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Abstract

Environmental exposures to chemicals are suspected risk factors for non-Hodgkin lymphoma 

(NHL), but few studies have assessed historic environmental risk factors. In this study, we 

estimated the associations between NHL and 1) historic environmental pollutant emissions 

from the Risk Screening Environmental Indicators (RSEI) model, which uses a database from 

the Environmental Protection Agency of toxic release emissions to air, water, and land, and 

2) chemical mixtures measured in house dust (groups of PCBs, PAHs, and two mixtures of 

pesticides) for study participants enrolled in the NCI-SEER population-based case-control study 

(1998–2000) at four SEER centers – Detroit, Iowa, Los Angeles County, and Seattle. We assigned 

11 years of annual temporally-varying historic environmental exposure scores by intersecting 

residential locations from participants’ residential histories with a fine grid from the RSEI model 

and by performing inverse distance weighting between facilities releasing specific carcinogenic 

chemicals and residential locations for spatially-precise exposure assignments. We used Bayesian 

index low-rank kriging multiple membership models to identify important lag times for RSEI 

scores, cumulative effects of RSEI scores, and specific carcinogenic chemical releases into 

the environment. We found a significant positive association between RSEI scores and NHL 

at the maximum time lag of 11 years (OR = 1.17, 95% CI (1.06, 1.32)) and a significant 

cumulative RSEI score effect (OR = 1.30, 95% CI (1.02, 1.84)) for long-term residents in Detroit, 

where benzene and trichloroethylene were the most important chemicals driving this association. 

Additionally, we identified significant inverse associations for two study centers and time lags 

that did not persist in cumulative exposure models. Large weights for dichloromethane and 

pentachlorophenol in models of cumulative exposure also support evidence for their association 

with NHL risk. These results underscore the importance of considering historic and cumulative 
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environmental exposures and using residential histories for diseases with long latency periods such 

as NHL.
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Introduction

The exposome is an emerging framework in epidemiological research. Specifically, this 

approach posits that individuals experience risk of developing adverse health outcomes from 

a variety of exposure sources across their life course1,2 and consists of internal, specific 

external, and general external domains. Many mixtures of exposures act on individuals 

simultaneously, including stressors from the natural, social, policy, and built environments3, 

and the effects of some of these mixtures can increase the likelihood of disease over time. 

The utility of exposome-driven research is particularly apparent for cancer etiology, as many 

cancers can have a long latency period between exposure and diagnosis4–6.

One developing class of models for health outcomes estimates the effects of mixtures 

of exposures, such as chemical concentrations measured in biomarkers or house dust. In 

contrast to single-chemical analyses, these models estimate an overall mixture effect of 

a group or several groups of chemicals, which more realistically capture the effects of 

many chemical exposures that act on individuals at once7. For example, one analysis used 

Bayesian kernel machine regression models to estimate the effects of correlated groups 

of exposures to toxic metals collected in urine samples on oxidative stress biomarkers8. 

Another analysis simultaneously estimated the effects of four groups of chemical exposures 

measured in house dust on risk for non-Hodgkin lymphoma (NHL) using a Bayesian index 

low-rank kriging multiple membership model9. These and other models have generally 

focused on exposures measured inside the body or home and have often identified 

associations between them and disease risk8–11.

In addition to mixtures of chemicals measured in the home or biomarkers, exposure to 

environmental chemicals near the home are of interest, particularly for exposures farther 

back in time when disease latency is long. For example, a feasibility study identified 

residences that were likely to be exposed to common agricultural pesticides by combining 

satellite imagery, study participants’ residential histories, and geographic information system 

(GIS) methods12. An analysis in California also used GIS methods to link pesticide use 

reporting and crop location data from separate state-administered databases in order to 

predict the existence of pesticide use at residential locations13. Retrospective analyses of 

NHL have identified elevated risk associated with residential proximity to dioxin-emitting 

facilities such as lumber and wood products14 and cement kilns15. A commonality of 

these analyses is defining exposure based on proximity to a putative disease-causing 

mechanism and assessing its association with disease status. An alternative strategy is to 

use a comprehensive metric that incorporates many disease mechanisms into one score 

for exposure assignment. The Environmental Protection Agency (EPA) produces summary 
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metrics through its Risk-Screening Environmental Indicators (RSEI) model16, which applies 

toxicity weights that take into account carcinogenicity and potential human exposure factors 

to releases from the Toxics Release Inventory (TRI) database17 in order to produce a unitless 

and relative measure of environmental toxicity score for small areas across the United 

States. For example, the TRI provides estimates of emissions to air for chemicals such as 

benzene, which is a known carcinogen for NHL18–20. The estimated emissions for this and 

other chemicals are combined into an overall score which can be used for an association 

with disease risk. This score provides an opportunity to assess the degree of potential 

historical exposure to toxic chemicals in the absence of measurements on the individual 

level. Additionally, the EPA produces RSEI scores specific to individual chemical releases, 

as well as carcinogenic and non-carcinogenic sub-scores.

