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Abstract

Headwater streams and inland wetlands provide essential functions that support healthy 

watersheds and downstream waters. However, scientists and aquatic resource managers lack 

a comprehensive synthesis of national and state stream and wetland geospatial datasets and 

emerging technologies that can further improve these data. We conducted a review of existing 

United States (US) federal and state stream and wetland geospatial datasets, focusing on their 

spatial extent, permanence classifications, and current limitations. We also examined recent 

peer-reviewed literature for emerging methods that can potentially improve the estimation, 

representation, and integration of stream and wetland datasets. We found that federal and 

state datasets rely heavily on the US Geological Survey’s National Hydrography Dataset for 

stream extent and duration information. Only eleven states (22%) had additional stream extent 

information and seven states (14%) provided additional duration information. Likewise, federal 

and state wetland datasets primarily use the US Fish and Wildlife Service’s National Wetlands 

Inventory (NWI) Geospatial Dataset, with only two states using non-NWI datasets. Our synthesis 

revealed that LiDAR-based technologies hold promise for advancing stream and wetland mapping 

at limited spatial extents. While machine learning techniques may help to scale-up these 

LiDAR-derived estimates, challenges related to preprocessing and data workflows remain. High-
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resolution commercial imagery, supported by public imagery and cloud computing, may further 

aid characterization of the spatial and temporal dynamics of streams and wetlands, especially 

using multi-platform and multi-temporal machine learning approaches. Models integrating both 

stream and wetland dynamics are limited, and field-based efforts must remain a key component in 

developing improved headwater stream and wetland datasets. Continued financial and partnership 

support of existing databases is also needed to enhance mapping and inform water resources 

research and policy decisions.
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1. Introduction

Headwater streams and inland wetlands are freshwater systems providing essential 

hydrological, biogeochemical, and biological functions supporting healthy watersheds 

(USEPA 2012). Headwater streams (hereafter “headwaters”) are defined here as low-order 

stream segments in river networks (i.e., orders 0–3) where zero-order represents non-

channelized flows (e.g., swales) and first through third order streams follow the Strahler 

(1957) stream order method that incorporates non-perennial and perennial headwater stream 

channels (Vannote et al. 1980; Gomi et al. 2002). Inland wetlands (hereafter “wetlands”) 

are freshwater wetland systems (e.g., ocean-derived salts are <0.5‰; Cowardin et al. 1979) 

located within and distal to river floodplains.

While individual headwaters and wetlands are typically small or have low flow 

volumes, their relative abundance on the landscape coupled with the conditions for high 

biogeochemical reactivity (e.g., relatively long residence times, anoxic conditions) means 

they cumulatively have an outsized impact on watershed hydrological and biogeochemical 

processes (Creed et al. 2017). Headwaters and wetlands exist along a connectivity 

continuum from frequently and directly connected to infrequently and indirectly connected 

to other waters (Alexander et al. 2018; Leibowitz et al. 2018). Thus, they variably control 

the volume and transport of water, solutes, sediments, and other particulate matter to 

downstream waters, thereby supporting drinking water quality, agriculture water resources, 

industrial water use, and other aquatic ecosystem services (Creed et al. 2017; Golden et al. 

2019). In addition to supporting human uses, headwaters and wetlands provide necessary 

habitat for wildlife (Hagen and Sabo 2014; Sánchez-Montoya et al. 2016) and are often 

hotspots for biodiversity (Ward et al. 1999; Finn et al. 2011).

A comprehensive understanding of where headwaters and wetlands are located on the 

landscape is needed for their protection, restoration, and overall management to optimize 

the delivery of desired ecosystem services. Headwaters and wetlands remain vulnerable to 

anthropogenic modification and destruction (Creed et al. 2017). Urban and agricultural 

conversion and encroachment lead to wetland acreage losses, increased flows from 

impervious surfaces and exposure to pollutants (e.g., Walsh et al. 2005; Kelly et al. 2017). 

