the initial primer size. The maximum value of the product size was taken as the minimum product size plus 10, with a penalty of 0.05 per nt, to minimize the size of the micro-STS. If Primer3 could not find appropriate primers, the maximum value of the product size was increased until primers were found. The optimum primer $T_{\rm m}$ was set at three times the initial primer size (17), but $T_{\rm m}$ values deviating from this setting by 5°C were allowed, with a penalty of 1 per degree. Maximum self complementarity was set to the integer closest to 0.4 times the primer size. In general, primer pairs with the least penalties were stored to make an input file for OCS Optimizer, which is detailed below.

Selection of catenation arm sequences by OCS Optimizer

The success of the ordered catenation of micro-STSs depends on the strict exclusion of fortuitous annealing during the catenation reaction. Because the complexity of a group of micro-STSs is small, all unwanted annealing of end sequences of the micro-STSs can be detected and avoided. In addition, a stringent catenation reaction can be achieved by minimizing $T_{\rm m}$ differences among the intended amplicon overlaps. OCS Optimizer, written in C, selects the optimum order of a given set of micro-STSs and defines the catenation arm sequences by considering all possible orders of the micro-STSs and all permitted lengths and positions of the catenation arms. The output file of OCS Optimizer contains the sequences of the catenation and amplification arms of the primers for a given set of micro-STSs and the recommended annealing temperatures of the catenation reactions. Details of the OCS Optimizer algorithm can be found at http://www.gen.kyushu-u.ac.jp/ ~genome/ocs/manual.html.

Amplification, catenation and sequencing

Genomic DNA samples were taken from four anonymous individuals of Japanese origin. Oligonucleotides were purchased from Amersham Pharmacia Biotech (Tokyo, Japan). Primer sequences were designed as described above, except for the two presumptive external primers, each of which carried an M13 forward or reverse primer sequence in place of their catenation arms (Table 1). Amplification was performed in a 10 µl reaction mixture containing 0.1 U KOD-plus DNA polymerase (Toyobo, Osaka, Japan) (18), 1 µl 10× KOD-plus buffer, 1.0-1.25 mM MgSO₄, 0.2 mM deoxyribonucleotide 5'-triphosphates (dNTPs), 0.2 µM each primer pair and 100 ng genomic DNA. The cycling conditions (35 cycles) in a T3 Thermocycler (Biometra, Gottingen, Germany) were denaturation at 94°C for 30 s and annealing/extension at the annealing temperature for 5 s. Cycling was preceded by an initial denaturation at 94°C for 1 min, followed by a final incubation at 72°C for 3 min. The annealing/extension temperature was optimized starting from the $T_{\rm m}$ of the amplification arms (19) and moving by 2-5°C steps in either direction.

Table 1. Sequences of OCS primers	
-----------------------------------	--

		515	Sequences	Size
		Р	rimer set 1	
WIAF-116	R05461	G23771	gtaaaacgacggccagtTCCCTTCATCCAGATTCCAC	64
			ggttcatcccTGCACACAGAAGAATAAAGCAAA	
WIAF-997		G42986	ctgtgtgcaGGGATGAACCAGGAAGCTCT	88
			ccatgtcCAAGCCAAGAGGGTTGCTAT	
WIAF-1939	R87662	G24142	cctcttggcttgGACATGGGAGCACAAGAGAAA	77
			gtgctgcgaTCTGAC ITGTGGAAACTGTGAAA	
WIAF-1006	Т99235	G25886	cacaagtcagaTCGCAGCACAGACAGAAATC	83
			tcaaagtgTCCAGACCCAAAGTGTTTGTC	
WIAF-805	T03321	G23287	tttgggtctggaCACTTIGAGCCTTTAGTGCAAA	66
			atacgttacccaaCGCTCCACTGGATAAGCATT	
WIAF-897		G42970	tggagcgTTGGGTAACGTATCTCAGTGCTT	67
			tcaggagctggTCCTTCTTCTGCAGTATGGAAA	
WIAF-881	D20713	G24960	gaagaaggaCCAGCTCCTGAAGAACTGTGA	72
			aacagggaaGGTGTGCAAATTGAAGGTCA	
WIAF-845	H12277	G22872	atttgcacaccTTCCCTGTTTCAGTGCATGT	81
			tacaaccAGCAGGCAGCTTTAFGGAGA	
WIAF-1780	R05393	G21549	aaagetgeetgetGGTTGTACAGCCAACATCACTG	80
			ccacagcctagaaTGACTGCTAATGGGTGCAGA	
WIAF-985	R97996	G25798	gcagtcaTTCTAGGCTGTGGGGGAACCT	66
			ggaaacagetatgaccatgAGGCACAACAAGAAATTCTGC	
WIAE 1207		Р		50
	WIAF-116 WIAF-997 WIAF-1939 WIAF-1006 WIAF-805 WIAF-805 WIAF-897 WIAF-881 WIAF-881 WIAF-885 WIAF-1780 WIAF-1307	WIAF-116 R05461 WIAF-997 R87662 WIAF-1939 R87662 WIAF-1006 T99235 WIAF-805 T03321 WIAF-897 T03321 WIAF-897 H12277 WIAF-845 H12277 WIAF-1780 R05393 WIAF-985 R97996	P W1AF-116 R05461 G23771 W1AF-997 G42986 W1AF-1939 R87662 G24142 W1AF-1006 T99235 G25886 W1AF-805 T03321 G23287 W1AF-897 G42970 W1AF-897 G42970 W1AF-881 D20713 G24960 W1AF-885 H12277 G22872 W1AF-1780 R05393 G21549 W1AF-985 R97996 G25798 W1AF-1307 G54575	Primer set 1 WIAF-116 R05461 G23771 gtaaaacgacggecagt/ECCTTCATCCAGATTCCAC ggttcatcccTGCACACAGAAGAATAAAAGCAAA ggttcatcccTGCACACAGAAGAATAAAAGCAAA WIAF-997 G42986 etptgtgcaGGATGAACCAGGAAGCATT WIAF-1939 R87662 G24142 cetettggcngGACAIGGGAGCACAAGAGAGAAA gtgetgcgaTCTGACTTGGGAAACTGTGAAA gtgetgcgaTCTGACTTGGGAAACTGTGAAA WIAF-1006 T99235 G25886 cacaagtcagaTCGCAGCACAAGAGAAAAAAA wIAF-805 T03321 G23287 ttgggtctggaCACTTTGAGCTTTAGTGCAAA wIAF-805 T03321 G23287 ttgggtctggaCACTTTGAGCTATAGGAAAA wIAF-881 D20713 G24960 gaagaaggaCCAGCTCCTGGATAAGCATT wIAF-881 D20713 G24960 gaagaaggaCCAGCTCCTGAAGAAATGGAAA wIAF-881 D20713 G24960 gaagaaggaCCAGCTCCTGAATGGAAACTGTGAAA wIAF-881 D20713 G24960 gaagaaggaCCAGCTCCTGAAGAAACTGTGAAAA wIAF-881 D20713 G24960 gaagaaggaCCAGCTCCTGAAATGAAACTGTGAAAA wIAF-881 D20713 G22872 atttgcacacetTCCCTGTTCAGTGCAAATGAAAATGGAGAA wIAF-885 H12277 G22872 atttgcacacettgcGCAGCTGTAATGGAGAAAAATCACAGGAAAAAAAAA