We used historic environmental risk scores for residential histories from the National Cancer 

Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) case-control study of 

NHL to address the specific external component of the exposome and NHL risk. Previous 

spatial analyses of residential history data from this study have found areas of significantly 

elevated unexplained risk for NHL in three of four study centers (Detroit, Iowa, and 

Los Angeles) that persisted after adjustment for several environmental, demographic, and 

genetic risk factors collected after diagnosis21–23. A goal of this analysis was to determine 

whether historic environmental exposures based on residential histories are associated with 

risk for NHL. To do this, we modeled NHL and 11 years of historic carcinogenic RSEI 

environmental risk scores using residential histories while adjusting for chemical mixtures 

measured inside the home. For significant associations between historic environmental risk 

scores and NHL, we modeled an index of chemical-specific RSEI scores for NHL in order to 

assess the role of specific chemical releases in NHL risk.

Methods

Study Population.

The NCI-SEER NHL study is a population-based, multi-center case-control study of NHL 

in four areas of the United States (Wayne, Oakland, and Macomb Counties, comprising 

the Detroit metropolitan region; the state of Iowa; Los Angeles County; and King and 

Snohomish Counties, comprising the Seattle metropolitan region). The study population, 

which has been described in detail previously24,25, included 1,321 cases of NHL aged 20 to 

74 years, who were diagnosed between July 1, 1998 and June 30, 2000, at one of the above 

four SEER registries. Population-based controls (1,057) were selected among the residents 

of each SEER registry using random-digit dialing for controls younger than 65 years old 

and Medicare eligibility files for controls older than 65 years. Eligible controls (who did 

not have a history of NHL or HIV) were frequency matched to the cases by age within 

5-year groups, sex, race, and study center. Table 1 summarizes the characteristics of the 

study population by study center.

Study participants completed a lifetime residential history calendar, which asked participants 

to state the complete address of any home they lived in, beginning from birth and including 

temporary or vacation homes where they lived for a total of at least two years. Interviewers 

completed in-person interviews with participants in which they reviewed the calendar with 
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participants and attempted to resolve any discrepancies or missing data in the calendar. 

Residential addresses were geocoded by matching to street databases in a geographic 

information system to obtain geographic coordinates26. Interviewers took global positioning 

system (GPS) readings outside the home to obtain the coordinates for the current home. 

Previous analyses of this data have reported high rates of geocoded addresses and high 

address matching quality23, and the mean number of years in residential histories before 

study entry among participants in our sample was between 52 and 60 years at all study 

centers.

Vacuum cleaner dust was sampled from the homes of consenting participants, the 

details of which have been described elsewhere27,28. The following chemicals were 

measured using gas chromatography/mass spectrometry as previously28 described: 

polychlorinated biphenyls (PCBs) (congeners 105, 138, 153, 170, 180); polycyclic 

aromatic hydrocarbons (PAHs) (benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, 

benzo(k)fluoranthene, chrysene, dibenz(ah)anthracene, indeno(1,2,3-cd)pyrene); pesticides 

(group I) (α-chlordane, γ-chlordane, carbaryl, dichlorodiphenyldichloroethylene (DDE), 

dichlorodiphenyltrichloroethane (DDT), o-phenylphenol, pentachlorophenol, propoxur); 

and pesticides (group II) (chlorpyrifos, cis-permethrin, trans-permethrin, 2,4-D, diazinon, 

dicamba, methoxychlor). We chose this grouping of chemicals for the chemical mixture 

analysis based on previous chemical analysis of NHL risk with univariate associations29,30. 

The pesticides were split into two groups according to positive and negative univariate 

association with NHL. Some measurements contained missing values, which generally 

occurred when the chemical concentration fell below the detection limit of the measuring 

instrument. Assuming a log-normal distribution for concentrations, multiple imputation was 

used to replace the missing values in the range of 0 and the detection limit in ten datasets 

with a fill-in approach, the details of which have been described previously27,29,31. We used 

one imputed dataset at random in our analysis.

Historic industrial emissions.

The United States EPA requires that releases of specific chemicals into the environment 

from federal and industrial facilities be reported through the Toxic Release Inventory (TRI). 

