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True water bugs (Nepomorpha) are mostly predacious insects that live in
aquatic habitats. They use their piercing–sucking mouthparts to inject veno-
mous saliva that facilitates the capture and extra-oral digestion of prey
animals, but their venom can also be deployed for defence. In Central
Europe, nepomorph species representing different families coexist in the
same habitat. However, their feeding ecology, including venom composition
and deployment, has not been investigated in detail. We used an integrated
proteotranscriptomic and bioactivity-based approach to test whether venom
composition and activity differ between four water bug species sharing the
same habitat but occupying different ecological niches. We found consider-
able species-dependent differences in the composition of digestive enzymes
and venom components that probably evolved as adaptations to particular
food sources, foraging strategies and/or microhabitats. The venom of
Corixa punctata differed substantially from that of the three strictly predatory
species (Ilyocoris cimicoides, Notonecta glauca and Nepa cinerea), and the abun-
dance of herbivory-associated proteins confirms a mostly plant-based diet.
Our findings reveal independent adaptations of the digestive and defensive
enzyme repertoires accompanied by the evolution of distinct feeding
strategies in aquatic bugs.
1. Introduction
True bugs (Heteroptera) are a diverse group of hemimetabolous insects that
exploit a wide range of habitats and food sources around the world [1].
Although most true bugs feed on plants, recent phylogenetic studies suggest
that heteropterans shifted to a predatory lifestyle when they diverged from
the remaining phytophagous Hemiptera [2]. The infraorder Nepomorpha
(true water bugs) comprises 11–13 families of almost exclusively predacious
species that spend most of their lives under water [1]. Specific adaptations
to their predatory lifestyle include the evolution of a strong but short
rostrum [1], raptorial legs [3,4] and the secretion of venomous saliva that is
used to paralyze, kill and pre-digest animal prey, but also in defence against
enemies [1,5–8]. Some water bug venoms have remarkable effects on
animals, including changes in contractile force and coronary flow in guinea
pigs [9], paralysis in fish [10] and systolic arrest in cockroach heart–dorsum
preparations [11].

The salivary/venom glands of true bugs usually feature three spatially sep-
arated parts: an anterior main gland (AMG), a posterior main gland (PMG) and
an accessory gland (AG) [12]. The context-dependent deployment of AMG
and PMG venom has been proven only for the terrestrial predacious assassin
bugs Pristhesancus plagipennis and Psytalla horrida [7,8]. Differential venom
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Figure 1. Schematic overview of the microhabitat preferences, food spectra (insects, crustaceans, fish, tadpoles, plants and detritus), feeding styles and foraging
strategies of the water bugs I. cimicoides, N. glauca, N. cinerea and C. punctata, based on our experimental observations and the literature. We applied a proteo-
transcriptomic and bioassay-based approach to identify salivary proteins and saliva activity. AMG, anterior main gland; GUT, gut tissue; PMG, posterior main gland;
RB, remaining body tissue.
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deployment is not known among water bugs, although the
analysis of AMG and PMG venom from the giant water
bug Lethocerus distinctifemur (Nepomorpha, Belostomatidae)
showed that the glands secrete distinct sets of proteins,
suggesting different functional roles [13]. Proteins identified
in water bug venoms include proteases, haemolysin-like
proteins, protease inhibitors, hyaluronidases, phospho-
lipases, amylases and numerous uncharacterized peptides
[10,13–15]. However, most studies thus far have focused on
belostomatid venoms so the dynamics of venom composi-
tion across different nepomorph families remain unclear,
particularly when considering adaptation to microhabitats,
differences in prey (or even shifts to a non-predacious
lifestyle) and changes in predatory selection pressure.