In addition, shifts in hydrological regimes from a changing climate and anthropogenic 
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alteration of surface and subsurface flows (e.g., groundwater pumping for irrigation or 

public water supply, tiled or ditch drainage in agricultural landscapes, underground pipes 

and associated trenches in urban landscapes) will influence the distribution and functioning 

of headwater and wetland systems (Blann et al. 2009; Foufoula-Georgiou et al. 2015; 

Bonneau et al. 2017; McKenna et al. 2017).

Headwaters and wetlands represent a substantial portion of the freshwater network within 

watersheds. Headwaters dominate freshwater riverine systems in both density and length 

(Larned et al. 2010; Datry et al. 2014). For instance, in the conterminous United States 

(CONUS), conservative estimates indicate that headwaters constitute over 79% of the 

freshwater river length and drain approximately 70% of the land area (Colvin et al. 2019). 

Similarly, while over 50% of historical wetlands have been lost, remaining mapped wetlands 

are still estimated to cover 44.6 million ha or ~5.5% of the CONUS (Dahl 2011), with high 

densities in areas such as the Prairie Pothole Region, the Mississippi Alluvial Valley, and 

the Atlantic and Gulf Coastal Plain ecoregions (Tiner 2003; Keddy et al. 2009; Lane and 

D’Amico 2016).

Despite concerted efforts to map these aquatic resources and understand their hydrology, 

spatial extents and dynamics, headwaters and wetlands are often under- and/or 

misrepresented in existing mapping products (Heine et al. 2004; Brooks and Colburn 2011; 

Fritz et al. 2013; Vanderhoof and Lane 2019; Fesenmyer at al. 2021). Headwaters and 

wetlands are often small and/or seasonally dynamic, with inundated area expanding and 

contracting longitudinally and laterally between seasons and years. For stream dynamics, the 

timing, magnitude, frequency, and duration of streamflow are typically measured by stream 

gauges. However, permanent instrumentation is most often placed on rivers and streams 

further downstream (Poff et al. 2006; Deweber et al. 2014; Krabbenhoft et al. 2022). Thus, 

quantitative measurement of headwater streamflow regimes is limited (Zimmer et al. 2020; 

Hammond et al. 2021; Price et al. 2021).

Of the many aspects of stream dynamics and flow, mapping often focuses on classifying the 

continuum of flow durations in headwaters into three categories: perennial (always flowing 

except during times of drought), intermittent (flowing seasonally due to base flows or snow 

melt), or ephemeral (flowing only in direct response to precipitation events). Likewise, many 

nontidal wetlands also exhibit complex expansion and contraction of wetted area (Niemuth 

et al. 2010; Vanderhoof et al. 2016) and marked seasonality (Zedler 2003; Bourgeau-Chavez 

et al. 2016). Yet these processes are often simplified in classifications to permanent (all 

year), seasonal (less than all year but at least three months), and temporary (less than three 

months) inundation or soil saturation. In addition, error and uncertainty associated with 

existing maps of streams and wetlands are often not readily available or are difficult to 

convey to dataset users.

More spatially and categorically accurate stream and wetland data, along with improved 

measures of spatial and temporal dynamics, are needed to educate the public on the 

importance of these systems and inform water-related federal, state, tribal, and local 

policies and decision-making processes. Such activities and decisions include regulating and 

permitting actions that affect headwaters and wetlands, prioritizing and planning restoration 
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of buffers and habitat, identifying or modeling flood risks, creating or enhancing recreational 

opportunities, and managing systems for irrigation and drainage (Nadeau and Rains 2007; 

Douglas et al. 2011; Biggs et al. 2017; Creed et al. 2017; Moomaw et al. 2018). Each 

of these activities rely on spatial information to inform their decisions. Thus, it is crucial 

to understand what geospatial datasets and methods are currently available for federal and 

state decision makers as they manage and understand headwater and wetland extents and 

dynamics.

