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Abstract

Per- and Polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals that are in 

widespread use and present concerns for persistence, bioaccumulation and toxicity. Whilst a 

handful of PFAS have been characterised for their hazard profiles, the vast majority of PFAS have 

not been studied. The US Environmental Protection Agency (EPA) undertook a research project to 

screen ~150 PFAS through an array of different in vitro high throughput toxicity and toxicokinetic 

tests in order to inform chemical category and read-across approaches. A previous publication 

described the rationale behind the selection of an initial set of 75 PFAS, whereas herein, we 

describe how various category approaches were applied and extended to inform the selection of 

a second set of 75 PFAS from our library of approximately 430 commercially procured PFAS. In 

particular, we focus on the challenges in grouping PFAS for prospective analysis and how we have 

sought to develop and apply objective structure-based categories to profile the testing library and 

other PFAS inventories. We additionally illustrate how these categories can be enriched with other 

information to facilitate read-across inferences once experimental data become available. The 

availability of flexible, objective, reproducible and chemically intuitive categories to explore PFAS 

constitutes an important step forward in prioritising PFAS for further testing and assessment.
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1.0 Introduction

1.1 Background

Per- and Polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals that have been 

in use since the late 1940s [1,2]. PFAS are found in a wide array of consumer and industrial 

products such as stain- and water-resistant fabrics and carpeting, cleaning products, paints 

and firefighting foams. Due to their widespread use and persistence in the environment, most 

people in the United States have been exposed to PFAS and there is evidence that continued 

exposure above specific thresholds to certain PFAS may lead to adverse health effects [3-5].

Whilst a handful of PFAS have been well characterised in terms of their hazard, for 

example perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), little 

toxicity information exists for the vast majority of PFAS [6-8]. Indeed, PFOA and PFOS 

have been shown to cause reproductive, developmental, liver, kidney and immunological 

effects in laboratory animals [9]. There is also evidence for toxicity in humans [6]. However, 

evaluating thousands of PFAS using traditional toxicity testing approaches would require 

extensive resources in terms of animals, cost and time. Proactive decision-making to address 

the potential concerns with PFAS could take advantage of so-called “New Approach 

Methodologies” (NAMs). NAMs have been adopted as a broadly descriptive reference 

to any technology, methodology, approach, or combination of these that can provide 

information on chemical hazard and risk assessment that avoids the use of intact animals 

[10]. NAMs capture in vitro approaches such as high throughput screening (HTS) and high 

throughput transcriptomics (HTTr) as well as in silico approaches such as (Quantitative) 

Structure Activity Relationships ((Q)SARs) and read-across.

In 2018, a research programme was initiated by the US Environmental Protection Agency 

(EPA) and the National Toxicology Program (NTP) to develop a risk-based approach for 

conducting PFAS toxicity testing to facilitate PFAS human health assessments [11]. A 

targeted selection of a representative set of 75 PFAS from an early version of an EPA 

commercially procured PFAS library was made using a set of predefined, expert-based 

structural categories. Concurrently, the EPA published its action plan for PFAS [12] which 

advocated for the use of computational toxicology approaches to fill information gaps by 

making use of chemical grouping approaches. This has been superseded by the publication 

of the PFAS Roadmap on the 18th October 2021 along with the publication of the National 

Testing Strategy (see https://www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-

action-2021-2024).

In our earlier manuscript [11], we outlined a workflow for how the first 75 substances, 

denoted as Phase 1, were selected as part of the tiered toxicity and toxicokinetic testing 

strategy. Herein we provide additional context for the selection of a second set of 75 

substances, denoted as Phase 2, highlighting efforts to develop PFAS category approaches 

based on clear structure-based rules that are chemically intuitive as well as computationally 

scalable and reproducible. We show how such an approach can be projected onto much 

larger PFAS chemical inventories to begin profiling, comparing, and assessing the structural 

landscape of various PFAS lists. Lastly, we summarise some early insights derived from 

selected NAMs data generated with respect to these structural categories.
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The aims of this manuscript are as follows:

1. Summarise the process of constructing the Phase 2 PFAS testing library, which 

when combined with the Phase 1 set of 75 PFAS, completed the selection of the 

combined ~150 PFAS Phase 1 & 2 library undergoing toxicity and toxicokinetic 

screening.

2. Highlight overlaps in the chemical landscape of the Phase 1 & 2 substances 

selected when compared with various PFAS inventories.

3. Outline the structural categories used in the PFAS selection and the challenges 

identified during both selection and the initial analysis.

4. Propose structural categories that are reproducible and demonstrate their utility 

in profiling other PFAS inventories beyond the testing library of 430 PFAS that 

was ultimately constructed.

5. Summarise the data being generated as part of the in vitro toxicity and 

toxicokinetic testing, highlighting how these categories can be used to explore 

new insights. One data stream will be used for illustration.

2.0 Development of a PFAS testing library and structural categories

1. Construction of the PFAS testing library

Since there are no PFAS specific chemical vendor catalogues, a scoping exercise was 

first conducted to investigate the feasibility of procuring a large sample library of PFAS. 

This was approached in two ways: 1) to enrich the library with PFAS that had been 

identified in the environment or were in the purview of EPA for the purposes of method 

development, risk assessment, etc., and 2) to draw from as large an inventory of substances 

as possible using the Distributed Structure-Searchable (DSSTox) Database [13]. DSSTox 

forms the basis of the EPA CompTox Chemicals Dashboard (referred to herein as the 

Dashboard) [13,14] and comprises 906,511 substances (https://comptox.epa.gov/dashboard/ 

April 2022). At the time of initial PFAS library construction, several thousand PFAS had 

been curated from public regulatory and monitoring (e.g., mass spectral library) sources. 

Initial consideration of the latter applied various filters based on Carbon/Fluorine ratio, 

molecular weight, aromaticity, metal-containing, etc., to identify potential candidate PFAS. 

This resulted in a list of ~1200 substances that was provided to EPA’s chemical contractor, 

Evotec Inc., to determine the practical feasibility of procuring as many of the substances 

as possible. (Note: supplier catalogues were searched for both parent and salt forms of 
the listed substances as a matter of course.) Samples that were successfully procured and 

were not obviously gaseous or highly reactive were solubilised in DMSO to the highest 

target concentrations of 100mM, with lesser achievable concentrations of 10-30mM used to 

create stock solutions. Chemicals whose top achievable concentration was less than 10mM 

were labeled as insoluble in DMSO. The final set of substances that make up the sample 

library, referred to herein as PFASINV-430, is available as a list on the Dashboard at https://

comptox.epa.gov/dashboard/chemical-lists/EPAPFASINV.
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The selection of ‘representative’ PFAS for testing was performed in several phases. In the 

first phase (Phase 1), described in a previous publication [11], 75 PFAS were chosen from 

solution stocks that were available at the time, and these were contemporaneously submitted 

for both initial screening as well as analytical quality control (QC) analysis. Additional 

PFAS were being procured at that time and the testing library was still evolving. In the 

second phase (Phase 2) of PFAS selection, the full library of 480 procured substances was 

available from which to select the next set of 75 PFAS. This was later reduced to 430 

chemicals that were deemed soluble in DMSO and testable.