Common European water bugs include the saucer bug
Ilyocoris cimicoides (Naucoridae), the backswimmer Notonecta
glauca (Notonectidae), the water scorpion Nepa cinerea (Nepi-
dae) and the lesser water boatman Corixa punctata
(Corixidae). These species coexist in the same type of habitat
but differ in terms of microhabitat preferences, food spectra
and foraging strategies (figure 1). Ilyocoris cimicoides, N.
glauca and N. cinerea are strict predators of insects [16–20],
crustaceans [16,21–23], tadpoles [24,25] and fish [26–28], but
the dietary habits of C. punctata are not yet fully understood.
Different studies have reported inconsistent feeding styles for
C. punctata, ranging from strict zoophagy [29] to saprophagy
[30] and omnivorous behaviour, including the unusual ability
to ingest solid food [31]. Furthermore, foraging strategies
differ among the predatory species. Nepa cinerea is a slow-
moving ambush predator that hides in vegetation close to
the water surface and quickly grabs approaching prey using
its highly specialized predatory forelegs [3,20,29,32]. By con-
trast, N. glauca and I. cimicoides are good swimmers and
actively hunt their prey [16,32,33]. Notonecta glauca usually
searches for prey on the water surface or swimming in the
open water [18,34,35], whereas I. cimicoides remains on the
sediment or in vegetation to hunt and feed on prey [32,33].
These microhabitat preferences may be associated with differ-
ent food spectra given that the composition of the prey
community differs between microhabitats [34].

The effects of ecological niches on saliva composition and
activity in heteropterans are poorly understood and little is
known about the consistency of adaptations to specific con-
ditions. Previous studies have focused on terrestrial bugs
and mainly investigated differences in the activity of
digestive enzymes to draw conclusions about dietary habits
[36–39]. Recently, the salivary protein composition was ana-
lysed in several terrestrial and two aquatic bugs from
different suborders, revealing patterns that may indicate
specific dietary habits [40]. The proteins characteristic of
predatory bugs included CUB domain proteins, haemolysins,
Ptu1-like peptides, redulysins and several uncharacterized
peptides. By contrast, typical herbivore-associated proteins
included amylases, glucosidases, vitellogenins and cathep-
sins. However, few studies have considered species in the
same infraorder with different ecological adaptations. We
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hypothesized that aquatic bug species sharing the same habi-
tat but occupying different ecological niches (including
microhabitat, food spectrum and foraging strategy) would
have different venom compositions and activities. Our main
objectives were, therefore, to collect and analyse gland-
specific gene expression data and venom gland protein com-
positions using an integrated proteotranscriptomic and
bioassay-based approach, followed by the comparison of
venom composition and activity in I. cimicoides, N. glauca,
N. cinerea and C. punctata to identify interspecific differences
and relationships with each ecological niche. We discuss the
ecological insights that can be drawn from these results in
order to determine whether it is possible to infer the ecology
of a given heteropteran species from the composition of its
venom, or vice versa (figure 1).
R.Soc.B
290:20222064
2. Material and methods
(a) Insects and venom collection
Specimens of I. cimicoides, N. glauca, N. cinerea and C. punctata
were collected in Thuringia, Germany and kept in water-filled
containers before dissection. Venom likely to have a defensive
function was obtained by harassment. Specimens were captured
with forceps and held above the water, which elicited defensive
behaviour. An artificial prey dummy was built by enclosing a
droplet of phosphate-buffered saline (PBS) within a piece of
stretched Parafilm (electronic supplementary material, figure
S1) and was offered to the insects for venom injection [7]. The
artificial prey dummy was moved on the water surface to simu-
late moving prey and induce hunting behaviour. When a bug
attacked the artificial prey, it was allowed to inject saliva for
1.5 min before removing the dummy and recovering the
venom. It was not possible to collect defensive venom from
N. cinerea or defensive and prey-killing venom from C. punctata.
In addition to non-invasive collection, venom was also extracted
directly from the venom glands of fifth-instar or adult bugs. The
specimens were anaesthetized at –20°C for 5 min before dissec-
tion in PBS. The AG, AMG and PMG (only AMG and PMG
for C. punctata) were separated and placed in pre-cooled tubes
containing 10–20 µl PBS on ice. The samples were briefly vor-
texed and centrifuged (4000 g, 3.5 min) and the supernatant
was transferred to a fresh tube. The venom of several individuals
was pooled and stored at –20°C for analysis. The total protein
concentration in the samples was measured using an N60
nanophotometer (Implen).