Here, we review and synthesize US federal and state geospatial stream and wetland datasets 

to determine the availability, methods, and resolution of currently available datasets and 

their associated spatial extents. We aim to close scientific knowledge gaps on the extent and 

changing conditions of headwaters, streamflow duration, and wetlands. We further identify 

dataset gaps and limitations and review recent peer-reviewed literature to specifically 

identify emerging methods that can inform and improve the estimation and representation 

of (1) headwater and wetland extents, (2) streamflow duration, and 3) integrated stream 

and wetlands systems. Several reviews have addressed specific aspects of headwater 

(e.g., channel head identification, Wohl 2018) or wetland mapping (e.g., remote sensing 

approaches: Tiner et al. 2015; Guo et al. 2017; Mahdianpari et al. 2020a) individually. 

However, we examine headwaters and wetlands jointly using multiple approaches to better 

integrate these systems and link them to the geospatial datasets on which US scientists 

and managers rely. We conclude with a set of research recommendations to advance future 

headwater streams and inland wetlands mapping to inform federal, state, tribal, and local 

policy objectives and water programs.

2. Methods

We conducted a search for national stream and wetland mapped datasets in the fall of 2020 

by evaluating geospatial data platforms and web pages for each relevant federal agency, 

developed from a list from usa.gov’s A-Z Index of US Government Departments and 

Agencies (USAGov 2022). Using links provided within the list, we accessed each agency’s 

website and used pre-defined search terms (Table 1) to locate datasets related to either 

headwater stream or wetland mapping. We used both the internal agency search engine 

as well as using the external Google search engine. We further checked for mapped data 

sources by repeating searches for parent organizations, if any, of the listed agencies or 

departments.

We used similar methods to identify state wetland and stream datasets. For each state, 

relevant agencies or departments were identified, and web pages were evaluated for 

geospatial data portals to headwater extent and wetland maps. We performed the same 

search for streamflow duration at federal and state agency websites and recorded relevant 

datasets. We further searched StreamStats (https://streamstats.usgs.gov) across sample 

subbasins in each state to identify the streamflow characteristics (e.g., peak flow, low flow, 

and zero-flow probabilities) and supporting data that were provided. Non-governmental and 

tribal datasets were not included within the current search. However, we included some 

within the discussion of emerging technologies that could help federal and state managers 

supplement and enhance existing governmental datasets.

Christensen et al. Page 4

Earth Sci Rev. Author manuscript; available in PMC 2023 December 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

http://usa.gov’s
https://streamstats.usgs.gov/


3. State of the Science: Current Headwater and Wetland Mapping Datasets

The need to comprehensively review the status of federal and state datasets for headwaters 

and wetlands is clear. In this section, we characterize these datasets, including mapped 

headwater extents (section 3.1), mapped headwater streamflow duration (section 3.2), and 

mapped wetland extents (3.2). Potential limitations of these datasets are combined and 

described in section 4.

3.1 Mapping Headwater Extent

3.1.1 Federal Datasets—One national dataset, the National Hydrography Dataset 

(NHD), primarily focuses on mapping streams and rivers across the US (Table 2). Led and 

maintained by the US Geological Survey (USGS) National Geospatial Program, the NHD 

is considered to have the best available stream/river data for the CONUS and has published 

inclusion standards. The NHD, along with legacy NHD and NHD value added products, 

are all derivatives of original USGS topographic quadrangle mapping efforts conducted 

primarily between the 1940s and 1990s. Those efforts included creating 30×60 minute 

(1:100,000 scale) and 7.5×7.5 minute (1:24,000 scale) topographic quadrangle maps from 

stereo orthophotographs, field surveys, and interviews. Digital Line Graphs for hydrography 

were extracted from these quadrangles to form the basis of the NHD medium resolution 

(NHD MR legacy; 1:100,000 scale) and the NHD high resolution (NHD HR; 1:24,000 scale 

or finer) data, including stream segments and streamflow duration classifications (see section 

3.2.1). The current NHD (1:24,000 or finer scale) data include over 12 million kilometers 

of streams and rivers in the CONUS with over 27 million stream reaches or unique features 

in the geospatial dataset (Figure 1). Further, the US Environmental Protection Agency 

(EPA) and USGS created the NHDPlus (1:100,000 scale) and NHDPlus HR (1:24,000) 

datasets. These “Plus” versions of NHD add numerous catchment-related attributes that 

enhance stream network navigation and analysis, estimate elevation-based catchment areas 

and stream characteristics for each stream segment, and provide headwater nodes (Johnston 

et al. 2009).