This program was authorized by an act of Congress in 1986, and annual reporting of 

chemical releases began in the following year17. TRI records the location of the emitting 

facility and quantity in volumes of over 700 chemicals released above a reporting threshold 

volume annually to air, water, and land both on- and off-site that may cause chronic health 

effects or significant acute or environmental health effects. The RSEI model16 developed by 

EPA integrates information about the chemical’s mode of transport, toxicity, and potential 

for human exposure with the TRI data to produce a unitless score of relative environmental 

toxicity. The carcinogenic RSEI score is available over a grid covering the United States, 

where each cell has size 810 meters by 810 meters. Additionally, the RSEI model produces 

scores associated with chemical releases at each facility. To identify specific chemicals 

associated with NHL risk, we used the International Agency for Research on Cancer (IARC) 

monographs20 to identify chemicals with sufficient or limited evidence to cause NHL in 

humans. These chemicals spanned Groups 1 to 2B (“The agent is carcinogenic to humans” 

to “The agent is possibly carcinogenic to humans”) defined by IARC.
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To determine annual environmental exposure risk for study participants, we spatially 

intersected the annual residential locations from participant residential histories with the 

RSEI grid and assigned the annual carcinogenic RSEI scores to participants for the period 

1988–2000. For all models fitted in the form of model 1 and model 2, we fit separate 

models assigning exposure from 1) the carcinogenic RSEI score in the grid cell where 

the participant lived or 2) the average of the carcinogenic RSEI scores in that grid cell 

and its first-order neighbor grid cells based on queen contiguity. We assigned exposure 

based on adjacency to represent activity spaces and a larger definition of neighborhoods for 

participants beyond the immediate residential area. This could also address potential edge 

effects for residences near the border of the grid cell containing it. For models fitted in the 

form of model 3, we also assigned annual exposures of the chemical-specific RSEI scores 

using inverse distance weighting between the residential location of the participant at that 

time and all the locations of the facilities releasing chemicals in the state containing the 

residential location. In the statistical analysis described below, we used the logarithm of 

RSEI scores, owing to considerable positive skew in these quantities.

Model Specification.

We used a Bayesian index low-rank kriging multiple membership model (LRK-MMM) to 

model the probability that a study participant had NHL at each SEER study center, treating 

NHL status as a binary response variable Y taking values of 1 and 0 for cases and controls, 

respectively. Assuming that the response variable Yi ~ Bernoulli(pi), where pi represents the 

probability of case membership, we specified three models according to different forms or 

functions of the environmental exposure risk scores:

• Model 1: Carcinogenic RSEI score at time lag t, t = 0, …, 11 years before study 

entry

log pi
1 − pi

= β0 + β1 ∑
j = 1

J1
wj1 qij1 + β2 ∑

j = 1

J2
wj2 qij2 + β3 ∑

j = 1

J3
wj3 qij3 + β4 ∑

j = 1

J4
wj4 qij4 + β5 * rseiit

+ ∑
b = 1

B
θbxib + ∑

r ∈ A(i)

ωir ∑
m = 1

nκ
ψmC sir − κm /ρ

• Model 2: Cumulative carcinogenic RSEI score over all t, t = 0, …, 11 years 

before study entry

log pi
1 − pi

= β0 + β1 ∑
j = 1

J1
wj1 qij1 + β2 ∑

j = 1

J2
wj2 qij2 + β3 ∑

j = 1

J3
wj3 qij3 + β4 ∑

j = 1

J4
wj4 qij4

+ β5 ∑
t = 0

11
wt rseiit + ∑

b = 1

B
θbxib + ∑

r ∈ A(i)

ωir ∑
m = 1

nκ
ψmC sir − κm /ρ

• Model 3: Cumulative chemical-specific carcinogenic RSEI index
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log pi
1 − pi

= β0 + β1 ∑
j = 1

J1
wj1 qij1 + β2 ∑

j = 1

J2
wj2 qij2 + β3 ∑

j = 1

J3
wj3 qij3 + β4 ∑

j = 1

J4
wj4 qij4

+ β5 ∑
t = 0

11
γt ∑

j = 1

J5
wjt qijt + ∑

b = 1

B
θbxib + ∑

r ∈ Ai

ωir ∑
m = 1

nK
ψmC sir − κm /ρ

There are several components that are common to all models. Specifically, β0 is an intercept 

term, and [β1, …, β4] are the estimated health effects associated with the exposure indices 

for PCBs, PAHs, Pesticides I, and Pesticides II groups of chemicals measured at one 

time inside the homes of participants. We adjusted for these indices in all models owing 

to their associations with NHL risk in a previous analysis9 and to permit interpretation 

of the historic industrial emissions index effects in the presence of chemicals measured 

inside the home. For these indices, the estimated importance weight vectors [w1, w2, w3, 

w4] are defined such that the weights wjk ∈ (0,1) for all k in the jth index and ∑k wjk 

= 1. Additionally, the term qijk represents the jth exposure in the kth index for the ith 

individual. Also, the coefficients for the adjustment covariates [xi1, …, xiB] are given by 

[θ1, …, θB]. Finally, the spatial risk component of the model is designed to estimate 

the cumulative spatial risk incurred by participants over their residential histories. The set 

κ1, …, κnκ  represents the nκ knot locations where the spatial random effects are estimated 

(further detail is given below). The residential history for the ith subject is given by the set of 

locations A(i) = [si1, …, siR], with proportions of the time the subject lived in these locations 

[ωi1, …, ωiR]. The set of spatial random effects is given by ψ1, …, ψnK  where each element 

of ψ is evaluated at a knot location chosen by the knot selection algorithm.