(b) Proteomic analysis
The proteins in the venom samples were separated by sodium
dodecylsulfate–polyacrylamide gel electrophoresis (SDS–PAGE)
using 4–12% Criterion XT gradient gels (Bio-Rad) with XT
MES running buffer at 125 V for 1.5 h, alongside protein molecu-
lar weight markers. The gels were stained for 1.5 h using a 1 : 1
mixture of Coomassie Brilliant Blue R-250 and colloidal Coomas-
sie Brilliant Blue G-250 (Thermo Fisher Scientific), washed in
Millipore water overnight and then scanned. For liquid chrom-
atography with tandem mass spectrometry (LC–MS/MS)
analysis, protein bands from each gel lane were excised and
digested with trypsin [41]. Further details of LC–MS sample pro-
cessing, data acquisition and data processing are presented in
electronic supplementary material, Methods S1, section 1.

(c) Venom gland collection and RNA isolation
AMG, PMG, gut and remaining body tissue (fat body, muscle tissue
and integument) were carefully removed and placed in separate
ceramic bead tubes containing 500 µl TRI Reagent (Sigma-Aldrich).
The tissues of several individuals were pooled and homogenized
using a TissueLyser LT (Qiagen). Total RNA was extracted using
the Direct-zol RNA Miniprep Kit (Zymo Research). The quantity
of RNA was measured using the Implen N60 nanophotometer
and RNA integrity was confirmed using an Agilent 2100
Bioanalyzer and RNA Nanochip (Agilent Technologies).

(d) RNA-Seq and de novo transcriptome assembly
For all species, transcriptome sequencing of AMG, PMG, gut and
remaining body tissue was performed by the Max-Planck
Genome Center Cologne (http://mpgc.mpipz.mpg.de/home/)
using an Illumina HiSeq3000 Genome Analyzer platform.
Poly(A) mRNA was extracted from 1 µg total RNA using oligo-
dT attached to magnetic beads, and was fragmented to an aver-
age length of 250 bp. Sequencing libraries were generated using
the TruSeq RNA library preparation kit (Illumina) and paired-
end (2 × 150 bp) read technology was used for sequencing. All
generated reads were processed using an in-house assembly
and annotation pipeline as previously described [42]. Details of
assemblies, annotations and RNA-Seq mapping are presented
in electronic supplementary material, Methods S1, section 2.

(e) Venom activity bioassays
Haemolytic activity was determined on defibrinated horse blood
(Thermo Fisher Scientific). Erythrocytes were harvested by cen-
trifugation (1500 g, 3 min), washed three times with PBS and
prepared as a 1 : 10 erythrocyte suspension in PBS. We mixed
20 µl venom extract in PBS (concentrations shown in figure 2)
with 180 µl of the cell suspension (n = 3) in a 96-well plate and
incubated the cells at 37°C for 1 h. We used 1% Triton X-100
and PBS as positive and negative controls, respectively (n = 3).
The cells were centrifuged (2000 g, 10 min) and the supernatants
were transferred to a clear 96-well plate. The absorbance at
440 nm was measured using an Infinite m200 plate reader
(Tecan). Relative haemolysis was calculated in relation to the
positive control (defined as 100%).

Bacterial growth inhibition was tested using a liquid growth
antibacterial assay with Escherichia coli. We inoculated 50 µl of an
E. coli overnight culture into 5 ml lysogeny broth (LB) and incu-
bated the cells at 37°C for 2–3 h. The culture was diluted with LB
to an optical density at 600 nm (OD600) of 0.003 and 90 µl of the
bacterial suspension were mixed with 10 µl venom extract in PBS
(concentrations shown in figure 2) in a clear, sterile 96-well plate.
We used 0.05 mg ml−1 gentamycin and PBS as the positive and
negative controls, respectively. The absorbance at 595 nm was
measured using the Tecan Infinite m200 plate reader over a
period of 24 h at 5 min intervals. The temperature was held con-
stant at 30°C. Relative growth inhibition was calculated in
relation to the positive control (defined as 100%) at the time
the growth control reached OD595 = 0.35.