Apart from the NHD based products, few other federal stream mapping datasets exist, and 

these ultimately rely on the NHD data (Table 2). The National Wild and Scenic River lines 

dataset identifies free-flowing river and stream systems that have some scenic, recreational, 

geologic, fish and wildlife, historic, cultural, or other “outstandingly remarkable value”, and 

is built off the NHD HR dataset (Wild and Scenic Rivers Act 1968; Public Law 90–542; 16 

U.S.C. 1271). The other dataset identified in our search was the National Waterway Network 

(NWN) dataset, developed by the US Army Corps of Engineers (USACE) which uses a 

subset of river and stream reaches from the NHD MR and adds information about shipping 

lanes, river mile markers, ports and locks managed by the USACE.

All of the federal datasets contained supporting documentation and were found to meet 

Federal Geospatial Data Committee (FGDC) requirements for metadata and reporting 

standards (e.g., information on the data origin, data quality, reference system, constraints, 

symbology, and distribution of the data; FGDC 1998). The NHD products (and NWSR) 

provide information regarding the acceptable level of longitudinal and latitudinal error. For 

example, the NHD HR dataset states that 90% of defined features are within 12 m of the 
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true position. While the most comprehensive stream dataset, the NHD has known limitations 

primarily stemming from original cartographic constraints (see section 4.1). Since initial 

digitization, some portions of the NHD HR have incorporated greater headwater detail (e.g., 

Indiana) in more recent mapping efforts (see section 3.1.2).

3.1.2. State Datasets—The majority of state stream maps (>53%) are derivatives of 

NHD (Figure 2). Overall, 138 state-level datasets contained stream mapping information 

with 80 providing enough metadata to know the map source and resolution (SI Table 1). Of 

those described datasets, 55% were at the 1:24,000 scale, 28% were at the 1:100,000 scale, 

while 14 datasets (17%) had a higher resolution than 1:24,000 scale (Figure 2). Thirty-six 

state datasets provided stream data but did not attribute a data source.

Eleven states developed stream mapping data that increase or modify the spatial detail of 

the NHD HR (Table 3). Four of those states added or modified stream segments to existing 

NHD data to create a more consistent NHD HR product either using aerial imagery (e.g., 

Washington; Table 3) or Digital Elevation Models (DEMs)(e.g., Idaho; Table 3). The other 

seven states increased the resolution of their stream network using either aerial imagery or 

DEM flow-accumulation catchment thresholds (Table 3). Except for Iowa, all of the states 

modified the stream network within the NHD framework. The Iowa stream layer, which 

was developed by the Iowa Department of Natural Resources, relied on Light Detection 

and Ranging (LiDAR) derived DEMs, a 9.7-hectare flow accumulation threshold, and 1 m 

imagery to develop the network (see SI Table 1 for more details).

3.2 Mapping Headwater Streamflow Duration

3.2.1 Federal Datasets—Streamflow duration for CONUS-based datasets focus 

primarily on permanence classifications (perennial, intermittent, and ephemeral) included 

within the NHD. These classes were derived from orthophotos, field visits, and interviews 

during the creation of the USGS topographic quadrangle maps (Hafen et al. 2020). While 

perennial and intermittent classes are identified through the CONUS within the NHD, 

ephemeral reaches are typically only included in NHD maps of the western US, especially in 

the arid southwest. Fesenmyer et al. (2021) counted over 1.4 million km of streams labeled 

ephemeral in Western US xeric ecoregions (including portions of Arizona, California, 

Colorado, Idaho, Texas, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming) 

which accounted for 62% of the total stream length in that ecoregion.