The other components of the model vary for the different models of environmental exposure. 

In model 1, the coefficient β5 represents the health effect associated with the ith participant’s 

exposure to rseiit, the carcinogenic RSEI score at time lag t, t = 0, …, 11 years before study 

entry. We chose the maximum time lag t = 11 based on the years of diagnosis/reference date 

for cases and control participants and the first year of reporting for TRI (1988). Model 2 

assumed a more comprehensive effect of environmental exposure and allowed the relative 

importance of different time lags for NHL risk to vary. Here, the coefficient β5 represents 

the health effect associated with the cumulative carcinogenic RSEI score exposure index 

∑t = 0
11 wt rseiit, with estimated importance weights for the yearly importance weights [w0, …, 

w11]. For these models, we also fit separate models using data from 1) all participants within 

a study center or 2) only residents whose entire residential history was contained within the 

geographic bounds of a study center (i.e., long-term residents of the study center). We fit 

models in the form of model 3 to explore the role of specific chemicals’ RSEI scores over 

time for NHL risk in long-term residents of a study center. Our rationale in doing so was 

to identify the specific chemicals that may drive significant associations between an overall 

carcinogenic RSEI score exposure and risk for NHL. For model 3, β5 represents NHL risk 

associated with the cumulative carcinogenic chemical-specific RSEI index, and γt represents 

the importance weight for year lag t. Here, we included all J5 chemicals in the environmental 

exposure index that have been classified as having sufficient or limited evidence to cause 

NHL in humans by IARC and appeared in the TRI at the appropriate geographic and 

temporal dimensions. Though the presence of these chemicals in the TRI varied by study 
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center and year (Supplemental Material Table S5), the index at a given center was a subset 

of the following chemicals (lindane, pentachlorophenol, benzene, dichloromethane, ethylene 

oxide, trichloroethylene). Additionally, for the chemical importance weight vector wjt, t 
= 0, …,11, we used the vector of mean estimated weights for chemicals in the same 

environmental exposure index estimated for separate models of RSEI exposures from lag t, t 
= 0, …, 11.

We fitted Bayesian index LRK-MMMs at each study center to allow for differences in 

chemical and environmental exposure profiles and strengths of association with NHL status 

in different regions of the country. We adjusted for age, gender (male vs. reference female), 

race (Black or Other vs. reference White), and level of education (college degree or high 

school degree vs. reference less than high school degree) in all models, as in previous 

analyses of data from this study21,25,28.

Model Fitting.

To address the spatial risk component, we used nK = 60 knots in all models, which provided 

an adequate balance of representing the spatial distribution of participants and managing 

computational costs. We used the Teitz and Bart heuristic32 to choose knot locations for 

all models described below due to its demonstrated ability for good spatial sensitivity and 

power to identify regions of elevated spatial risk in case-control studies33,34.

For prior distributions, all regression parameters βi received a Normal prior βi ~ N(0, τi), 

where the precision term τi = 1
σi

2  and σi ~ Unif(0,10). The spatial random effects ψ received 

a multivariate normal prior MNV (0, τSΩ−1), where τs = 1
σS

2  and σs ~ Unif(0,10), and the 

precision matrix Ω = [C[|ka – kb|/ρ]], 1 ≤ a, b ≤ nK. We used the Matern family for the spatial 

covariance function, which simplifies to C[|f|] = (1 + |f|/ρ) exp (−|f|/ρ) for distance f when 

fixing parameters in the family of m to 1 and ν to 3
2 , respectively. This family of covariance 

functions has been used in geostatistical models due to its flexibility and smoothness35,36. 

The spatial correlation parameter ρ was assigned a vague Unif(0, ρmax) prior, where ρmax is 

the maximum distance between a knot location and a cell in a fine grid covering the study 

region. The importance weights in each index received a Dirichlet prior with parameter 

vector α = α1, …, αCj , where Cj denotes the number of components in the index, in order that 

the importance weights were between 0 and 1 and ∑j = 1
Cj Wij = 1.