Cytotoxic effects against Spodoptera frugiperda (Sf9) cells were
tested using an MTT assay based on thiazolyl blue tetrazolium
bromide. The cells were cultured in Sf-900 II SFM medium
(Gibco) containing 0.05 mg ml−1 gentamycin in a sterile 96-well
plate (Thermo Fisher Scientific). After 24 h, the culture medium
was replaced with 100 µl venom extract in culture medium
(concentrations shown in figure 2). We used 100 µl 0.1% Triton
X-100 and 100 µl culture medium as positive and negative
controls, respectively. The cells were incubated at 27°C for 4 h.
The culture medium was then replaced with 100 µl 0.5 mg ml−1

MTT solution in culture medium and incubated at 27°C for 2 h.
The MTT solution was removed and replaced with 50 µl DMSO
per well. After incubation at 27°C for 10 min, the plate was briefly
vortexed, and the absorbance at 540 nm was measured using the
Tecan Infinite m200 plate reader. The relative cell viability was
calculated in relation to the negative control (defined as 100%).
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Statistical analysis: Dunn’s test, n = 3. (d ) Summary of the final venom concentrations (mg ml−1) tested in the different bioassays.
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( f ) Carbohydrase activity assay
The degradation of starch and glycogen by venom extracts was
measured using the 3,5-dinitrosalicylic acid (DNS) method as
previously described [43]. Briefly, crude venom extracts in PBS
(concentrations shown in figure 2) were mixed with either 1%
(w/v) starch or 1% (w/v) glycogen in water at a ratio of 3 : 1
(v/v) and incubated at 25°C for 2 h. An equal volume of a 99 :
1 (v/v) mixture of solution 1 (44 mM DNS, 21 mM phenol,
250 mM sodium hydroxide) and solution 2 (400 mM sodium sul-
fide) was added to each reaction and incubated at 99°C for 5 min.
We then added 200 mM potassium sodium tartrate at a ratio of
1 : 6 (v/v) and measured the absorbance at 575 nm using the
Tecan Infinite m200 plate reader.

(g) Statistical analysis
Statistical analysis was conducted using R v.4.0.3 and the inte-
grated development environment RStudio v.1.2.1335 (http://
www.R-project.org/). For the haemolysis, cytotoxicity and car-
bohydrase activity assays, we performed Kruskal–Wallis tests
with subsequent Dunn’s test for multiple comparisons using
the FSA package [44] in order to identify significant differences
compared to the negative controls. For the analysis of bacterial
growth curves, the data were fitted to a logistic model using
the growthcurver package [45]. Permutation tests for pairwise
comparisons of growth curves were performed using the
statmod package [46].
3. Results
(a) Venom activity toward different substrates
We carried out bioactivity assays on different cells and sub-
strates to identify species-dependent differences in venom
activity. The N. cinerea PMG extract showed strong toxicity
toward horse erythrocytes and Sf9 cells, and inhibited the
growth of E. coli. By contrast, the I. cimicoides and N. glauca
PMG extracts showed little and no activity, respectively,
against erythrocytes, and only mild toxicity toward Sf9 cells.
Whole gland extracts (AMG+PMG) from C. punctata
showed no toxicity toward any of the cells (figure 2a,b). The
ability of extracts to degrade the polysaccharides starch and
glycogen was determined using the DNS method by quantify-
ing the reducing groups released during substrate hydrolysis.
The extracts from I. cimicoides, N. cinerea and C. punctata were
able to degrade both substrates, whereas the PMG extract from
N. glauca did not digest either of them (figure 2c).
(b) Glandular origin of defence and predation venom
AG, AMG and PMG extracts, as well as non-invasively col-
lected venom samples, were fractionated by SDS–PAGE to
visually compare their banding patterns. The protein bands
of prey dummy and defensive venoms resembled the PMG
extracts of the corresponding species, suggesting that the
PMG is the glandular origin of both venom types (figure 3).
Proteomic analysis of excised bands showed that the AMG
and PMG secrete distinct sets of proteins, but the proportion
of gland-specific proteins differed between species. In N.
glauca, 45% of the proteins were secreted by both glands,
whereas in N. cinerea almost all proteins (95%) were specific
to either the AMG or PMG (figure 4). Furthermore, most pro-
teins in the prey dummy and defensive venoms were PMG-
specific or produced by both lobes. Very few proteins were
AMG-specific (electronic supplementary material, figure
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S2), confirming that both the prey dummy and defensive
venoms originate from the PMG.