2. Selection of ‘representative’ PFAS

Whilst there are many ways in which a representative subset of PFAS can be selected 

through cheminformatics approaches, the initial Phase 1 testing sample library was 

characterised on the basis of 53 expert-defined structural categories, building upon the 

classification hierarchy first described by Buck et al., (2011) [2]. Rather than selecting 

specific PFAS, the structural categories derived were prioritised to address two overarching 

objectives — 1) maximising the ability to perform a read-across (making inferences for 

PFAS based on related PFAS with existing in vivo toxicity data); and 2) characterising the 

structural diversity and coverage of the PFAS landscape. Using the prioritised categories, 

the first 75 PFAS were selected from 271 substances available at that time on the 

basis of the following considerations: interest to EPA, category size (number of category 

members), structural diversity, testability (taking into account solubility/volatility issues), 

as well as availability of existing in vivo toxicity data (as sourced from the EPA Toxicity 

Values Database – see Judson et al, in preparation, for further information). The specific 

considerations are described in more detail in [11] and the Phase 1 list of substances is 

available for download at https://comptox.epa.gov/dashboard/chemical-lists/EPAPFAS75S1 

(last accessed 07 July 2022).

The process by which the second set of 75 PFAS was selected largely followed the same 

process except for two main differences: firstly, a portion of the Phase 2 substances were 

identified a priori as part of a nomination process (soliciting EPA Program Offices, Regions 

and States to nominate any PFAS within the testing library of particular interest) and, 

secondly, the expert-based structural categories needed to be extended to account for greater 

diversity and full scope of the PFAS inventory, so the entire library needed to be mapped to 

structural categories.

Initially, the expert-assigned structural categories for the original evolving PFAS library 

(PFASINV-271) were mapped to the final PFAS inventory list (PFASINV-430). In the 

meantime, given the challenges of assigning categories to several hundred more diverse 

chemicals in a reproducible, transparent way, a parallel effort had been made to codify 

PFAS structural categories using Markush representations (https://chemaxon.com/products/

markush-tools), which permits an unambiguous definition of what constitutes membership 

of a category. The complete set of Markush representations that have been codified to date is 

available at https://comptox.epa.gov/dashboard/chemical-lists/EPAPFASCAT (last accessed 

07 July 2022). During PFAS Phase 2 substance selection, 43 distinct and in some cases, 

overlapping Markush categories were mapped to the PFASINV-430 inventory chemicals; 
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however, they only provided coverage of 35% (~150) of the full 430 inventory. Hence, they 

were deemed to provide insufficient coverage to serve as categories for the entire inventory. 

Since that time, the number of PFAS Markush representations that have been registered 

and mapped to “child” structures in DSSTox has greatly expanded. At the time of this 

writing (April 2022), there are 112 published PFAS categories, and this list has grown to 

326 PFAS Markush representations to be publicly released in the next Dashboard release. 

Hence, although they were not the primary means used for categorisation in our Phase 2 

PFAS selection, Markush representations do have many qualities that argue for their greater 

use in future studies.

Concurrently with this historical PFAS Phase 2 selection exercise, the OECD had 

published a large database of 4729 PFAS (see http://www.oecd.org/chemicalsafety/portal-

perfluorinated-chemicals/) in which each PFAS substance had been manually assigned into 

an expert-defined categories. There were a total of 165 unique categories grouped under 

8 broad categories [namely perfluoroalkyl carbonyl compounds, perfluoroalkane sulfonyl 

compounds, perfluoroalkyl phosphate compounds, fluorotelomer-related compounds, per- 

and polyfluoroalkyl ether-based compounds, other PFAA precursors and related compounds 

- perfluoroalkyl ones, other PFAA precursors or related compounds - semifluorinated and 

fluoropolymers]. This OECD PFAS database was extensively curated by mapping chemical 

structures to identifiers and registering these in DSSTox; this is available as a defined list at 

https://comptox.epa.gov/dashboard/chemical-lists/PFASOECD (last accessed 07 July 2022). 

The structural categories identified for overlapping substances in the OECD database were 

directly mapped back to the PFASINV-430 library, and any substances lacking an OECD 

database or Markush PFAS structural category were assigned by manual inspection into 

one of the original Phase 1 expert-assigned PFAS structural or OECD database categories. 

Thus, a tiered, hybrid approach of Markush > original Phase 1 manual assignment (expert) 

> OECD database category was used to assign each substance in the PFASINV-430 PFAS 

library to a category. Using this tiered structural scheme led to a significant increase in 

the number of unique structural categories, from 53 in Phase 1 to 127 in Phase 2. There 

were 30 PFAS nominated by EPA Program Offices, Regions and States. The remaining 45 

substances were identified using the 127 categories and similar considerations employed in 

Phase 1, yielding a total of 150 PFAS, 75 each from Phases 1 and 2. The final set of Phase 

2 PFAS can be found at https://comptox.epa.gov/dashboard/chemical-lists/EPAPFAS75S2 

(last accessed 07 July 2022). This process is summarised in Figure 1.

The ad hoc compilation of 127 expert-based categories used in the selection of Phase 2 

chemicals reflected the significant structural diversity of the PFAS library available for 

testing, whereas a comparison of counts among the different sub-inventories shown in Figure 

2 shows that this structure diversity is present in each of the sub-inventories.

Figure 2 shows the number of substances per category in the full library (PFASINV-430) as 

depicted by the blue bars (denoted as Full library). The orange bars (denoted as Phase 1 or 

2) indicate which structural categories Phase 1 and Phase 2 substances were drawn from. 

Phase 2 is additionally broken out to show the diversity of categories for the substances that 

were nominated by EPA Program Office, Regional, or State partners versus being proposed 

in accordance with the prioritised structural categories workflow used in Phase 1.
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Whereas the expert-based categories were useful in aiding the design of these initial testing 

libraries and served to highlight the degree of structural diversity present, they are difficult 

for non-experts to reproduce or extend to larger PFAS inventories beyond the reference 

OECD library. Hence, this pointed to the need for an objective, reproducible structure-based 

approach for assigning structural categories moving forward.