Amplification of the micro-STSs was monitored by agarose gel electrophoresis and ethidium bromide staining.

The amplification products were combined in one tube (100 μ l for 10 micro-STSs) and treated with 2 U exonuclease I (Epicentre, Madison, WI) at 37°C for 30 min to degrade unused primers. This was followed by inactivation of the

enzyme at 80°C for 15 min. An aliquot of 2.5–5.0 μ l of the mixture was used for the concatenation reaction, which was carried out in 10 μ l of the same buffer as used in the amplification reaction, with 0.2 μ M each M13 forward (5'-GTAAAACGA-CGGCCAGT-3') and reverse (5'-GGAAACAGCTATGACC-ATG-3') primers. The cycling conditions were 35 cycles of

WIAF-857

WIAF-970

WIAF-820

R01739

R06855

R51624

G24813

G25677

G24114

Table 1. C	Continued
------------	-----------

			cctagtcaccaccCGTACAAGAGTCGGGGGCTAC	
WIAF-432	H05918	G13367	cttgtacgGGTGGTGACTAGGAGGGTTG	54
			cagagagctGCTCCACGAGAAGAGAGAGAA	
WIAF-841	R60338	G22535	ctcgtggageAGCTCTCTGTCCCTGGAGGT	45
			tgtgaccccatctCCAAGACTTCTCCACCCTCTT	
WIAF-1862	R48766	G23144	tettggAGATGGGGTCACATCCTCAG	57
			ctgttccaaCTTCAAGCATCCACTTGTGC	
WIAF-842	H28142	G22830	ggatgettgaagTTGGAACAGACTGGAGTGAGAA	55
			aaccagetgeaaATCTTGTCTTGAGGGGGCTTG	
WIAF-992		G42985	agacaagatTTGCAGCTGGTTCCTCCA	60
			gtcatccctttgtAGGTCCTGGAGGTGAACTGA	
WIAF-1525		G43062	caggacetACAAAGGGATGACTGTAGAGGA	67
			taccaccaGGCTCCTAGAATGTCCAAGC	
WIAF-1855	H87739	G22895	cattetaggageetggTGGTAAGGCCTAAGGAA	67
			taatcgcaAGGCTTACAGGACCATCTCG	
WIAF-1035	R67601	G26132	gtcctgtaagcctTGCGATTACAGGCATAAGCA	50
			ttcagggacCGGATAAAGAAAATGTGGGTCA	
WIAF-1160		G44328	ttetttateegGTCCCTGAACCAGCAAAGAG	53
			ggaaacagctatgaccatgGTGCCCACCTGTGATTTCTG	
		P	rimer set 3	
WIAF-81	R71177	G22634	gtaaaacgacggccagtTTATTTCTCAGTACAAAGCCAGA	54
			ttagtggcaccttTGGCTAGTCAGTTTTTCATAGCC	
WIAF-844	H12277	G22872	actagecAAAGGTGCCACTAAGGAAAACTT	54