(c) Protein composition of anterior main gland and
posterior main gland venoms

Next-generation sequencing (RNA-Seq) was carried out to
identify and quantify venom-associated transcripts, thus pro-
viding more insight into the protein composition of AMG
and PMG venom. RNA isolated from the AMG, PMG, gut
and remaining body tissue was used for Illumina sequencing,
which yielded 30–40 million reads per sample. Information
on the de novo reference transcriptome assemblies is provided
in electronic supplementary material, table S1. Most of the
identified proteins were proteases, followed by uncharacter-
ized heteropteran venom proteins assigned to various
families. Digestive enzymes such as lipases, carbohydrases,
nucleases and nucleotidases were also detected (figure 5a).
Tissue-specific RPKM levels showed that most venom pro-
teins were associated with highly gland-specific gene
expression patterns (figure 4). The most abundant transcripts
in the PMG encoded S1 family peptidases and members of
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venom protein family 2 (as well as a CUB domain protein in
N. cinerea), whereas the most abundant transcripts in the
AMG encoded haemolysins, venom protein family 2 mem-
bers and other uncharacterized proteins. In C. punctata, the
most abundant AMG transcripts encoded C1 family pepti-
dases. Ptu1-like peptides, which are common channel
modulators in heteropteran venoms, were detected only in
I. cimicoides. Remarkable interspecific differences were
found among the digestive enzymes. In the three predatory
species, most of the proteases were S1 family peptidases,
whereas more than half of the proteases in C. punctata were
C1 family peptidases, most of which were expressed in the
AMG. Furthermore, several M12 family metallopeptidases
were identified solely in N. glauca (figure 5b). In addition to
proteases, several carbohydrases from different glycoside
hydrolase (GH) families were also identified. The largest
number of GHs was detected in C. punctata and included
families GH1, GH13, GH27 and GH38. In the predatory
species, we identified carbohydrases from families GH13,
GH18, GH37, GH38 and GH56 (figure 5c). We also observed
remarkable differences in the expression of uncharacterized
heteropteran venom protein families. In I. cimicoides, N.
glauca and N. cinerea, most such proteins belonged to
venom protein family 2 and were strongly expressed in the
PMG. By contrast, C. punctata expressed no venom protein
family 2 proteins but did express two venom proteins from
families 5 and 33, which were not present in the other species.
We also identified venom proteins from families 1, 3, 8, 10
and 28 (figure 5d ).
4. Discussion
We used an integrated proteotranscriptomic and bioactivity-
based approach to investigate how ecological niches shape
the venom/saliva protein composition and activity in four
water bug species that coexist in the same aquatic habitats.
The two main salivary glands (AMG and PMG) secreted dis-
tinct and complex sets of proteins, although only the PMG
was found to be involved in envenomation. The composition
and biological activity of the venoms differed between the
four species, so we considered the impact of the microhabitat,
food spectrum and foraging strategy in more detail.