3. Defining the PFAS landscape

The chemicals for which NAMs data were being generated in the course of Phase 1 

testing needed to be put into the context of a larger PFAS landscape. Indeed, PFAS 

encompass a wide universe of substances with very different physical and chemical 

properties, including gases (e.g., perfluorobutane), liquids (e.g., fluorotelomer alcohols), 

surfactants (e.g., perfluorooctanesulfonic acid), and solid material high-molecular weight 

polymers (e.g., polytetrafluoroethylene [PTFE]). For this reason, it is helpful to arrange 

PFAS that share similar chemical and physical properties into groups. The PFAS groups 

may be divided into two primary categories: polymer and non-polymer. For the purposes 

of this manuscript, only non-polymer PFAS that can be readily characterised by a chemical 

structure were considered as framing a prospective PFAS landscape. It is worth noting 

that there is a distinct list on the Dashboard that, as of the time of writing, captures 

1258 substances that are characterised as PFAS but which have no explicit structures (see 

https://comptox.epa.gov/dashboard/chemical-lists/PFASDEV1 last accessed 07 July 2022). 

These chemicals may have some form of Markush representation in certain cases and 

be mapped to related monomers. Consensus of what the chemical landscape of PFAS 

truly encompasses remains an evolving subject of debate [15],[16]. The Dashboard (https://

comptox.epa.gov/dashboard) contains many different PFAS lists (39 lists as of June 2022) 

that represent different research and regulatory interests beyond the sample testing library 

already described. Williams et al. [16] discusses PFAS lists and their construction in more 

detail. The PFASOECD list represents the PFAS listed in the OECD Global Database that 

was used to assign structural categories in the selection of the ~150 PFAS. PFASKEMI 

represents PFAS (2418 substances) identified by the Swedish Chemicals Agency. Other 

lists that are much smaller in size capture PFAS of research interest to EPA, as well as 

PFAS studied in the broader scientific literature. The largest PFAS list relevant to this 

manuscript contains PFAS structures identified within DSSTox, named PFASSTRUCT, is in 

its 4th iteration (labelled PFASSTRUCTV4) (as of August 2021). This list comprises 10,776 

substances with chemical structures and represents one of the largest PFAS collections 

amongst the 39 lists. The list includes all DSSTox records with an explicit (non-Markush) 

structure assigned, where the structure is characterised by one or more different structural 

patterns as shown in Figure 3. These rules are designed to be simple, reproducible 

and transparent, yet general enough to encompass structures having sufficient levels of 

fluorination to potentially impart PFAS-type properties.

A specific PFAS list (named PFASOPPT herein) was also developed to serve the needs of 

the EPA PFAS National Testing Strategy (NTS) that was published in October 2021 (https://

www.epa.gov/assessing-and-managing-chemicals-under-tsca/national-pfas-testing-strategy). 

This list is a subset of PFASSTRUCT based on the Office of Pollution Prevention 

and Toxics (OPPT) PFAS “working definition” with additional filters. Here we describe 
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the development of the PFASOPPT list. DSSTox was used as the starting inventory of 

substances. First, the entire inventory was filtered based on the substructural moiety -CF2- 

to produce a subset containing 38,382 structures. Next, the resulting set was filtered on 

the basis of the OPPT PFAS working definition. This definition is as follows: a structure 

that contains the unit R-CF2-CF(R’)(R”) where R and R’ and R” do not all equal H and 

the carbon-carbon bond is saturated (note: branching, heteroatoms and cyclic structures are 

included (see https://www.epa.gov/pesticides/pfas-packaging for the definition). A series of 

additional filters were then applied: 1) carbon and oxygen centered radicals were removed 

(this removed five substances); 2) non-zero total charge, bare anions (such as sulfonates 

and carboxylates) were excluded; 3) salt forms and organometallic complexes containing 

exotic element counterions were removed so that the formulae would only be made up 

of the following elements: B, C, F, H, Cl, Br, I, N, O, P, S, Li, Na, Mg, K, Zn; 4) 

removal of structures containing 5- and 6-membered ring structures containing one or more 

double bonds or containing one or more heteroatoms (i.e. non-carbon). The resulting set 

of substructure filters removed >2000 substances from the filtered set. Filtering out this 

set of limited ring constraints resulted in the retention of saturated cyclic rings (>3 ring 

cycles) that could contain heteroatoms. As a result of these multiple filters, the remaining 

set comprised 6558 discrete structures. One last filter considered vapour pressure as a means 

to characterise volatility. Vapour pressure predictions could not be derived for 54 substances 

such that the final PFASOPPT list comprised 6504 substances (see supplementary data).

4. Developing PFAS structural categories

4.1. Reproducible objective structural categories: ToxPrint categories

Towards the goal of developing a set of structure-based categories that could be applied 

to the larger PFASSTRUCT and PFASOPPT lists, we considered use of a set of public 

fingerprints tailored to the environmental toxicity landscape. ToxPrint chemotypes (or 

ToxPrints) are a public set of 729 sub-structural features that can be generated through 

a public tool, namely, the Chemotyper (Yang, Tarkhov et al. 2015)[17] (chemotyper.org). 

For any structure-data format (SDF) file, Toxprints can be exported as a binary fingerprint 

file (0 or 1, representing if a chemotype is absent or present). The ToxPrint set consists 

of 729 uniquely defined CSRML (Chemical Subgraphs and Reactions Markup Language) 

representations specifically designed to provide broad coverage of inventories consisting of 

tens of thousands of environmental and industrial chemicals including pesticides, cosmetics 

ingredients, food additives and drugs. ToxPrints capture a broad diversity of chemical atom, 

bond, chain and scaffold types to represent chemical patterns and properties relevant to 

various toxicity and safety assessment concerns. (Note: The commercial tool available for 

generating ToxPrints, as well as other chemical descriptor information, is Corina Symphony 

(https://www.mn-am.com/products/corinasymphony)). Precomputed ToxPrints have been 

generated for a large portion of the DSSTox structures including the majority of the 

PFAS content and can be readily downloaded as a flat file (tsv or csv file format) using 

the Dashboard’s batch search [18]. Categories derived using ToxPrints could potentially 

be augmented with other information, such as computed property information, to derive 

Structure-Activity Relationships (SARs) for the NAMs data being generated.
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As an alternative approach to Markush categories, the feasibility of deriving structural 

categories for the PFAS substances using ToxPrints within the ~150 set undergoing testing 

was investigated. The aim was to derive a set of standardised and chemically intuitive 

categories that could be used to explore the substances tested, develop hypotheses when 

evaluating the NAMs data, and provide a means to compare and contrast different PFAS lists 

on a generalised structural plane.