taagcaaagagaaGGCAACGTGCACAGCAG

cgttgccTTCTCTTTGCTTAGCCAGCT

 $\underline{tgctgggaaTTTGCATTAGG}GCACCACT$

cctaatgcaaaTTCCCAGCAAAACCAATAAA

tcactggggGCAATTTATGTCATCCCTCAAGA gacataaattgcCCCCAGTGACTTTATGCATCT 44

50

63

			ggaacagctatctgCCTCTGGCTCAGACTTGCTC	
WIAF-1306		G15956	ccagaggCAGATAGCTGTTCCTGAGTTGC	45
			ccttcccaGTGTCCAAATCTCCATCGTG	
WIAF-1247			gagatttggacacTGGGAAGGGCAGGACTAAT	43
			cattacagtggcaAGCAAGCTGCGGGTAGAG	
WIAF-1050	H69490	G29705	gcttgctTGCCACTGTAATGCACACC	50
			aggaagtggcaacaAAAACATAGGATATTGTGGGAGT	
WIAF-982	R93501	G25769	atgttttTGTTGCCACTTCCTATTGTTTT	64
			acatggtgtttttGGGATTCA GGCTGTAGTTCAA	
WIAF-1950		G43312	tgaatcccAAAAACACCATGTCCCTAAAATG	49
			ggaaacagctatgaccatgCGAAGGTGTGCATATATGTTGAA	

Primer set 4

	WIAF-1271		G44342	gtaaaacgacggccagtTTTTAAAATACCTCCATTTTGCT	50
				gagaggGCAGGTATCATCTTCACTAAAAGG	
	WIAF-139	H49857	G13392	aagatgatacctgcCCTCTCATGGCAAGAATTTGA	65
				tcettteaTTCCTTCCCTATFAAAATTAGAACC	
*	WIAF-415	R41585	G23848	atagggaaggaaTGAAAGGATACAGAAAAAACTCAGC	51
				cacaaaCTCCACGCTATCCACCTTTT	
	WIAF-2322	R37229	G24291	ggatagcgtggagTTTGTGTTTATTTTCTGTTTCAACT	56
				cattgtggtgtaAGGGAAGCTATGCCTTCTGA	
	WIAF-1824	D80679	G22159	gcttccctTACACCACAATGGCAGAGGT	44
				ttgagggTTTAGGC1TTGAGATGGTTTCT	
	WIAF-971	H64618	G25678	ctcaaageetaaaCCCTCAAAGCTCTCAGGACT	48
				attggtgAAATAAGCCTTCCTTAAACCCTA	
	WIAF-916	R51907	G25220	ggaaggettatttCACCAATTATTCTGCTATTCCTG	54
				cgatgcccttgTGATACTCTACCATGAAGGATGC	
ł	• WIAF-898		G42971	gagtatcaCAAGGGCATCGTAATAGGTTTC	53
				ctcatgccetgcAGTTCTAATTAATTCCTTCTTCTGC	
	WIAF-762	T02905	G21423	tagaactGCAGGGCATGAGAGGATTC	49

				gttttcagagggcCAAAAGCTTCTTTCCCTTGG	
	WIAF-132	Т91135	G25929	cttttgGCCCTCTGAAAACTCCAAAG	57
				ggaaacagctatgaccatgTTACATTAATGCCACTGGAAA	
16-12					
			P	rimer set 5	
	WIAF-881	D20713	G24960	gtaaaacgacggccagtCCAGCTCCTGAAGAAC	50
				tgetceTTATCCTTAGGCTGAG	
	WIAF-1939	R87662	G24142	aggataaGGAGCACAAGAGAAACT	43
				tgtgatccCCTACAATTAATCCCAGT	
	WIAF-1006	Т99235	G25886	gtaggGGATCACA TAGGCAGTT	44
				aagetCCCAAAGTGTTTGTCA	
	WIAF-985	R97996	G25798	ctttgggAGCTTCTAGGCTGTGG	51
				ctcttcctgtTGCAGTAGTTGGAGTTG	
	* WIAF-845	H12277	G22872	gcaACAGGAAGAGTTGTCTCA	56
				atccaGCAGCTTTATGGAGAA	
	WIAF-997		G42986	aagetgeTGGATAATGTCACTCTAGG	57
				tgtGGGTTGCTATCTCAGG	
	WIAF-1780	R05393	G21549	tagcaacccACAGCCAACATCACTG	40
				aaaggeteaTGTTGAAAATGTTCTGG	
	WIAF-805	T03321	G23287	aacaTGAGCCTTTAGTGCAA	57
				gagatacgCCACTGGATAAGCATT	
	WIAF-897		G42970	agtggCGTATCTCAGTGCTTGA	50
				<u>gttgtggTGCAGT</u> ATGGAAACCT	
	WIAF-116	R05461	G23771	actgcaCCACAACGGTTAACAT	53
				ggaaacagctatgaceatgTCACATGCACACAGAA	

Primer set 6

WIAF-1862	R48766	G23144	<i>gtaaaacgacggccagt</i> CATCCTCAGAACTT	38
			cagtcateceATCCACTTGTGCT	