Water bugs are well-adapted to an aquatic lifestyle and
many different species coexist in the same habitat, but despite
this the microhabitat preferences of individual species can
differ considerably. The behaviour of each species reflects
whether it spends its time primarily near the water surface,
on vegetation, or on the sediment at the bottom of the
pond, and this is likely to result in microhabitat-specific
adaptations [17,35]. Notonecta glauca is an active predator,
searching for prey on the water surface or in the water
column, and it is, therefore, exposed to predators
[16,18,34,35]. By contrast, N. cinerea usually hides in veg-
etation to wait for prey, but this low mobility may increase
its susceptibility to predation [29,32]. Both species, therefore,
rely on their potent venom to deter predators. Defensive
venom generally induces pain, which motivates predators
to quickly release their prey and also deters future attacks
through avoidance behaviour [47–49]. For example, the hae-
molytic polypeptide melittin in bee venom induces intense
pain in vertebrates [50,51], mainly by acting directly on
primary nociceptive cells [52,53] but possibly also by disrupt-
ing mast cell membranes and causing tissue damage, thus
triggering the release of pain-inducing compounds [53–55].
Pore-forming peptides from ants [56], spiders [57], fish [58]
and bacteria [59] also have nociceptive effects on vertebrates.
In our experiments, N. cinerea PMG venom had strong hae-
molytic, cytotoxic and antimicrobial effects, indicating the
presence of lytic proteins that may be responsible for severe
pain following envenomation [20]. By contrast, PMG venom
from N. glauca did not show strong lytic activity, although
the Notonectidae are known for their painful stings [60]. In
snake venoms, metalloproteases induce potent hyperalgesia
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possibly by triggering mast cell activation [61–63]. Similarly,
the role of metalloproteases in pain induction, myotoxicity
and inflammation by centipede venom has been discussed
[64,65]. We identified several M12 family metalloproteases
solely in N. glauca venom, which suggests that such proteins
are species-dependent adaptations to a microhabitat with
higher risks of predation. However, a detailed characteriz-
ation of N. glauca M12 family metalloproteases is necessary
to clarify their function and putative role in pain induction.

Microhabitat preferences are also likely to affect feeding
habits because the abundance and availability of food vary
within a water body. Notonecta glauca, I. cimicoides and N.
cinerea are generalist predators that feed on insects and crus-
taceans [16–19,21–23,29,30], and also on vertebrates such as
fish and tadpoles in the case of N. glauca and I. cimicoides
[24–28]. We identified a protein in N. glauca and I. cimicoides
PMG venom that is homologous to venom 50 nucleotidase 1
from the belastomatid L. distinctifemur [13]. Such enzymes
are often found in snake, spider and true bug venoms and
they inhibit platelet aggregation in vertebrate prey [13,66–
69]. This indicates that N. glauca and I. cimicoides have
adapted their venom composition for vertebrate prey, simi-
larly to water bugs of the family Belastomatidae. Predatory
species that feed on large, mobile animals require adaptations
to quickly overwhelm their prey. This is facilitated by mor-
phological structures such as raptorial forelegs or venom
components that induce paralysis. A common channel modu-
lator associated with paralytic activity in heteropteran venoms
is Ptu1, an inhibitor cystine knot (ICK) family peptide first iso-
lated from the assassin bug Peirates turpis [70,71]. Only I.
cimicoides venom contained Ptu1-like peptides, and the tran-
scripts were most abundant in the PMG. Nepa cinerea may
not require paralytic venom because it uses its specialized
predatory forelegs to prevent the escape of its prey [4]. How-
ever, the Notonectidae do not have well-developed raptorial
forelegs and instead quickly paralyze their prey [72–74]. We
found many uncharacterized proteins in N. glauca venom,
including several peptides with no known homologues,
suggesting that prey immobilization by this species is facili-
tated by other proteins with distinct mechanisms of action.
One protein family that was particularly abundant and
strongly expressed in the venom glands of the three predatory
species was heteropteran venom protein family 2, a group also
present in other zoophagous and haematophagous bugs from
various families but not in the phytophagous species investi-
gated thus far [7,8,13,40,75,76]. The role of these proteins is
unclear, but their strict gland-specific expression and abun-
dance in predatory species suggest a key role in predation.
Their complete absence in C. punctata indicates a non-preda-
tory lifestyle. Further research, including the heterologous
expression and characterization of different venom protein
family 2 members, is needed to determine their specific
function in venom activity.