We estimated models with Just Another Gibbs Sampler (JAGS)37 in the software R38, 

version 3.6.1, using Markov chain Monte Carlo (MCMC) methods. In the MCMC 

simulations, each model used two chains that each burned in 80,000 iterations and sampled 

80,000 observations from the posterior distribution. We assessed convergence of model 

parameters using the Gelman-Rubin statistic, considering a parameter to have converged if 

its statistic was less than 1.139, using the coda40 R package.
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Results

Scores for exposure assignments varied considerably by study center and generally 

decreased over the study period (Supplemental Material tables S1–S4). RSEI scores were 

higher in Detroit and Los Angeles than in Iowa and Seattle, with the highest scores at a 

time lag of 11 years in Los Angeles and Detroit. Additionally, assigning exposure based 

on first-order neighbors often led to lower RSEI scores than did assignment based on the 

grid cell where the participant lived. The posterior means and 95% credible intervals for the 

odds ratios from model 1 (Figure 1) show some significant associations between historic 

environmental exposures as measured by carcinogenic RSEI scores at specific time lags and 

NHL risk after adjusting for chemicals measured in the home, individual covariates, and 

cumulative spatial risk.

When using the exposure from the residential grid cell (panel (a)), there exists considerable 

variability in the effect estimates at the Detroit, Los Angeles, and Seattle study centers. 

Notably, there is a significant and positive association between RSEI score exposure and risk 

for NHL in Detroit at 11 years before study entry (OR = 1.07, 95% CI (1.02, 1.13)) that 

increases in strength when only considering long-term residents (OR = 1.17, 95% CI (1.06, 

1.32)). Additionally, there is a slight inverse association for RSEI score for all participants 

in Los Angeles at lag 11 years (OR = 0.91, 95% CI (0.86, 0.96)), and among long-term 

residents in Seattle at lag 9 years (OR = 0.67, 95% CI (0.43, 0.97)) and Los Angeles at lag 

11 years (OR = 0.84, 95% CI (0.69, 0.96)). Generally, there are positive if not significant 

odds ratios at most time lags in Detroit, Iowa, and among all residents in Seattle. Averaging 

the RSEI scores over first-order neighbor grid cells increased precision in the RSEI effect 

estimates (panel (b)), as the credible intervals became notably narrower in Detroit, Los 

Angeles, and Seattle. Additionally, the RSEI score odds ratios became more positive for 

many year lags in Los Angeles and the significant inverse association at lag 11 years did 

not remain. Performing exposure assignment in this way, the significant positive associations 

at lag 11 years in Detroit remained for all participants (OR = 1.05, 95% CI (1.00, 1.10)) 

and long-term residents (OR = 1.09, 95% CI (1.00, 1.19)). There were additional inverse 

associations at lag 11 years in Iowa (OR = 0.94, 95% CI (0.89, 0.99)) and among long-term 

residents in Seattle (OR = 0.89, 95% CI (0.79, 0.98)).

In the model 2 results, there was a significant and positive association between cumulative 

RSEI score exposure and NHL risk among long-term residents in Detroit when using the 

residential grid cell (OR = 1.29, 95% CI (1.00, 1.82)) and all first-order neighbor (OR = 

1.30, 95% CI (1.02, 1.84)) grid cells for exposure assignment (Table 2). In these models, 

exposure at 11 years before study entry received the largest estimated importance weight 

(0.48 and 0.47, respectively), which agreed with the significant and positive association for 

the single-year exposure at this time and study center in Model 1. Additionally, 12 of the 

16 cumulative RSEI score models in the table had estimated importance weights for lag 

11 of greater than 0.10, and in 10 of the 16 models the lag 11 weight received the largest 

estimated weight over all years. In Iowa, the cumulative RSEI score exposure index had an 

elevated but not significant odds ratio for all combinations of grid cells used for exposure 

assignment and inclusion of only long-term residents. In Seattle, the cumulative RSEI 

index had an elevated but not significant odds ratio for all residents using both methods of 
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grid cell-based exposure assignment. We emphasize that while both of these indices have 

elevated associations with NHL risk, they are not significant in these models.

In all study centers, the cumulative chemical-specific carcinogenic RSEI index in Model 3 

was positively associated with NHL risk (Table 3), particularly in Detroit (OR = 1.35, 95% 

CI (0.89, 2.61)). The yearly weights in this cumulative index illustrate the importance of 

historic environmental exposures, with elevated weights at lag 10 and 11 years in Detroit, 

lags 7, 8, and 11 in Iowa (index OR = 1.17, 95% CI (0.56, 2.86), lag 11 in Los Angeles 

(index OR = 1.11, 95% CI (0.61, 2.12), and lag 10 in Seattle (index OR = 1.16, 95% 

CI (0.74, 2.03) (Figure 2). We note that despite elevated associations with NHL risk 

at each study center, the cumulative chemical-specific carcinogenic RSEI index was not 

significantly associated with NHL risk at any study center.