WIAF-1525		G43062	gatGGGATGACTGTAGA	36
			tcaacceteGTATTCAGGGATCA	
WIAF-432	H05918	G13367	atacGAGGGTTGAGGTGTAGA	38
			aatcCACGAGAAGAGAGGAA	
WIAF-1035	R67601	G26132	cttctcgtgGATTACAGGCATAAGCA	38
			ccttaccGAAAATGTGGGTCAGG	
WIAF-1855	H87739	G22895	attttcGGTAAGGCCTAAGGAA	59
			ctccagggacTTACAGGACCATCTCG	
WIAF-841	R60338	G22535	taaGTCCCTGGAGGT	27
			aaccagetgTCCACCCTCTTG	
WIAF-992		G42985	<u>ggaCAGCTGGTT</u> CCTCCA	53
			tttgetggtCCTGGAGGTGAACTGA	
WIAF-1160		G44328	aggACCAGCAAAGAGAAAAG	40
			aggaagCACCTGTGATTTCTGG	
WIAF-1307		G54575	caggtgCTTCCTCTCTCTCCC	33
			tccaaGCTACTCCAGGCACA	
WIAF-842	H28142	G22830	<u>ggagtagcTTGGA</u> ACAGACTGGAG	40
			ggaaacagctatgaccatgGCTTGGTGGTGGAAC	
		Pi	rimer set 7	
WIAF-81	R71177	G22634	gtaaaacgacggccagtCTCAGTACAAAGCCAGAT	40
			ggacatggCAGTTTTTCATAGCCTTAC	
WIAF-1950		G43312	actgCCATGTCCCTAAAA1G	44
			agatgATCGAAGGTGTGCAT	
WIAF-820	R51624	G24114	ccttcgatCATCTTATAACCAAGAAGC	43
			agagaaTGGCTCAGACTTGCT	
WIAF-857	R01739	G24813	tgagecaTTCTCTTTGCTTAGCC	38
			acagtggcTTAGGGCACCACTGA	
WIAF-1050	H69490	G29705	cctaaGCCACTGTAATGCACA	42
			ttgctggAGGATATTGTGGGAGT	
	WIAF-1525 WIAF-432 WIAF-1035 WIAF-1855 WIAF-341 WIAF-1160 WIAF-1160 WIAF-1307 WIAF-842 WIAF-842 WIAF-843 WIAF-841 WIAF-842 WIAF-842 WIAF-843 WIAF-843 WIAF-843 WIAF-843 WIAF-843 WIAF-1050	WIAF-1525WIAF-432H05918WIAF-1035R67601WIAF-1035H87739WIAF-841R60338WIAF-992.WIAF-1160.WIAF-1307.WIAF-842H28142WIAF-843R71177WIAF-843R71177WIAF-843R51624WIAF-857R01739WIAF-1050H69490	WIAF-1525 G43062 WIAF-432 H05918 G13367 WIAF-1035 R67601 G26132 WIAF-1855 H87739 G22895 WIAF-841 R60338 G22535 WIAF-992 G43985 G44328 WIAF-1160 G44328 G44328 WIAF-1307 G43512 G44328 WIAF-842 H28142 G22830 WIAF-843 R71177 G22634 WIAF-1950 G43312 P WIAF-820 R51624 G24114 WIAF-857 R01739 G24813 WIAF-1050 H69490 G29705	WAF-132 G4302 G43042

WIAF-970	R06855	G25677	atcctCCAGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	35
			cttagtggcaATGTCATCCCTCAAGAT	
WIAF-844	H12277	G22872	<u>catTGCCACTAAG</u> GAAAAC	54
			ggaacagcCAACGTGCACAGCA	
WIAF-1306		G15956	gttgGCTGTTCCTGAGTTGC	37
			aagtggcTCCAAATCTCCATCG	
WIAF-982	R93501	G25769	ttggaGCCACTTCCTATTGTTT	40
			cttcCAGGCTGTAGTTCAAAG	
WIAF-1247			acagcctgGAAGGGCAGGACTAAT	47
			ggaaacagctatgaccatgAAGCTGCGGGTAGA	
		Р	rimer set 8	
WIAF-916	R51907	G25220	gtaaaacgacggccagtAATTATTCTGCTATTCCTG	43
			tettgeCTACCATGAAGGATGC	
WIAF-139	H49857	G13392	atggtagGCAAGAATTTGAGAAAGT	50
			tcetttcaCCCTATTAAAATTAGAACC	
* WIAF-415	R41585	G23848	tagggTGAAAGGATACAGAAAAA	48
			actggaaatCACGCTATCCACCTTT	
WIAF-132	T91135	G25929	<u>cgtgATTTCCAGT</u> GGCATTA	44
			gatgcccAAAATGTAATAGAGGGAAT	
* WIAF-898		G42971	attttGGGCATCGTAATAGGT	43
			ctcatgecetATTAATTCCTTCTTCTGC	
WIAF-762	T02905	G21423	aatAGGGCATGAGAGGAT	42
			tggaggtatttGCTTCTTTCCCTTGG	
WIAF-1271		G44342	<u>gcAAATACCTCCA</u> ITITGC	40
			tctgccattgtTATCATCTTCACTAAAAGG	
WIAF-1824	D80679	G22159	taACAATGGCAGAGGTG	37
			<u>ttgaAGGCTTTG</u> AGATGGTT	
WIAF-971	H64618	G25678	caaageetTCAAAGCTCTCAGGACT	41
			gaaaaAAGCCTTCCTTAAACC	