A set of ToxPrint categories for the PFAS-150 chemical domain was derived using single 

ToxPrints or combinations of ToxPrints, which were tagged with category labels for 

convenience. The workflow undertaken to create this set of ToxPrint categories is described 

as follows. Initially a ToxPrint fingerprint file was computed for all the substances and 

aligned with the hierarchy of manual, OECD database and Markush categories previously 

assigned for the PFAS testing library. ToxPrints that were not present in any of the structures 

were removed. ToxPrints that were common across the PFAS class, such as C-F, were 

also excluded. The intention of this approach was to identify a subset of ToxPrints that 

differentiated substances within the PFAS space, and provided for some level of grouping, 

i.e., were present in multiple chemicals. Sixty-four ToxPrints were found to be present in 

fewer than three chemicals and were excluded, together with 16 identified as redundant 

as a result of the hierarchical nature of the ToxPrints. The starting set thus comprised 41 

ToxPrints which were utilised to define the initial PFAS categories. Note: A description of 

a more generalised and tailored approach to deriving specific PFAS ToxPrints is discussed 

elsewhere (Richard and coworkers, in prep). The initial set of ToxPrint PFAS categories 

were defined by visual inspection of features relative to initial manual category assignments. 

A subset of 34 categories, denoted TxP_PFAS_34cat, were derived, either from single 

ToxPrints or Boolean combinations of ToxPrints, that were able to group the vast majority 

of the 150 PFAS. These included ToxPrints representing isolated functional groups, such 

as primary alcohols, sulfonic acids etc., as well as a few PFAS-specific ToxPrints, such as 

perfluoro-propyl, -butyl, -hexyl, and -octyl chains. (See Supplementary Information for the 

TxP_PFAS_34cat feature set – TxP_Categories_revised_021019.xlsx and Code Notebook 

03).

5. Characterisation of the PFAS landscape

Comparisons of the testing library (PFASINV-430) relative to other lists described earlier 

were performed in several ways as follows:

1. on the basis of the substance identifiers, DTXSIDs to compare the overlap in 

actual substances;

2. profiling by TxP_PFAS_34cat category to generate a perspective of the 

frequency counts of membership across the PFAS categories;

3. dimensionality reduction techniques on computed structural fingerprints to 

visualise coverage by list source or TxP_PFAS_34cat category.
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5.1 Characterisation by DTXSID

The overlap of PFASINV-430 relative to other lists on the basis of the DTXSID substance 

identifiers was compared. In Table 1, the intersection of DSSTox identifiers by counts 

of substances was computed across the following lists: PFASOECD, PFASSTRUCT, 

PFASOPPT, PFASINV-430 and PFAS-150 (PFAS-150 was a concatenation of Phase 1 and 2 

test substance lists). Figure 4 shows a Venn diagram of the overlap across the PFASOPPT, 

PFASINV-430 and PFASSTRUCT lists.

The PFASOPPT and PFASSTRUCT inventories overlap considerably as expected. The 

manner in which PFASOPPT was filtered based on both practical constraints and the 

OPPT working definition accounts for the differences between them. Similarly, the overlap 

between PFASSTRUCT and PFASINV-430 shows small differences, largely due to the 

nature of how PFASINV-430 had been originally constructed using simple C/F ratios 

and filters which have since evolved to the refined substructural queries used to create 

PFASSTRUCT.

5.2 Profiling by TxP_PFAS_34cat category membership

A selection of different PFAS lists were profiled on the basis of the TxP_PFAS_34cat 

categories to provide a representation of the frequency of substances within these categories 

and to highlight the diversity across both the categories and the different lists. The lists 

selected were namely: the PFASOECD list to provide a context for a globally constructed 

list of PFAS, the PFASSTRUCT list to showcase the full list of structurally discrete 

PFAS within DSSTox, the PFASINV-430 to highlight the diversity of the testing library 

constructed, the PFASOPPT list, and finally the PFAS-150 list to highlight those PFAS that 

were selected for testing in the NAMs assays.

The PFASOECD list available on the Dashboard comprised 4729 substances, with the 

PFASOECDNA subset (with associated SMILES indicating explicit structures) containing 

3213 chemicals. The PFASSTRUCT list (version 4) comprised 10,776 substances and the 

associated SMILES were downloaded from the Dashboard. SMILES were available for 

428 of the PFASINV-430 set of substances. The PFASOPPT comprised 6504 substances 

for which SMILES were available. Each of these sets of SMILES were processed through 

Corina Symphony in order to generate ToxPrint fingerprint files which were then parsed 

into TxP_PFAS_34cat categories using a series of logic statements based on the category 

membership definitions.

Expert-based structural categories formed the lynchpin for how a subset of representative 

PFAS were selected for NAMs testing. Manually annotating categories using the 

terminology described by (Buck, Franklin et al. 2011) [2] as a guide was feasible 

and pragmatic based on the limited numbers of substances in the initial testing library 

(PFASINV-271). For Phase 2, this manual annotation was more onerous as a much more 

diverse set of 430 substances needed to be assigned to categories. Rather than manually 

assigning each substance, three schemes (Markush, OECD database and expert structure 

manual) had been used in a hierarchy, but in doing so, the number of categories significantly 

increased from 53 to 127. There were clear redundancies between the categories but, aside 
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from the Markush representations, the main challenge thwarting resolution of the differences 

was due to the expert-assigned categories not lending themselves to precise definition or 

reproducibility. The initial manual assignments were all performed by visual inspection 

and whilst nominally consistent, since only one individual was making the assignments, 

the expert-based approach was prone to error and not easily reproducible. The assignments 

provided by OECD were similar in their genesis – they were manually assigned by the same 

person(s). Indeed, as noted by Sha et al., [19] (Sha, Schymanski et al. 2019), ‘authors of 

many of the published literature studies on PFAS have often ended up deriving bespoke 

naming conventions for categories which leads to the generation of a lot of parallel 

nomenclature that differ, creating unintended barriers to effective communication among 

scientists’.

Although the assignment of manual categories was pragmatic and feasible for the 271 

substances, the approach was not suited for efficiently and rapidly comparing different 

PFAS landscapes. For example, how does the OECD list compare with the PFASOPPT? 