Over this time range, the chemical importance weights tended to be largest for 

pentachlorophenol in Iowa, Los Angeles, and Seattle, and for dichloromethane in Detroit 

(Figure 3). In addition, large chemical importance weights in indices close to study entry 

may be related to weights for these chemicals at longer lag times due to possible similarities 

in chemical emissions profiles over space and time.

At each center, the annual models that estimated these chemical importance weights 

(Supplemental Material Table S6) had improved goodness of fit at certain time lags 

compared to the cumulative model. For example, in Detroit at lag 11, the chemical-specific 

RSEI index was significantly and positively associated with NHL (OR = 1.11, 95% CI (1.00, 

1.25)), and this model had lower DIC than the cumulative one. In this index, benzene (0.327) 

and trichloroethylene (0.266) received a majority of the importance weight.

Discussion

In this study, we estimated the associations between historic environmental pollutant 

exposure measures and NHL risk using Bayesian index LRK-MMMs, which use residential 

histories to adjust for cumulative spatial risk when estimating mixture effects. We found 

a significant positive association between carcinogenic RSEI scores at a time lag of 11 

years before diagnosis and NHL risk for residents of the Detroit study area. Eleven years 

was the farthest back in time we could go based on availability of RSEI data. Notably, 

these associations did not persist at times closer to diagnosis. We also identified significant 

inverse associations with NHL risk among participants in Los Angeles at lag 11 years 

and in Seattle at lag 9 years. This finding may be attributable to a number of factors. For 

example, because the estimated association in Los Angeles at lag 11 years is markedly 

different than its counterparts in all other years, it is possible that higher variability in 

chemical emissions estimates to the TRI in its first year of existence may have led to 

estimated associations that were not borne out in later years. Further, we found a significant 

positive association between cumulative carcinogenic RSEI scores over the 11-year exposure 

period and NHL for long-term residents in Detroit, with exposure scores at 11 years 

having the largest importance weight in the index. Using a cumulative exposure index 

also attenuated the significant inverse associations in Los Angeles and Seattle at lags 

11 and 9 years respectively to the null. Following up on these findings, we identified 
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positive associations between NHL and an index of chemical RSEI scores among long-

term residents at each study center, with pentachlorophenol and dichloromethane showing 

the strongest associations with risk. Additionally, we identified a significant and positive 

association for an index of specific carcinogens from RSEI in Detroit at lag 11, with benzene 

and trichloroethylene receiving the majority of the weight in the index. This significant 

association could explain some areas of elevated risk for NHL in Detroit from previous 

analyses22,23 that persisted after adjusting for environmental, demographic, occupational, 

and genetic factors.

The findings in this study contribute to the existing literature surrounding environmental 

risk factors and NHL. Some studies have identified elevated risk for NHL from 

exposures to groups of organic solvents18,41–43 and proximity to facilities in the 

lumber, wood products, and chemical industries14. However, exposures to specific 

chemicals such as benzene18–20,44,45, diazinon20,46, DDE47, polychlorinated dibenzo-

p-dioxins and dibenzofurans48, toluene18,19, styrene19, PCB congeners20,47,49–51, and 

trichloroethylene20,44,52,53 have demonstrated varying degrees of association with NHL 

risk. Our study sought to add to the literature in several ways. First, our modeling 

strategy used an extension of the Bayesian group index model, which has demonstrated 

the ability to accurately estimate mixture effects and the importance of components in 

mixtures in the presence of high within- and between-mixture correlations54, as well as 

accommodate different directions of association between several mixtures and the outcome 

simultaneously. Second, we used a large public database with fine spatial precision to 

estimate environmental exposure measures based on all reported chemical releases as well 

as environmental toxicity weights. Third, we used residential histories to consider historic 

environmental exposures. Through these analytic choices, our study was able to estimate 

a series of annual environmental exposure risk effects in a case-control study that adds 

evidence to the literature for the associations of benzene and trichloroethylene with NHL 

risk due to the significant annual finding in Detroit. Additionally, the large weights across 

many years in the cumulative models for pentachlorophenol and dichloromethane support 

evidence for their association with NHL risk. Notably, the evidence for pentachlorophenol 

carcinogenicity in humans is considered by IARC to be sufficient; whereas, evidence for 

benzene, trichloroethylene, and dichloromethane and NHL is considered limited20. The 

EPA recently prohibited the manufacture, sale, and distribution of pentachlorophenol in the 

United States55.

The strengths of our study should be considered alongside its limitations. First, the EPA’s 

calculation of RSEI scores relies upon the chemical releases reported in the TRI database, 

which may be incomplete or reported with error in released chemical volumes due to 

industrial reporting practices. Second, while the many null associations estimated in our 

study are not inherently a limitation, they may demonstrate the challenges in working with 

historic chemical emissions data, particularly at individual time lags. This may encourage 

the use of cumulative and more stable environmental exposure indices in future research. 