	WIAF-2322	R37229	G24291	<u>gaaggettTTTTC</u> TGTTTCAACTAAGG	42
				ggaaacagetatgaccatgAAGCTATGCCTTCTGA	
2.12					
2-12			n		
			P	rimer set 9	10
	W1AF-805	103321	G23287	gtaaaacgacggccagt [1] AG1GCAAAAAC	40
				acagttettGCATTTTATTTCC	
	WIAF-881	D20713	G24960	atgcAAGAACTGTGAACT	35
				atgtgCTTCTAGGCTGAG	
	WIAF-1006	Т99235	G25886	cctagaagCACATAGGCAGTT	35
				tteetgAGTGTTTGTCAGC	
	WIAF-845	H12277	G22872	aaacactCAGGAAGAGTTGTC	38
				gcctagaGTTTTCCTTAGTGG	
	WIAF-985	R97996	G25798	gaaaacTCTAGGCTGTGG	39
				tgacatTTGGAGTTGTAAGG	
	WIAF-997		G42986	actecaaATGTCACTCTAGGA	41
				<u>gttgtggTCTCAG</u> GGTTTT	
	WIAF-116	R05461	G23771	<u>etgagaCCACAAC</u> GGTTA	37
				actgGAATAAAGCAAATG	
	WIAF-897		G42970	getttatteCAGTGCTTGACTC	37
				<u>ettegeATGGA</u> AACCTATTA	
	WIAF-1780	R05393	G21549	tccatGCCAACATCACTG	32
				<u>tgtAAAATGTTCTG</u> GA	
	WIAF-1939	R87662	G24142	cagaacattttACAAGAGAAACTCAC	56
				ggaaa eagetatgaeeatgGGAAACTGTGAAAT	

20-10

Primer set 10 WIAF-857 R01739 G24813 gtaaaacgacggccagt ITCTCTTTGCTTAGCCAGCT 44

Table 1.	Continued
----------	-----------

			actggggTTTGCATTAGGGCACCACT	
WIAF-820	R51624	G24114	caaaCCCCAGTGACTTTAIGCATCT	63
			tctgCCTCTGGCTCAGACTTGCTC	
WIAF-1306		G15956	ccagaggCAGATAGCTGTTCCTGAGTTGC	45
			ccttcccaGTGTCCAAATCTCCATCGTG	,
WIAF-1247			cacTGGGAAGGGCAGGACTAAT	43
			gcaAGCAAGCTGCGGGTAGAG	
WIAF-1050	H69490	G29705	gettgetTGCCACTGTAATGCACACC	50
			tgctgggaaAAAACATAGGATATTGTGGGAGT	
WIAF-970	R06855	G25677	tTTCCCAGCA	50
			ggtgtttttGCAATTTATGTCATCCCTCAAGA	
WIAF-1950		G43312	gcAAAAACACCATGTCCCTAAAATG	49
			caacaCGAAGGTGTGCATATATGTTGAA	
WIAF-982	R93501	G25769	cettegTGTTGCCACTTCCTATTGTTTT	64
			ccttGGGATTCAGGCTGTAGTTCAA	
WIAF-844	H12277	G22872	gaateeeAAGGTGCCACTAAGGAAAACTT	54
			ataaGGCAACGTGCACAGCAG	
WIAF-81	R71177	G22634	cgttgccTTATTTCTCAGTACAAAGCCAGA	54
			ggaaacagctatgaccatgTGGCTAGTCAGTTTTTCATAGCC	

16-16

.

Primer set 11

WIAF-881	D20713	G24960	gtaaaacgacggccagtCCAGCTCCTGAAGAAC	50
			tgttggctgtTTATCCTAGGCTGAG	
WIAF-1780	R05393	G21549	ggataaACAGCCAACATCACTG	40
			tgeteeTGTTGAAAATGTTCTGG	
WIAF-1939	R87662	G24142	attttcaacaGGAGCACAAGAGAAACT	43
			tgtgatccCCTACAATTAATCCCAGT	
WIAF-1006	Т99235	G25886	attgtaggGGATCACATAGGCAGTT	44
			cattatecaCCCAAAGTGTTTGTCA	

Table 1. Co	ontinued
-------------	----------

WIAF-997		G42986	ctttgggTGGATAATGTCACTCTAGG	57
			gatacgGGGTTGCTATCAGG	
WIAF-897		G42970	atagcaacccCGTATCTCAGTGCTTGA	50
			taaaggetcaTGCAGTATGGAAACCT	
WIAF-805	T03321	G23287	actgcaTGAGCCTTTAGTGCAA	57
			gcctagaagetCCACTGGATAAGCATT	
WIAF-985	R97996	G25798	agtggAGCTTCTAGGCTGTGG	51
			cgttgtggTGCAGTAGTTGGAGTTG	
WIAF-116	R05461	G23771	ctactgcaCCACAACGGTTAACAT	53
			cttcctgtTCACATGCACACAGAA	
* WIAF-845	H12277	G22872	gcatgtgaACAGGAAGAGTTGTCTCA	56
			ggaaacagctatgaccatgGCAGCTTTATGGAGAA	

Asterisks indicate the micro-STSs, which contained SNPs within the left (WIAF-898) or right primer (WIAF-415 and 845). ^aPrimer sets are grouped by the initial settings in OCS Optimizer, i.e. (initial length of amplification arm) – (initial length of overlap). ^bSNP ID named by submitter.

^cGenBank accession no.

^dSTS accession no. of original STS in dbSTS.

^eUnderlined sequence denotes the area of homology between each primer and its oppositely oriented overlapping partner. Upper case denotes

the amplification arm of each primer. The M13 primer sequences at both ends of concatemers are italicized.

fSizes of micro-STSs are shown. See text for definition.

denaturation at 94°C for 30 s, annealing at a temperature specified below for 10 s and extension at 72°C for 30 s. The annealing temperature was set to the $T_{\rm m}$ of the catenation arms, which was calculated by OCS Optimizer, i.e. three times the initial length of the micro-STS overlap. The first denaturation and the last extension steps were at 94°C for 1 min and at 72°C for 3 min, respectively. The amplified concatamer was confirmed by agarose gel electrophoresis and ethidium bromide staining.