While the NHD provides the only discrete streamflow duration classification, other 

federal streamflow statistical approaches can also potentially inform classifications. The 

USGS StreamStats (https://streamstats.usgs.gov/ss/), a map-based web application, provides 

various metrics of flow for numerous states at a user-defined location of interest (Figure 3). 

StreamStats streamflow information is typically based on regression analyses derived from 

stream gauges and landscape, topographic, and/or climate variables for states or regions. The 

gridded stream network within the application mimics the NHD MR. While included as a 

federal effort, the analyses are typically conducted at the state level in partnership with state 

entities. Thus, the type of available flow information varies by state (Figure 3; SI Table 2). 

Those relevant to non-perennial flows will be discussed in more detail in 3.2.2.
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In addition to StreamStats, the USGS Probability of Streamflow Permanence (PROSPER) 

model provides yearly probability estimates of perennial flow in the Pacific Northwest 

region (Jaeger et al. 2019) and the Upper Missouri River (Sando et al. in review). The 

PROSPER model combines existing field observations of wet or dry summer stream 

conditions with climatic and physiographic variables to train and predict annual probabilities 

of summer permanence using a Random Forest model (Figure 3, Table 3; Jaeger et al. 

2019). The probabilities and associated model outputs were developed for 2004–2016 for the 

Pacific Northwest and 1989–2018 for the Upper Missouri River Basin. As of March 2022, 

PROSPER results are available as a tool on the USGS StreamStats web viewer in Oregon, 

Washington, Idaho and portions of Montana, while the remainder of Montana, North Dakota 

and South Dakota are currently being implemented (Figure 3, Table 3).

3.2.2 State Datasets—Of 27 states that included mapped streamflow duration classes, 

80% were directly extracted from the NHD classes (SI Table 3), while seven datasets 

contained additional duration information (Table 3). Multiple states used aerial imagery 

or DEMs to add stream segments to the NHD at a greater spatial resolution (Table 3). 

However, only Vermont and Idaho developed regression equations to estimate intermittent 

flow (Vermont: Olson and Brouillette 2006) or perennial flow (Idaho: Wood et al. 2009) 

and included them in state maps. Michigan estimated baseflows using stream gauges and 

hydrograph separation on NHD MR reaches; whenever baseflow was zero, the stream was 

assumed to be intermittent.

USGS StreamStats in the CONUS currently provides state or regional analyses of 

streamflow information for 41 states (Figure 3), yet a minority of states include metrics 

that could potentially support flow duration class determinations, such as low flow estimates 

(21 states), probabilities of zero flows (five states) or probability of perennial flow in 

Massachusetts. In the StreamStats application, many states provide a high level of detail 

about the development of their state-specific statistical regressions, links to literature 

and methodologies, as well as indications of how and when the tool outputs may be 

appropriately used or applied. See SI Table 2 for the full listing of available streamflow 

statistics and their associated methodologies available by state.

3.3 Mapping Wetland Extent

3.3.1 Federal Datasets—The National Wetlands Inventory (NWI) Program, led and 

maintained by the US Fish and Wildlife Service (USFWS), is the definitive high spatial 

resolution source for mapped wetlands across the US (Table 4). Available throughout all of 

CONUS, NWI has standardized the mapping, characterization and monitoring of wetlands at 

fine spatial resolutions via aerial photography and multispectral satellite imagery. Beginning 

with 1:80,000 scale imagery in the late 1970s, the spatial resolution has increased through 

time with the Targeted Mapping Unit (the minimum area that can be consistently mapped) 

of current standards being 0.2 ha using 1 m imagery at the 1:12,000 scale (FGDC 2009). 

The current NWI (version 2) documents almost 34 million unique wetland vegetation or 

water features, each with information on wetland vegetation type, permanence, and human 

alterations. Due to the enormity of the task of national fine-resolution mapping and limited 

federal funding for the NWI, the inventory is a patchwork of different base map dates (from 
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the 1970s to the present) and different dataset resolutions (1:80,000+ to 1:12,000 scales) (see 

section 4.1). Much of the current updating work of the NWI is done via collaborative efforts 

with state and local entities as 67% of the 165 contributors to the NWI are state agencies, 

tribes, and regional or local governments (USFWS 2021). Updates occur on an ad-hoc 

basis and are posted to the USFWS’s Wetlands Mapper (https://www.fws.gov/wetlands/data/

Mapper.html) on a biannual basis.