Unlike most water bugs, C. punctata reportedly feeds on
detritus, algae, small insects and crustaceans [29–31]. In
addition to this diet, its mouthpart morphology has also
puzzled scientists because it differs considerably from the
elongated rostrum typical of true bugs (electronic sup-
plementary material, figure S3). These highly specialized
mouthpart structures allow the Corixidae to ingest both
liquid and solid food, a unique feature among heteropterans
[31,74]. Mouthpart morphology and digestive enzymes play
a key role in extra-oral digestion, and changes in enzyme
composition may facilitate adaptation to different food
sources. The ratio of amylase to protease activity has been
used to predict heteropteran feeding habits, assuming that
high protease and low amylase activity represent zoophagy,
whereas low protease and high amylase activity represent
phytophagy [39]. The structural similarity between starch
and glycogen—the main carbohydrate storage products in
plants and animals, respectively—may allow amylases to
digest both substrates, as described for the midgut amylases
of Andralus spinidens [77]. We found that I. cimicoides, N. cinerea
and C. punctata venoms can digest both starch and glycogen,
indicating that the presence of salivary amylases and amylase
activity does not necessarily imply phytophagy. Predatory
insects rely heavily on proteases to digest protein-rich animal
prey. In true bugs, most salivary proteases are serine endopep-
tidases, which have optimal activity at basic or neutral pH [78–
81]. By contrast, cysteine or aspartic endopeptidases (cathep-
sins) are typically found in gut secretions and are most
active at acidic pH [78,79,81,82]. Surprisingly, most of the pro-
teases detected in C. punctata saliva were cysteine-type C1
family peptidases. Salivary cysteine proteases have been
found primarily in phytophagous hemipterans, where they
digest plant-derived proteins and play a role in immunity
against bacterial pathogens [83–86]. In addition, salivary cath-
epsins from aphids elicit plant defences during feeding [87].
The strong association between salivary cysteine proteases
and herbivory suggests that C. punctata secretes C1 pepti-
dase-rich saliva as an adaptation to a mainly plant-based
diet. Similarly, the composition of polysaccharide-degrading
GH families partially reflects feeding type differences between
water bug species. Whereas some GH families (e.g. GH56 hya-
luronidases, GH37 trehalases) are found exclusively in
predacious species, targeting abundant polysaccharides in
prey, bi-functional amylases (GH13) occur in predacious and
herbivorous species. Predacious species could benefit from
dual-function enzymes because the amylase/glycogenase
GH13 enzyme could allow easier access to the major dietary
polysaccharides, enabling (among other factors) potential
host shifts from herbivory to carnivory.

Our study shows that the venom composition and activity
differ among four aquatic bug species occupying different eco-
logical niches within the same habitat. We found remarkable
interspecific differences and identified venom proteins that
probably facilitated adaptations to particular food sources,
foraging strategies and/or microhabitats. Many different fac-
tors influence salivary composition and assumptions about
the dietary habits of true bugs should not rely solely on com-
positional analysis. Furthermore, research covering a wide
range of heteropteran infraorders and families, feeding
habits and ecological niches is needed to derive general pat-
terns and adaptations. Even so, it is clear that the
compositional analysis of salivary venom provides strong evi-
dence for the ecological adaptations of water bugs, and that
the unique venom composition of C. punctata, including the
abundance of herbivory-associated enzymes, is sufficient to
hypothesize a predominantly plant-based diet in this species.
Hypotheses based on venom protein profiles can, therefore,
be used as the basis for additional experiments to determine
the precise ecological niches occupied by hemipteran species.

Data accessibility. The data for this study have been deposited in the
European Nucleotide Archive (ENA) at EMBL-EBI under accession
number PRJEB58831 (https://www.ebi.ac.uk/ena/browser/view/
PRJEB58831). The Illumina short read data can be found with the
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following sample accession numbers: ERS14412810-ERS14412813
(Corixa punctata), ERS14412814-ERS14412818 (Ilyocoris cimicoides),
ERS14412819-ERS14412823 (Nepa cinerea) and ERS14412824-
ERS14412827 (Notonecta glauca). The sequence and transcriptome
assembly data have also been deposited in the Edmond Data
Repository and are directly accessible via the following
weblinks: https://doi.org/10.17617/3.VOQQRJ [88] (Corixa punc-
tata), https://doi.org/10.17617/3.OSCGGN [89] (Ilyocoris
cimicoides), https://doi.org/10.17617/3.7FEIDD [90] (Nepa cinerea)
and https://doi.org/10.17617/3.B0WMNP [91] (Notonecta glauca).

The data are provided in electronic supplementary material [92].
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