What insights can be derived from the PFASINV-430 and to what extent does this inform 

a larger and broader landscape of PFAS such as PFASOPPT? Whereas the overlap in the 

chemical identifiers on a substance level can be compared, this does not address the issue 

of whether the overall chemical structural landscape is similar across the different lists; 

arguably this requires a different level of aggregation. Using reproducible structure-based 

categories as a lens provides an efficient and effective means to objectively compare and 

contrast the lists relative to each other. One of the challenges with using manual assignments 

is that there are no explicit descriptions to determine membership – what constitutes 

membership in a category are expert dependent heuristics based on the chemistry but with 

no formal or unambiguous definition to characterise the boundaries (applicability domain). 

Indeed, categories in the OECD database were captured under eight general headings which 

included many broad terms to describe the membership. For example, ‘other perfluoroalkyl 

carbonyl-based non-polymers or perfluoroalkanesulfonyl based non-polymers’ broadly 

define what substances were intended to be captured. In the period separating the Phase 

1 and Phase 2 selections a number of Markush category definitions were created but 

as noted these only covered 35% of the testing library. The TxP_PFAS_34cat categories 

developed and described in Section 4 captured a nested hierarchy of functional group 

and chain length characteristics which could be readily used to profile chemicals and 

assign them into structural categories in an objective and reproducible manner. Figure 5 

provides a normalised count plot of the number of substances annotated into a specific 

TxP_PFAS_34cat category and how the distribution of categories differs across various lists 

for comparison. It is important to note that TxP_PFAS_34cat categories permit one-to-many 

relationships such that a substance may be a member of one or more categories. For 

example, a substance could be a member of a chain category, as well as a functional group 

category.

Figure 5 also provides specific insights into the regions of chemical structural space that 

are not necessarily well captured by the 34 TxP_PFAS_34cat defined categories or that 

could not be assigned to a TxP_PFAS_34cat category (tagged as No_TxP_Cat). Indeed 6.9% 

of the substances in the PFASSTRUCT list were not annotated by one of the 34 existing 

categories, whereas this value was 5.1% in the PFASOECD list, 4.1% in the PFASOPPT 
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list and, 3.0% of the PFASINV-430. This is not unexpected since the means by which the 

TxP_PFAS_34cat categories were originally conceived was by attempting to harmonise and 

optimise the 3 schemes for the testing set of substances (PFAS-150). An additional caveat is 

that the majority of the TxP_PFAS_34cat categories are based on recognition of functional 

groups, independent of their contiguous or near attachment to a perfluoro chain. Whereas 

within the original 430 PFAS test library, this could be reasonably assumed, proximity of 

the functional group to the perfluoro chain is not necessarily the case for the much larger, 

more structurally diverse PFAS inventories. That said, the 34 TxP_PFAS_34cat categories 

nonetheless provide a high level means of describing the PFAS based on their structural 

functional chemistry and, as defined, were able to cover over 90% of the lists profiled.

5.3 Characterisation of the PFAS landscape by dimensionality reduction

The 729 possible ToxPrints were computed for the four lists (PFASSTRUCT, PFASINV-430, 

PFAS-150 and PFASOPPT) and the fingerprint matrices concatenated together and tagged 

by source inventory list and TxP_PFAS_34cat category. t-Distributed Stochastic Neighbor 

Embedding (t-SNE) (van er Maaten and Hinton 2018)[20], a nonlinear dimensionality 

reduction technique, as implemented in the sklearn library, was applied to the ToxPrint 

features and projected onto 2 dimensions.

The dimensionality reduction technique provides a snapshot using one specific 

characterisation of structural features that are not necessarily tuned to represent all the 

characteristics pertinent to PFAS. Based on the landscape depicted in Figure 6, the 

PFASINV-430 and PFAS-150 lists do appear to be reasonably distributed within the overall 

PFASSTRUCT and PFASOPPT lists, thereby highlighting their broad representation across 

much larger PFAS landscapes. The PFASSTRUCT landscape is evenly distributed with 

smaller clusters of similar substances around the boundaries of the landscape.

Figure 7 shows the entire landscape of substances in all the lists but overlaid by 

TxP_PFAS_34cat Category revealing distinct regions populated by certain structural 

categories.

Further refinement of these TxP_PFAS_34cat categories to expand coverage of PFAS-

relevant features and the derivation of new custom TxP_PFAS_34cat features/categories 

to expand coverage of the PFAS-relevant features and to better account for contiguous 

associations of functional groups to the perfluoro region of the chemical, (Richard et al., 

in prep) will likely provide greater granularity and specificity in characterising these PFAS 

substances (projections not shown). Areas of particular interest would include means of 

capturing incomplete fluorination and branching patterns (see [21]) for a SMILES-based 

approach to detecting linear and branched forms of PFOA analogues).

6. Hierarchy of PFAS structural categories

From a practical perspective, a hierarchy could enable PFAS structural categories to be 

aggregated to fewer, larger, but more diverse categories or partitioned into a larger number 

of smaller categories that are more structurally homogenous depending on application 

use case(s). Categories could also be aggregated or partitioned to incorporate NAMs’ 
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mechanistic data. Ongoing work within the OECD/UNEP Global PFC Group (OECD 

2021) has endeavoured to review the universe and terminology of per- and polyfluoroalkyl 

substances to provide updated recommendations and practical guidance regarding the 

terminology of PFAS. Specifically, a revised PFAS definition has been proposed: ‘the 

fluorinated substances that contain at least one fully fluorinated methyl or methylene 

carbon atom (without any H/Cl/Br/I atom attached to it), that is any chemical with at 

least a perfluorinated methyl group (–CF3) or a perfluorinated methylene group (–CF2–) 

is a PFAS’ [15]. In addition, the OECD workgroup has proposed comprehensive (though 

not exhaustive) overview of PFAS groups and their structural traits has been derived to 

highlight the broad categories of PFAS, such as PFAAs (perfluoroalkyl acids) and PFAA 

precursors, for example perfluoroalkanoyl fluorides. The terminology described by the 

OECD [15] provides a first step to facilitate a more consistent means of characterising 

and categorising PFAS – which is certainly tractable for assignment of substances on a 

case-by-case basis. Noteworthy is that the OECD guidance calls for further development of 

cheminformatics-based tools to automate systematic characterisation of PFAS. Efforts such 

as the TxP_PFAS_34cat categories, as described in brief here, offer a means to augment this 

manual scheme as part of a hierarchy.