The concatenation reaction mixture was cleaned by spin dialysis using Microcon 100 (Millipore, Bedford, MA) to eliminate remaining primers and nucleotides. Cycle sequencing reactions were carried out using an ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit (PE Biosystems, Foster City, CA) or reverse primer (5'-TTTTTTTTGGAAACAGCT-3') to read the sequences from both ends. The thermal cycling profile included an initial denaturation at 96°C for 1 min, followed by 25 cycles of 96°C for 10 s, 40°C for 5 s and 60°C for 2.5 min. The mixture was desalted by gel filtration through Sephadex G-50 Superfine (Amersham Pharmacia Biotech) using MultiScreen 96-well filtration plates (Millipore) (http://www.millipore.com/ analytical/publications.nsf/docs/TN053) and applied to an ABI 310 DNA Sequencer (PE Biosystems). Bases were called by ABI Prism DNA Sequencing Software v.3.0 or by Phred/Phrap (12,13), followed by PolyPhred (14) interpretation with the use of Consed (20).

RESULTS

Selection of micro-STSs and catenation arms

The SNPs used here were those originally collected by Wang et al. (15). The allele frequencies of some of them had been determined by us (21). In this study we chose SNPs with high heterozygosity in the examined population (Japanese), so that different genotypes could be found even among a small number of individuals. Some SNPs were avoided because another SNP was located in close proximity. We then subjected these SNPs to Primer3 analysis using the parameters described in the previous section to design annealing arms of initial lengths 12, 16 and 20 nt. Primers with appropriate sequences could be found in 100% (20 of 20), 96% (55 of 57) and 100% (40 of 40) of cases, respectively. The micro-STSs thus defined ranged from 27 to 88 bp and 82% of them were <60 bp (Table 1).

We then arbitrarily selected 40, 40 and 20 micro-STSs with initial annealing arm lengths of 20, 16 and 12 nt, respectively. These were then divided into groups, each of which consisted

Figure 2. Electrophoretic analysis of the OCS products. Concatamers obtained using primer set 2 (Table 1) are indicated by arrows. (**A**) The PCR products (1–3 nM) were combined and subjected to 15, 20, 25, 30, 35 and 40 thermal cyclings (lanes 1–6) in the presence of 0.2 μ M each terminal primer. (**B**) Ampli*Taq* (lanes 1–4), *Pfu* (lanes 5–8) and *KOD-plus* (lanes 9–12) DNA polymerases were used in both the amplification and catenation steps. The concatenation reaction proceeded for 35 cycles using 6.4 nM (lanes 1, 5 and 9), 3.2 nM (lanes 2, 6 and 10), 1.6 nM (lanes 3, 7 and 11) and 0.8 nM (lanes 4, 8 and 12) amplification products. M, 100 bp ladder size marker.

of 10 micro-STSs. Sequences of catenation arms were chosen by exhaustive optimization as described in Materials and Methods (Table 1).

Micro-STS amplification and concatenation by PCR

The annealing temperature in the micro-STS amplification was empirically determined for each micro-STS as described in Materials and Methods. These temperatures were 43-55°C, 43-48°C and 36-48°C for initial arm lengths of 20, 16 and 12 nt, respectively (see Materials and Methods for the definition of initial arm length). Micro-STSs were successfully amplified from genomic DNA as single bands with a 100% success rate, using initial amplification arm lengths of 16 and 20 nt. We found that 80% of amplifications were successful using primers with an initial arm length of 12 nt. We also consistently observed that 20-50% of the input primers were incorporated into the products in the PCR amplifications of the micro-STSs. The high success rate of amplification in spite of the shortness of the primer and somewhat efficient usage of the primers can be attributed to the preference of the PCR for short amplicons (22).

Figure 2 shows concatemer formation under various conditions. In the second thermal cyclings end primers (M13 forward and reverse) were included in molar excess, so that the full-length concatamer was selectively amplified by PCR once it was formed. As shown in Figure 2A, sufficient amplification products could be obtained by 30–35 cycles.

The concentration of micro-STSs seems to be an important factor for efficient concatenation (Fig. 2B). However, because the amplicons are small, PCR amplification of the micro-STSs is efficient, as described above, and sufficient substrate can be included in the catenation reaction (see Materials and Methods) without any adjustment to the concentration of the PCR products.

We anticipated that the terminal transferase activity of some DNA polymerases may hinder concatenation, because the amplicons with extra nucleotides at their 3'-ends cannot participate in the concatenation reaction. We found that *KOD-plus* DNA polymerase, which possesses negligible terminal transferase activity, gave better results than *Taq* DNA polymerase, which

has effective terminal transferase activity (23), although the difference was marginal (Fig. 2B).

We tested various lengths of catenation arms in the concatenation reaction and found that concatamers of 10 micro-STSs were successfully produced with catenation arm pairs (overlap lengths in the catenation reaction) of 10 bp. We also found that the quality of the sequence trace data of the concatamer using 10 bp catenation arm pairs was superior to that obtained using 20 bp (data not shown). This may indicate that the shorter primers tend to be of higher quality, although we did not directly assess the quality of the primers.