Although NWI is the only dataset that follows FGDC Wetland Mapping and Classification 

Standards, several other federal datasets contain some wetland information (Table 4). For 

example, some USGS NHD mapped areas include wetland features with limited categorical 

detail (i.e., swamp and marsh). Furthermore, a few Landsat satellite-derived federal datasets 

with 30 m resolution identify woody and emergent wetland vegetative classes using NWI 

data for model parameterization and/or calibration (Table 4). These 30m products have been 

found to generally be reliable indicators of wetland type and change at the county or broader 

scales (Wickham et al. 2018). The National Oceanic and Atmospheric Administration’s 

(NOAA) Coastal Change Analysis Program’s (C-CAP) high resolution product (minimum 

mapping unit of 0.1 ha) produces 1–5 m wetland landcover classes in select areas using 

NWI data as an essential model input. USGS’s Gap Analysis Program’s (GAP) product 

classifies regional vegetation groups from field reference data, Landsat imagery, elevation 

data, and biophysical gradients within decision tree models and some of the vegetative 

groups are primarily affiliated with wetlands (e.g., Eastern Great Plains Wet Meadow – 

Prairie Marsh). While not including explicit wetland classifications, the 30 m Dynamic 

Surface Water Extent (DSWE) produced by the USGS has four classes of surface water 

confidence: open water – high confidence, open water – moderate confidence, partial surface 

water – conservative, and partial water – aggressive (Jones 2015, 2019). The partial surface 

water components employ a mixed-pixel approach to identify Landsat pixels that are a 

mixture of water and vegetation. USGS developed DSWE products for each cloud-free 

Landsat pass so temporal dynamics can be investigated as well.

3.3.2 State Datasets—Of 69 state-level datasets with wetlands information, the 

majority (75%) use NWI clipped to the state or as a base layer for updating state maps 

(SI table 4). Several states amend NWI data with additional state-specific data (Table 4). For 

example, New Hampshire used 2014 USDA National Agricultural Imagery Program (NAIP) 

leaf-on true color imagery and ancillary datasets to add a set of hydrogeomorphic-type 

descriptors (landscape position, landform, water flow path, and waterbody type) to NWI 

wetlands to estimate likely functions of wetlands. Data resolutions for these datasets are 

consistently 1:10,000 to 1:24,000 scale.

Only five states have wetland maps not directly linked to NWI (Table 4). Of those identified, 

two are generated for cities or municipalities (Anchorage, Alaska and Boulder, Colorado) 

while two represent potential (not necessarily actual) wetlands in Kansas and portions of 

southeastern Arkansas. Kansas and Wisconsin provide the only examples of a state level 

dataset that was generated independently from the federal NWI effort (Table 4). In 2018, 

the Wisconsin dataset was reconfigured to align with the NWI and is now part of the NWI 

dataset.
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4. Limitations in Current Federal and State Aquatic Mapping

4.1 Limitations of Current Headwater and Wetland Extents

Our knowledge and use of stream and wetland extents rely heavily on the NHD and NWI 

datasets, yet each have specific constraints. Other remotely sensed wetland extents also have 

specific limitations. These include:

A. Original cartography often underestimates headwater extent.—Field studies 

from different regions of CONUS indicate that the NHD often underestimates stream 

headwater extent (e.g., Heine et al. 2004; Brooks and Colburn 2011; Fritz et al. 2013, 

Fesenmyer at al. 2021). As the NHD family is ultimately derived from original surveys, old 

cartographic constraints, inconsistencies, and decisions limit some headwaters. For example, 

historically, ephemeral reaches were not mapped and were only recently added to some 

western states (Fesenmyer et al. 2021). Figure 4a highlights the additional headwater stream 

segments included within a LiDAR-derived stream map (Lang et al. 2012) that are not 

included in the NHD for a catchment in the Delmarva Peninsula.