Additionally, the dates of enrollment for the NCI-SEER NHL study and of the beginning 

of reporting to the TRI enabled us to estimate environmental exposures at a maximum 

of only 11 years before study entry for all participants. The high estimated importance 

weights of exposures at the longest lag – correspondingly, generally when exposure scores 
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were higher – suggest that stronger associations between environmental exposures and 

NHL risk exist farther back in time. We only included chemicals in the index for long-

term residents in Model 3 that were IARC-identified carcinogens for NHL that appeared 

in this time range in the database of chemical releases (Supplemental Material Table 

S5). The lack of reported chemical emissions to TRI at other study areas at this time 

point (e.g., there were no reported releases of pentachlorophenol in Detroit) may indicate 

that high exposures to specific carcinogens for NHL drove the significant associations 

found in Detroit, and not simply high carcinogenic RSEI scores. Also, our analysis did 

not distinguish between different histologic subtypes of NHL and treated all subtypes 

identically. Because considerable etiologic heterogeneity has been demonstrated for different 

NHL subtypes, particularly in risk factors between T-cell and B-cell lymphomas56, this work 

was unable to capture how different environmental exposures may be associated with risk 

of different NHL subtypes. Finally, non-participation was present in the formation of our 

analysis sample. Some eligible cases and controls were not included in the sample because 

they had died, they or their physician refused, they could not be located, they moved out of 

the study area, or they were otherwise ill, impaired, or unable to be contacted. However, a 

spatial analysis of NHL risk did not find a substantial change in risk estimates between all 

eligible participants and actual participants23. Additionally, an analysis of the bias regarding 

educational attainment in census tracts between participants and eligible non-participants 

found only a small degree of bias (between 1% and 8%) in the estimates for NHL risk57.

In summary, our study findings demonstrate the importance of considering historic 

environmental exposure risk in the context of diseases with long latency periods such as 

NHL. Future studies focusing on the effects of environmental exposures should consider 

using a long period of historic exposures, which is becomingly increasingly possible because 

reporting to the TRI continues into the present day. In addition, future studies should 

leverage existing and novel methods to estimate the effects of environmental exposures to 

chemicals such as benzene and trichloroethylene on NHL risk. Finally, similar studies to 

ours in other geographic areas will help to guide policies that limit the extent of chemical 

releases into the environment, with a focus on releases into low-socioeconomic status 

neighborhoods, which often bear the brunt of environmental chemical exposures58.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• We assigned 11 years of historic environmental exposure scores based on 

residence.

• Used Bayesian index low-rank kriging multiple membership models to 

identify lags.

• Found a significant positive association between exposure scores and NHL.

• Benzene and trichloroethylene were the most important chemicals.

• Results show importance of considering historic environmental exposures.
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Figure 1. 
Summary of carcinogenic RSEI score associations with risk of NHL by time lag and study 

center from model 1.

Note: Quantities presented in table are posterior mean and posterior 95% credible interval 

for the odds ratio. Panel (a) assigns RSEI score exposure at one grid cell, and panel (b) 

assigns RSEI score exposure averaging over all first-order neighbor grid cells, including the 

one in which the participant lived. All models adjusted for age, gender, race, educational 

attainment, chemicals measured in the home, and cumulative spatial risk. “LT” denotes 

long-term residents at a given study center.
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Figure 2. 
Summary of estimated yearly importance weights in the cumulative chemical-specific 

carcinogenic RSEI index in Model 3 by study center. DET = Detroit (Wayne, Oakland, 

and Macomb counties); IA = Iowa; LA = Los Angeles County; SEA = Seattle (King and 

Snohomish counties)
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Figure 3. 
Summary of estimated chemical importance weights in Model 3 by yearly lag and study 

center. DET = Detroit (Wayne, Oakland, and Macomb counties); IA = Iowa; LA = Los 

Angeles County; SEA = Seattle (King and Snohomish counties)
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Table 1.

Characteristics of the NCI-SEER NHL study population by study center.

Center Detroit Iowa Los Angeles Seattle

Participants All LT All LT All LT All LT

Sample Size 201 99 335 198 292 109 342 81

Status

 Case 127 (63) 64 (65) 188 (56) 106 (54) 168 (58) 63 (58) 182 (53) 47 (58)

 Control 74 (37) 35 (35) 147 (44) 92 (46) 124 (42) 46 (42) 160 (47) 34 (42)

Age (years) 58 (11.4) 56 (12.1) 61 (11.2) 61 (11.7) 59 (11.2) 57 (11.4) 59 (10.8) 56 (12.1)

Sex

 Male 114 (57) 54 (55) 177 (53) 105 (53) 165 (57) 63 (58) 171 (50) 45 (56)