Other cheminformatics approaches applied to the PFAS space include the work by Sha 

et al. (2019) (Sha, Schymanski et al. 2019) [19], who presented a proof of concept to 

systematically parse a PFAS into fragments to facilitate categorisation. This effort was 

initially limited to a small number of categories, so was not employed for our categorisation 

efforts. However, in a more recent study, not available during the Phase 2 chemical selection 

period, Su and Rajan [22] (Su and Rajan 2021) developed a database framework to facilitate 

structural category assignment of PFAS, referred to as “PFAS-Map”. Their framework 

provides a means to automatically categorise PFAS using the classifications previously 

published by Buck et al (Buck, Franklin et al. 2011) [2] and OECD (OECD 2018) [23] by 

using structure and molecular descriptors, specifically PaDEL descriptors (Yap 2011) [24]. 

Su and Rajan (Su and Rajan 2021) [22] implemented this as an open-source tool (https://

github.com/MatInfoUB/PFAS_Map_MaDE_UB) that enables large numbers of PFAS to 

be objectively and systematically profiled into broad OECD categories. They describe a 

minimum of nine broad categories, namely:

• PFAS derivatives

• PFAAs

• Perfluoro PFAA precursors

• Non-PFAA perfluoroalkyls

• FASA-based PFAA precursors

• Fluorotelomer-based PFAA precursors

• Silicon PFAS

• Side-chain fluorinated aromatics PFAS

• Other aliphatic PFAS
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Substances that do not fall into one of these categories were assigned into an “Others” 

category (with some exceptions as observed in Figure 8). Substances that could not be 

programmatically assigned into a category based on their structural information were 

assigned as ‘unclassified”. For illustrative purposes, one of the lists described earlier, 

PFASOPPT, was profiled into these broad OECD categories using the implementation from 

Su and Rajan [22]. Figure 8 shows a count plot of the frequencies of substances of the 

PFASOPPT list into these categories illustrating how the vast majority of substances of 

interest lie in an “Others” category.

Figure 9 shows the relationship of the PFAS-Map OECD categories relative to the 

TxP_PFAS_34cat categories. Each OECD category captures several different functional 

groups. Consistent with the breakdown of the PFAS-Map OECD categories within the 

terminology scheme itself, PFAAs can be subcategorised into PFAS containing sulfonic 

or carboxylic acids as well as their ether carboxylic or sulfonic acids, both of which 

are separately characterised within the TxP_PFAS_34cat categories. The ‘Others’ category 

is the least tractable as it captures a much broader and heterogeneous collection of 

TxP_PFAS_34cat categories. Identifying a means of partitioning this broad category into 

pragmatic subcategories is an area of ongoing study.

7. Refining categories based on physicochemical property information 

associated with OECD categories

Carbon number/volatility thresholds offer an additional means to refine structural categories 

to better explain the activity or toxicity profile observed. For illustration, each PFAS-Map 

OECD category was subcategorised on the basis of number of C atoms (nC) with a threshold 

of 8 being used to discriminate between longer vs shorter main carbon backbone (≥8 vs 

<8). As a surrogate for volatility, vapour pressure was predicted using the QSAR model 

available as part of the OPERA suite of tools [25], (https://github.com/kmansouri/OPERA). 

The predictions (provided in log units mmHg) were converted to their non-log equivalents 

and a threshold of 100 mmHg was used to discriminate between potentially volatile and non-

volatile substances. This threshold was informed in part by the analytical work conducted on 

the actual test samples (Wetmore et al, in prep) which revealed that this was a reasonable 

approximation for discriminating likely volatility. Thus, there were three subcategories 

for each of the PFAS-Map OECD categories: greater or equal to 8 carbons (gte8), less 

than 8 carbons (lt8) and volatile. At least 27 category-subcategory combinations could be 

enumerated. Figure 10 shows the landscape of the PFASOPPT relative to these category 

combinations.

Such a hybrid categorisation approach may offer a means to generate insights to help explain 

bioactivity or toxicity results within a structural category; however, the large number of 

“Others, gte 8’ limits application of the method and continues to present challenges.

8. New Approach Methodologies (NAMs): in vitro testing

The construction and examination of PFAS categories described in Part 1 was in anticipation 

of assay data for the Phase 1 and Phase 2 PFAS datasets that could potentially lead 
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to structure-activity insights. Given the dearth of toxicity data for most PFAS, assays 

were chosen to cover the breadth of biology expected to be observed for the PFAS-150 

based on the available toxicity data on legacy PFAS chemicals, mainly PFOS and 

PFOA. The NAM approaches selected included screens for developmental neurotoxicity, 

developmental toxicity, immunotoxicity, endocrine disruption and general toxicity, as well 

as experiments to predict the disposition and metabolism of PFAS. The specific assays 

included the Zebrafish embryo developmental toxicity assay [26]; the microelectrode array 

(MEA) network formation assay for developmental neurotoxicity [27]; selected targeted 

high-throughput screening assays (from vendors ACEA [28]), and Attagene [29]) for 

estrogen receptor-dependent cell proliferation, transcription factor activity, and oxidative 

stress; the BioSeek Diversity Plus assays [30] for phenotypes including immunosuppression; 

high-throughput transcriptomics (HTTr) [31] and phenotypic profiling (HTPP) [32] assays 

to broadly profile biological activity; and in vitro toxicokinetic assays [33]. The assays are 

listed in Table 2 along with their purpose and endpoints. The analysis of the Attagene/ACEA 

data has since been published [34], and it will be briefly used here to illustrate the utility of a 

structural category approach in evaluating NAM data.

8.1 Application of the TxP_PFAS_34cat categories to the Attagene dataset in Houck et al 
(2021)

The structural categories (TxP_PFAS_34cat) described earlier provide an initial and 

pragmatic means of subsetting the PFAS from the broader landscape into groups that can 

be helpful in formulating an initial hypothesis grounded by the expectation that similar 

substances are likely to behave similarly with respect to their activity and toxicity. Ideally, 

the goal is to derive a hierarchy of structural categories that are informed by biological 

information based on the toxicity/toxicokinetic testing being undertaken such that a set 

of categories are created that are similar in terms of their chemistry, physicochemical 

properties, reactivity, mechanisms of action, toxicokinetics, and toxicological responses. 

These categories could then be used prospectively to predict the likely profile of untested 

PFAS in the remaining landscape. Moreover, these categories would provide a perspective of 

the activity coverage of the remaining landscape that would be informative to identify next 

steps in strategic testing and assessment.

As noted in Table 2, several ToxCast assay platforms were run to generate data, one of 

which was the Attagene (ATG) platform which comprises a battery of cis- and trans-factorial 

assays. These assays provide some general information pertaining to toxicity using assay 

endpoint probes that capture nuclear receptor and other transcription factor activity. Trends 

in the assay data can be explored through a structural category lens as reported in [34]. 

The analysis of the ATG data, and how the insights should be interpreted in light of other 

orthogonal assays relevant to in vivo toxicity studies, was described in detail in the article.