Accuracy of SNP detection

Typical examples of the sequencing of concatamers using the M13 primers and genomic DNA from four individuals as templates are shown in Figure 3, together with the PolyPhred interpretations. As is evident from the figure, polymorphic sites were identified by the PolyPhred analysis at the expected nucleotides and the micro-STS sequences, including the segments between the amplification arms, were confirmed.

Essentially the same results were obtained for all concatamers examined. We observed a gradual decrease in the quality of the trace data at lengths of \geq 300 nt. This accumulation of noise may be ascribed to the poor quality of the primers or to imperfect concatenation. Sequencing from primers at opposite ends of the concatamer solved these problems (data available at http:// www.gen.kyushu-u.ac.jp/~genome/ocs/alignment.html).

We next assessed the accuracy of genotype calling with OCS sequencing. The correct genotypes of all SNPs examined here were determined by PolyPhred and visual inspection of the sequence traces of the PCR products of the original STSs and concordance or discordance of these genotypes with the OCS results was then scored. When the trace data were interpreted by PolyPhred alone, the overall concordance rate was 92% (403 of 440 genotypes). However, visual inspection of the data revealed that all apparent discordant genotypes, except one SNP, were misinterpretations by the software.

Most misinterpretations were found in two target SNPs. In these cases, all four individuals were heterozygous, but PolyPhred did not recognize the second base, although the nucleotides were tagged as polymorphic. In another case with an initial amplification arm length of 12 nt, the discrepancy was found in a SNP in a concatamer made from the shortest micro-STSs. A BLAST search for the sequence of the discrepant micro-STS in the human genome draft sequence (http://www.ensembl.org/) indicated that the amplification product was probably a mixture of paralogous sequences, while those of the corresponding longer micro-STSs (those with initial amplification arm lengths of 16 and 20 nt) represented a unique original sequence.

Excluding these SNPs, 87% (89 of 102) of the heterozygotes were detected by PolyPhred alone, which is close to the reported detection rate of the software (14). The accuracy of genotyping by sequencing the concatamers of micro-STSs of unique origin was 100% if the data were interpreted both by PolyPhred and by visual inspection.

DISCUSSION

Concatenation of amplicons can be achieved by attaching specific cohesive tails to each of the PCR primers (24,25).

Figure 3. Consed view of complete sequence alignment of the concatemer obtained using primer set 5 (Table 1). Sequences obtained by two-way dye-terminator sequencing of the concatamers from four different individuals are shown in the Consed window. Potential heterozygotes identified by PolyPhred are color coded in pink. Polymorphic sites at position 118, 215, 273, 328, 370, 434 and 476 are identified by PolyPhred. Monomorphic sites at position 38, 79 and 169 are tagged by manual modification of acefile.

Choosing the sequences of the cohesive tails within the prospective neighboring primers, as shown here, has the advantage of minimizing the sizes of the primers. The success of concatenation of micro-STSs in a predefined order depends heavily on the proper choice of the sequences of the catenation arms. This is a tractable approach, because the combined sequence complexity of the group of micro-STSs to be concatenated is low and specific annealing pairs of catenation arms can be designed, although extensive *in silico* optimization of the arm sequences is required. The OCS Optimizer software described here effectively selected catenation orders and overlap sequences within a reasonable computation time. The primers thus obtained were efficient in amplifying the micro-STSs and in concatenation of the amplification products, as demonstrated by the high success rate of SNP genotyping.

Concatenation is essentially the process of dimerization of subsegments at each stage of the reaction and it proceeds at the expense of the subsegments, although various intermediate stages are involved in the actual process. Furthermore, primers (ends of neighboring subsegments) and templates (subsegments themselves) are at the same or similar concentrations. Therefore, priming is always in competition with kinetically favored selfannealing, which occurs more readily between longer complementary sequences than between catenation arms and can start from multiple potential nucleation sites. Thus, concatenation is intrinsically a slow process, at least in the early stages. However, the full-length concatamer of authentic order can be selectively amplified by PCR using primers at both ends to produce an amount visible on agarose.

In the method shown here, significant effort was expended on optimizing the micro-STS amplifications. In our experience the quality of sequence data depends on clean amplification of the micro-STSs. In this context, amplification of paralogous regions of similar sizes can be the source of incorrect SNP identification, and this indeed happened in the case of short micro-STSs with short amplification arms (i.e. 12 nt as the initial length of the amplification arms). However, amplification of a paralog is avoidable because a BLAST search of the already available human genome draft sequence can easily predict the presence of paralogs.

We have demonstrated that specific amplification of micro-STSs can be achieved at a high success rate, even with annealing arms of 12 nt in length. This is contrary to the general belief that PCR primers should be sufficiently long to obviate the chance amplification of any genomic sequence other than the target sequence. Obviously, the small size of the micro-STSs has contributed to the success of specific amplification, and we further suggest that amplification and ordered catenation of micro-STSs is achievable using primers with average lengths of <20 nt, which is the length commonly adopted in PCR reactions.

The concatemer contains equimolar amounts of micro-STSs. Therefore, the technique should also be useful in producing, for instance, probes for hybridization-based genotyping of SNPs (26). The latter technique often encounters the technical difficulty of producing uneven signal intensities among the SNPs, because the concentration of probes prepared in the conventional manner is highly variable.

AVAILABILITY

OCS Optimizer was developed in a Linux environment. Information on the availability of the software can be obtained from the web site (http://www.gen.kyushu-u.ac.jp/~genome/ ocs.html).