B. Imagery can miss or misclassify some headwaters and wetlands.—
Mapping efforts can be limited by the resolution of the underlying data layers (e.g., aerial 

photographs, satellite images, elevation datasets). The NHD and NWI rely on aerial imagery, 

yet linear, narrow stream channels (with median widths <0.3m) and small wetlands (with 

area <0.2 ha) may not be mapped due to the aerial image resolution (Wohl 2017; Allen et al. 

2018: Sahour et al. 2022) or mapping conventions. Likewise, most current satellite-derived 

US datasets rely on moderate (30m) resolution Landsat imagery so wetlands smaller than 1 

ha are likely missed or merged with surrounding wetlands (Muster et al. 2013; Lang et al. 

2015; Vanderhoof and Lane 2019).

At any spatial resolution dense cloud cover, tree canopy, and understory vegetation can 

block passive optical sensors from viewing the earth’s surface (Tiner 1990; Lang and 

McCarty 2008). In deciduous forests, photographic and multispectral imaging are typically 

timed for leaf-off conditions and are further limited to cloud-free days. However, evergreen 

or mixed forests can hide small wetlands and streams completely, and trees associated with 

wetlands and headwater streams may be spectrally ambiguous with those in upland forests 

(Lang et al. 2020). In addition, the spectral signature (i.e., the variation of light reflectance 

as a function of wavelength) of surface water overlaps with that of shadows created by trees, 

stumps, and other structures (Huang et al. 2014; Xie et al. 2014).

C. Headwater and wetland datasets can be spatially and temporally 
inconsistent.—The combination of uncertainties associated with image resolution, 

imaging dates (e.g., season, day), update intervals, cartographic conventions/interpretations, 

classification methods, and continued stream and wetland losses can lead to an uneven 

patchwork of mapped streams (Figure 4b; Colvin et al. 2019) and wetlands (Tiner et al. 

2015; Lane and D’Amico 2016). For example, while NWI has focused more recent updates 

on areas of greater wetland densities (coasts and the Great Lakes), the NWI base map dates 

range from the 1970s to the present, with 51% of the CONUS mapped in the 1980’s and 

35% mapped since 2000 (as of September 2020). Inconsistent spatial and temporal mapping 
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across broader areas makes studying, comparing, modeling, and visualizing these systems 

more challenging (Figure 4b).

D. Seasonally dynamic systems pose a challenge for temporally limited data.
—Seasonal headwaters and wetlands, which dry during parts of most years, may not be 

captured in the underlying imagery depending on the frequency and the timing of imagery 

collection. Mapping efforts conducted in past decades may not reflect current conditions 

as climate variation (Hafen et al. 2020), shifts in climate, land use change or management 

(Szantoi et al. 2020; Wilson et al. 2022) affect the extent, condition, hydrology, and/or 

existence of headwaters and wetlands.

E. Continual updating of maps is needed but challenging.—Managers of NHD 

and NWI consistently work, often through partnerships with states and other entities, 

to provide updates to both datasets. Yet the ability to quickly provide high-quality, high-

resolution maps has been constrained by available funds, imagery, methods, and the needed 

development of additional partnerships.

F. Temporally dynamic systems pose a challenge for static maps.—Static 

maps fail to highlight innate dynamics of streams and wetlands leading to a public 

perception of static aquatic systems. While classifications of permanence or seasonality can 

convey some aspects of headwater and wetland dynamics, current maps fail to adequately 

convey stream and wetland hydrologic dynamics and the uncertainty surrounding those 

static maps.

4.2. Limitations of Current Streamflow Duration Measures

Mapped headwater streamflow descriptors rely heavily on NHD classifications, and other 

non-NHD-based US datasets of streamflow metrics have additional limitations. These 

include:

A. Streamflow classifications focus primarily on streamflow duration.—
Mapped stream dynamics are often focused on streamflow duration, ignoring other 

potentially important flow regime components of magnitude, frequency, timing, or rates 

of change. Yet consideration of flow regimes like magnitude or timing can be important to 

management concerns surrounding pollutants, flood-hazards, or habitat needs.