For purposes of illustrating use of PFAS categories, chemical-level data for ATG and ACEA 

ToxCast assays were taken from the supplementary information in Houck et al (2021) and 

the long format of the data was pivoted on the basis of hitcall. TxP_PFAS_34cat structural 

categories were merged with the resulting ATG data frame and categories that had fewer 

than 3 members were filtered out from further consideration. A pairwise similarity of 
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substances within each structural category was computed using the bioactivity hitcall data 

in order to investigate the bioactivity similarity within the categories. The hitcall data were 

then grouped by TxP_PFAS_34cat category and a distance matrix was computed using 

Jaccard distance as the metric. Boxplot and swarm plots were constructed to visualise the 

distributions across categories. An enrichment analysis using hitcall assay data relative to 

TxP_PFAS_34cat categories was performed. TxP_PFAS_34cat category assignments were 

converted to a binary matrix and Fisher exact statistics were computed for all assays based 

on TxP_PFAS_34cat category memberships. An assay was considered to be enriched within 

a structural category if its odds ratio was greater than or equal to 3 and its p-value was less 

than 0.05 (see, e.g., chemotype enrichment examples in [35]).

8.2 Application and refinement of structural categories using NAM data

ATG data was available for 117 substances (out of the original ~150) that had passed 

analytical sample QC. After merging with TxP_PFAS_34cat category data and filtering 

based on at least 3 members per category, there were 115 substances remaining which 

were characterised by 22 TxP_PFAS_34cat categories out of the full set of 34 categories 

represented. Figure 11 presents a count plot of the number of substances captured in each 

TxP_PFAS_category. It is worth re-noting that a substance may exist in more than one 

category.

Membership within a structural category was apparently insufficient to account for the 

differences in activity (on the basis of hitcall) (Figure 12). This variation is not unexpected 

and can help to reveal SARs particularly if there is a large difference in activity within 

a narrowly defined category. Of note, there was a large amount of dissimilarity in the 

bioactivity profile within each structural category with the purely chain categories perFoctyl 

and perFhexyl showing the most diversity, likely due to differences in terminal functional 

groups. In support of this conjecture, and in contrast, the bioactivity profiles were more 

consistent for categories reflecting functional group membership, e.g., silanes, rather than 

chain length.

A similar pattern was observed when chemical pairwise Spearman indices within a 

TxP_PFAS_34cat category where the AC50 profile across all ATG assays is used to 

characterise a given chemical (Figure 13).

An enrichment analysis was performed to better understand whether there were specific 

assays that were enriched within a specific structural category to start to uncover the 

differences observed in boxplot distributions in Figure 12. Fisher exact statistics were 

computed for all assay results based on presence or absence of hits relative to inactives 

within a specific structural category. A structural category was considered enriched in assay 

actives (i.e., hits) relative to inactives if the odds ratio for detecting the category feature 

in hits was equal or greater than >= 3, its p value was less than <0.05, and there was a 

minimum of 3 hits within the category. Thirteen TxP_PFAS_34cat categories were enriched 

within the active space of one or more assays, spanning 3 main functional groups – with a 

carboxylic acid root, with a sulfonate root, alcohol and acrylate- based. The 2 chain length 

category features were also enriched in assay hits for multiple assays.
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There were four transcription factor profiling assays whose hits were enriched for 

the TxP_PFAS_COOH category, of which NURR1_TRANS_up (categorised by cell 

differentiation) had the highest odds ratio. Other assays that were particularly enriched were 

for PPARa_TRANS_up, PPARg_TRANS_up, and PPRE_CIS_up. The only assay whose hit 

space was enriched for the PFAS_COOH_ether was for PPARa_TRANS_up. These specific 

assays measured activation of different nuclear receptors such as peroxisome proliferator 

activator receptors (PPAR). Peroxisomes are organelles involved in fatty acid metabolism 

that protect cells from reactive oxygen species generated during metabolism.

In contrast, the TxP_PFAS_sulfonate category feature was enriched in a different 

set of assays compared to TxP_PFAS_COOH, namely IR1_CIS_up, HNF6_CIS_up, 

AP_2_CIS_up, RARg_TRANS_up and TGFb_CIS_up. The TxP_PFAS_sulfonamide 

feature was also enriched in hits in several assays, including PPRE_CIS_up and 

PXRE_CIS_up. The TxP_PFAS_sulfonyl was a more general category feature that 

was enriched in the actives for 7 assays, including the assays already identified for 

the more specific categories. The TxP_Acrylate category feature, in turn, was most 

significantly enriched in assays related to ER activity, stress and differentiation namely 

H1F1a_CIS_up and Sox_CIS_up. In contrast, alcohol category features were most enriched 

in GRE_CIS_up hits. The profile of assays containing category enrichments was quite 

different for fluorotelomer alcohols, with steroid hormone receptors VDFR_TRANS_up and 

RXRa_TRANS_up actives found to be most enriched for this feature.

Among the assays whose active space was enriched with chemicals containing C6- and 

C8-perfluorinated chain features, ER assay actives were enriched in the PXRE_CIS_up 

assay, whereas the C8 category feature was enriched in actives in the NRF2_ARE_CIS_up 

assay, the latter an indicator of oxidative/electrophilic stress. These exploratory insights are 

discussed and justified in more detail in [34]. Such indicators are nonetheless useful to 

highlight, albeit in a qualitative manner, the sort of activity profiles that might be expected 

within structural category feature domains.

Conclusions and Next steps

Manual assignments built off the terminology and definitions proposed by Buck et al. [2] 

were initially a helpful means of categorising PFAS into groups to aid in the selection of 

representative substances for NAMs testing. However, the approach presented challenges in 

assigning large numbers of chemicals and for performing such assignments in a reproducible 

and systematic manner.

Markush structure-based categories, offer an alternative and complementary option to 

define unambiguous categories moving forward, but rely on expertise and Markush-capable 

software to curate, and cheminformatically represent and expand/enumerate the categories. 