ACKNOWLEDGEMENTS

OCS Optimizer includes parts of the Primer3 software, which was developed by the Whitehead Institute for Biomedical Research. We thank Professor Toshihisa Takagi for allowing us to use the Super Computer Facilities in the Institute of Medical Science (University of Tokyo) in the early stages of the development of OCS Optimizer. We acknowledge Dr Tomoko Tahira for her suggestions and critical reading of the manuscript. This work was supported by a Grant-in-Aid for 'Genome Science' from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

- Mullikin,J.C., Hunt,S.E., Cole,C.G., Mortimore,B.J., Rice,C.M., Burton,J., Matthews,L.H., Pavitt,R., Plumb,R.W., Sims,S.K. *et al.* (2000) An SNP map of human chromosome 22. *Nature*, **407**, 516–520.
- Taillon-Miller, P., Gu, Z., Li, Q., Hillier, L. and Kwok, P.Y. (1998) Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms. *Genome Res.*, 8, 748–754.
- Taillon-Miller, P., Piernot, E.E. and Kwok, P.Y. (1999) Efficient approach to unique single-nucleotide polymorphism discovery. *Genome Res.*, 9, 499–505.
- Altshuler, D., Pollara, V.J., Cowles, C.R., Van Etten, W.J., Baldwin, J., Linton, L. and Lander, E.S. (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. *Nature*, 407, 513–516.
- Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A. *et al.* (2001) The sequence of the human genome. *Science*, **291**, 1304–1351.
- Collins, F.S., Guyer, M.S. and Charkravarti, A. (1997) Variations on a theme: cataloging human DNA sequence variation. *Science*, 278, 1580–1581.
- Reich, D.E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P.C., Richter, D.J., Lavery, T., Kouyoumjian, R., Farhadian, S.F., Ward, R. *et al.* (2001) Linkage disequilibrium in the human genome. *Nature*, **411**, 199–204.

- 8. Kruglyak,L. (1999) Prospects for whole-genome linkage disequilibrium mapping of common disease genes. *Nature Genet.*, **22**, 139–144.
- Collins, A., Lonjou, C. and Morton, N.E. (1999) Genetic epidemiology of single-nucleotide polymorphisms. *Proc. Natl Acad. Sci. USA*, 96, 15173–15177.
- Dianzani, I., Landegren, U., Camaschella, C., Ponzone, A., Piazza, A. and Cotton, R.G. (1999) Fifth International Mutation Detection Workshop, May 13–16, 1999, Vicoforte, Italy. *Hum. Mutat.*, 14, 451–453.
- Kwok, P.Y., Carlson, C., Yager, T.D., Ankener, W. and Nickerson, D.A. (1994) Comparative analysis of human DNA variations by fluorescence-based sequencing of PCR products. *Genomics*, 23, 138–144.
- Ewing, B., Hillier, L., Wendl, M.C. and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. *Genome Res.*, 8, 175–185.
- Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. *Genome Res.*, 8, 186–194.
- Nickerson, D.A., Tobe, V.O. and Taylor, S.L. (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. *Nucleic Acids Res.*, 25, 2745–2751.
- Wang,D.G., Fan,J.B., Siao,C.J., Berno,A., Young,P., Sapolsky,R., Ghandour,G., Perkins,N., Winchester,E., Spencer,J. *et al.* (1998) Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. *Science*, 280, 1077–1082.
- Rozen, S. and Skaletsky, H. (1998) *Primer3*. Code available at http:// www-genome.wi.mit.edu/genome_software/other/primer3.html.
- Itakura, K., Rossi, J.J. and Wallace, R.B. (1984) Synthesis and use of synthetic oligonucleotides. *Annu. Rev. Biochem.*, 53, 323–356.
- Takagi,M., Nishioka,M., Kakihara,H., Kitabayashi,M., Inoue,H., Kawakami,B., Oka,M. and Imanaka,T. (1997) Characterization of DNA polymerase from *Pyrococcus* sp. strain KOD1 and its application to PCR. *Appl. Environ. Microbiol.*, 63, 4504–4510.
- Breslauer,K.J., Frank,R., Blocker,H. and Marky,L.A. (1986) Predicting DNA duplex stability from the base sequence. *Proc. Natl Acad. Sci. USA*, 83, 3746–3750.
- Gordon, D., Abajian, C. and Green, P. (1998) Consed: a graphical tool for sequence finishing. *Genome Res.*, 8, 195–202.
- Sasaki, T., Tahira, T., Suzuki, A., Higasa, K., Kukita, Y., Baba, S. and Hayashi, K. (2001) Precise estimation of allele frequencies of single-nucleotide polymorphisms by a quantitative SSCP analysis of pooled DNA. *Am. J. Hum. Genet.*, 68, 214–218.
- Dieffenbach,C.W. and Dveksler,G.S. (1995) PCR Primer: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 37–51.
- Clark, J.M. (1988) Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. *Nucleic Acids Res.*, 16, 9677–9686.
- Higuchi, R., Krummel, B. and Saiki, R.K. (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. *Nucleic Acids Res.*, 16, 7351–7367.
- Tuohy,T.M. and Groden,J. (1998) Exons introns = lexons: in-frame concatenation of exons by PCR. *Hum. Mutat.*, 12, 122–127.
- 26. Lander, E.S. (1999) Array of hope. Nature Genet., 21, 3-4.