 Female 87 (43) 45 (45) 158 (47) 93 (47) 127 (43) 46 (42) 171 (50) 36 (44)

Race

 White 164 (81) 83 (84) 331 (99) 195 (98) 215 (74) 73 (67) 316 (92) 75 (93)

 Non-white 37 (19) 16 (16) 4 (1) 3 (2) 77 (26) 36 (33) 26 (8) 6 (7)

Education

 < 12 years 23 (11) 12 (12) 32 (10) 23 (12) 31 (11) 15 (14) 19 (6) 8 (10)

 12–15 years 124 (62) 67 (68) 241 (72) 152 (77) 171 (59) 67 (61) 201 (59) 48 (59)

 >= 16 years 54 (27) 20 (20) 62 (19) 23 (12) 90 (31) 27 (25) 122 (35) 25 (31)

Note: Age summarized using mean (standard deviation) and all other variables summarized using count (percent). “LT” denotes long-term 
residents at a study center whose entire residential history was contained within the geographic bounds of the study center. Some percentages may 
not sum exactly to one due to rounding.
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Table 2.

Cumulative RSEI score index associations with risk of NHL by study center and model type from model 2.

Center
Grid 
Cells Residents

RSEI Score Year Lag Importance Weights

OR
95% 
CI 0 1 2 3 4 5 6 7 8 9 10 11

Detroit

One All 1.12
(0.92, 
1.42) 0.07 0.13 0.07 0.08 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.27

One LT 1.29
(1.00, 
1.82) * 0.04 0.07 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.04 0.05 0.48

Avg All 1.18
(0.98, 
1.54) 0.07 0.16 0.07 0.08 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.29

Avg LT 1.30
(1.02, 
1.84) * 0.04 0.07 0.04 0.05 0.04 0.04 0.04 0.05 0.06 0.05 0.05 0.47

Iowa

One All 1.01
(0.95, 
1.07) 0.07 0.07 0.08 0.11 0.09 0.07 0.08 0.07 0.07 0.07 0.09 0.13

One LT 1.04
(0.97, 
1.11) 0.07 0.07 0.07 0.11 0.12 0.09 0.11 0.07 0.07 0.09 0.08 0.06

Avg All 1.01
(0.95, 
1.08) 0.07 0.07 0.08 0.11 0.09 0.07 0.08 0.06 0.07 0.08 0.10 0.13

Avg LT 1.03
(0.97, 
1.11) 0.08 0.07 0.07 0.10 0.10 0.08 0.11 0.07 0.07 0.09 0.08 0.06

Los 
Angeles

One All 0.91
(0.82, 
1.03) 0.03 0.04 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.69

One LT 0.88
(0.67, 
1.17) 0.05 0.06 0.05 0.05 0.07 0.06 0.05 0.05 0.05 0.05 0.05 0.40

Avg All 0.91
(0.82, 
1.03) 0.04 0.04 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.63

Avg LT 0.86
(0.64, 
1.13) 0.06 0.06 0.06 0.06 0.08 0.07 0.05 0.06 0.05 0.05 0.05 0.36

Seattle

One All 1.01
(0.93, 
1.10) 0.08 0.08 0.08 0.08 0.08 0.09 0.08 0.09 0.09 0.08 0.08 0.08

One LT 0.75
(0.49, 
1.03) 0.07 0.07 0.07 0.06 0.07 0.09 0.08 0.07 0.07 0.15 0.10 0.10

Avg All 1.01
(0.93, 
1.10) 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.08 0.08 0.08

Avg LT 0.79
(0.53, 
1.07) 0.07 0.07 0.07 0.06 0.07 0.08 0.08 0.07 0.07 0.14 0.10 0.11

Note: Quantities presented in table are posterior mean and posterior 95% credible interval for the odds ratio. In the “Grid Cells” column, “One” 
denotes exposure assignment from the residential grid cell, and “Avg” denotes the average of the residential grid cell and its first-order neighbors. 
In the “Residents” column, “All” denotes all participants from a study area and “LT” denotes only the participants who were long-term residents 
of the study area. Significant associations, defined as those with credible interval excluding the null odds ratio value of one, are displayed with an 
asterisk. All models adjusted for age, gender, race, and educational attainment. Model 2 estimated a cumulative carcinogenic RSEI score index.
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Table 3.

Odds ratios for cumulative chemical-specific carcinogenic RSEI index among long-term residents.

Center Odds Ratio 95% CI DIC

Detroit 1.35 (0.89, 2.61) 238.2

Iowa 1.17 (0.56, 2.86) 422.1

Los Angeles 1.11 (0.61, 2.12) 373.7

Seattle 1.16 (0.74, 2.03) 421.2

Note: DIC represents the deviance information criterion, where lower values indicate better-fitting models.
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