On the other hand, a large number of PFAS Markush representations (326) are currently 

registered in DSSTox, to be published with the next Dashboard release, up from the 112 

presently viewable on the public Dashboard. This set continues to grow with ongoing review 

and expert examination and enables structure-data linkages across an increasing breadth of 

the PFAS Markushable landscape (see [16]).
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Given the pressing need to move towards an unambiguous structure-based category 

approach for planning the early phases of our PFAS testing program, we opted for an 

approach that provided broad coverage of our procured chemical test library, and that 

aligned well with the existing expert-based categories proposed by Buck et al., [2] and 

others. We were able to exploit the public ToxPrints and tailor a subset of these to the target 

PFAS library space. A set of 34 TxP_PFAS_34cat categories were derived from individual 

and Boolean combinations of ToxPrints which helped to both bound and differentiate within 

the full candidate testing library of PFAS (PFASINV-430), as well as the 150 PFAS selected 

for NAMs testing. Profiling of the PFAS-150 and other larger lists, e.g. PFASSTRUCT, 

using the TxP_PFAS_34cat categories coupled with 2D projections based on the original 

ToxPrints provided context for how diverse and representative the PFAS-150 were relative to 

a broader PFAS landscape. A limitation of the TxP_PFAS_34cat feature set used to define 

categories is that as more diverse PFAS beyond the initial PFAS-150 set are considered, 

functional groups are more often distant from the perfluorinated portion of the molecule.

Moving forward, an expanded set of custom PFAS fingerprints will be employed that 

attempt to address this limitation as well as that of branching (Richard et al., in prep).

The battery of assays in which the PFAS-150 library is undergoing screening has been 

briefly described. Preliminary insights have been gained for a subset of the nuclear receptor 

data to showcase how structural categories can be informative in deriving preliminary SARs 

that can be used prospectively to infer likely activity profiles of untested substances. Due to 

the complexities with branching and rings, a further area of study remains to investigate to 

what extent NAM results from linear PFAS forms can be inferred for branched PFAS.

A new phase of chemical selection occurred after testing had started (August 2020). In 

this phase 3, substances were nominated on the basis of ongoing research projects or 

specific EPA regulatory focused needs. Across the different stakeholders, a total of 76 

unique substances were proposed. For the substances identified, physicochemical parameters 

such as logP (logKow), vapour pressure, and boiling point were predicted and aligned 

with their structural category assignments. The TxP_PFAS_34cat categories described 

earlier were used to assign each of the substances. The majority of substances proposed 

contained sulfonate, ethers or carboxylic acid groups as their primary functional groups. 

The substances identified were merged with sample inventory information as well as 

availability of information in the Toxicity Values Database (ToxValDB) (Judson et al., in 

prep). Substances that could not be tested based on observations recorded during Phase 1 

and 2 were excluded from consideration as were substances that were already being tested 

(discussed in Wetmore et al, in prep). A similar scoring scheme as had been devised in 

Phase 1 and 2 was used to prioritise substances for Phase 3. This took into account not only 

whether a substance had been proposed by more than one stakeholder but also aimed to 

factor in learnings about volatility and DMSO solubility from Phases 1 and 2. Categories 

were prioritised based on read-across needs relative to in vivo data availability. As a result of 

this prioritisation approach a set of 16 substances were proposed with potential alternatives 

that are being subject to analytical measurements to inform final selections and further 

NAMs testing.
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Highlights

• The process of creating categories to select second set of 75 PFAS for 

screening is described

• A set of 34 computable and reproducible structural categories for ~150 PFAS 

are described

• The degree to which the 34 structural categories cover PFAS landscapes of 

potential interest to EPA is illustrated

• The 34 categories are contrasted with other categorisation schemes

• Toxicity and toxicokinetic assays for the EPA research project are described

• Exploring SAR insights using ToxCast nuclear receptor activity screening 

data is shown
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Figure 1: 
Summary of the process used to select the second set of 75 Phase 2 PFAS substances for in 
vitro screening.
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Figure 2: 
Count plots across all 127 structural categories for the PFASINV-430 library. The legend tag 

is used to highlight those categories from which substances were selected for Phase 1 and 

Phase 2 testing. A substance was assigned to a single category.

Patlewicz et al. Page 23

Comput Toxicol. Author manuscript; available in PMC 2023 November 05.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 3. 
Structural features characterising the PFASSTRUCTv4 list
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Figure 4. 
Overlaps between the PFASOPPT, PFASINV-430, and PFASSTRUCT lists on the basis of 

DTXSID identifiers.
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Figure 5. 
Normalised count-plots summarising the outcomes of profiling selected PFAS lists by their 

TxP_PFAS_34cat categories.
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Figure 6: 
2D-tSNE plot to illustrate how the PFASINV-430 and the PFAS-150 are distributed relative 

to the larger PFASSTRUCT and PFASOPPT lists. This representation provides some context 

to qualify the relevance and representativeness of the NAMs testing library relative to a 

much larger and broader landscape of PFAS. Colour density was adjusted so that the smaller 

lists would not be obscured by the larger numbers of substances in the PFASSTRUCT and 

PFASOPPT lists.
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Figure 7: 
TSNE plot of PFASSTRUCT relative to the other inventories colour coded by 

TxP_PFAS_category
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Figure 8. 
Count plot of the number of substances in each of the PFAS-Map OECD categories for the 

PFASOPPT inventory.
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Figure 9. 
Crosswalk between the TxP_PFAS_34cat categories and the PFAS-Map OECD categories 

for the PFASOPPT list.
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Figure 10. 
Count plot of PFASOPPT summarising membership relative to the proposed subcategories 

for the PFAS-Map OECD categories.
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Figure 11: 
Count plot of ATG tested PFAS filtered for membership >= 3 substances
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Figure 12. 
Jaccard pairwise similarity on hitcall data for the 115 substances tested. Boxplot (to show 

the distribution of Jaccard similarities) and swarmplot (showing each pairwise similarity) 

that is overlaid shows the distribution of the chemical pairwise Jaccard similarity indices 

within a TxP_PFAS_34cat category where the hitcall profile across all ATG assays is used to 

characterise a given chemical. Within a category, the frequency of pairs of chemicals sharing 

very similar (Jaccard = 1) or different (Jaccard = 0) activity profile are shown.
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Figure 13. 
Spearman rank correlations on potency data for the 115 substances tested. Boxplot (to 

show the distribution of Spearman rank correlations) and swarmplot (showing each pairwise 

rank correlations) that is overlaid shows the distribution of the chemical pairwise rank 

correlations within a TxP_PFAS_34cat category where the AC50 profile across all ATG 

assays is used to characterise a given chemical. Within a category, the frequency of pairs of 

chemicals sharing very similar or different activity profile are shown.
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Table 1.

Overlaps by DTXSID across selected PFAS lists

PFASOECD PFASSTRUCT PFASOPPT PFASINV-
430

PFAS-
150

PFASOECD 4729 3723 2677 310 119

PFASSTRUCT 3723 10776 6356 403 139

PFASOPPT 2677 6356 6504 348 131

PFASINV-430 310 403 348 428 146

PFAS-150 119 139 131 146 146
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