B. Streamflow duration classes require a discrete separation of a continuous 
variable.—Flow duration varies year-to-year and among reaches and thus may be difficult 

to place into separate bins. The misclassification of perennial, intermittent, and ephemeral 

stream reaches has been particularly troublesome in headwater streams (Nadeau and Rains 

2007; Caruso and Haynes 2011; Fritz et al. 2013; Nadeau et al. 2015). Incomplete data, 

the presence of non-representative conditions during the original survey campaigns (Hafen 

et al. 2020) or shifts in flow duration from human and climate induced changes since the 

time of mapping may lead to mischaracterizations. Limiting the duration characterization 

of a stream reach to one of only three classes is a simplification that may not be preferred 

by water resource managers for adequate representation on maps. While more classes or 
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continuous measures of flow duration do not necessarily lead to fewer misclassifications, the 

additional data may enable managers to identify key hydrological conditions that might aid 

some decisions and identify cumulative influences.

C. Many headwaters lack streamflow data and metrics.—A minority of states 

have low-flow metrics within StreamStats or have permanence probabilities within 

PROSPER (Figure 2). USGS stream gauges, often used to calculate StreamStats metrics, are 

biased toward placement on larger perennial rivers (Poff et al. 2006; Deweber et al. 2014; 

Krabbenhoft et al. 2022), which potentially limits the applicability of calculated values in 

smaller headwaters. In fact, StreamStats estimates have minimum catchment size warnings 

to their regression predictions that are often larger than the typical catchment size of 

headwater streams. For example, when estimating probabilities of zero flow, recommended 

minimum catchment sizes ranged from 2.6 km2 in Ohio to 19.2 km2 in Idaho yet the largest 

contributing size for channel head initiation across a wide variety of US studies was only 

0.79 km2 (Wohl 2018). Probability models like PROSPER require sufficient permanence 

data from a range of stream sizes and over periods representing different meteorologic 

conditions, which are difficult to obtain or do not exist (Jaeger et al. 2019; Jaeger et al. 

2021). More data are needed to improve streamflow duration classifications, models, and 

metrics. Acquiring sufficient data that is updated regularly may require compiling across 

disparate datasets and using crowdsourcing and citizen science efforts (e.g., Seibert et al. 

2019).

4.3 Integrated Stream and Wetland Systems

Headwaters and wetlands are primarily treated separately as different systems within 

datasets and related tools and analyses, as outlined by the following:

A. The integration of headwater and wetland datasets is limited.—NHD has 

some waterbodies associated with their dataset, and the latest NWI (version 2) includes 

features associated with streamlines. However, integration of the detailed systems is 

challenged by differences in the structure of the datasets, discrepancies, and duplication 

between various versions of both datasets.

B. There is a lack of datasets and models that incorporate both headwaters 
and wetlands, and their dynamics.—Current datasets and associated models fail to 

utilize the most detailed and consistent representation of wetland and headwaters (Figure 

4a). Models that include both systems could better represent both water storage, dynamics 

and incorporate the full suite of potential remotely sensed data (see emerging approaches in 

sections 6–8) to best quantify streamflow duration classifications. A lack of such integrated 

models leads to a continued disconnect between disciplines (Golden et al. 2017).

5. Emerging Approaches to Mapping Headwaters and Wetlands

While limitations in current headwater and wetland datasets exist, emerging approaches 

using LiDAR, other remote sensing platforms, field and remote monitoring, machine 

learning, and modeling can help to close gaps created by these limitations. Figure 5 provides 
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a conceptual overview of various approaches that contribute to mapping headwaters and 

wetlands.

5.1 Remote Sensing Approaches to Improve Mapping of Extents and Dynamics

Remote sensing (RS) approaches are of particular interest and can support more accurate 

and frequent mapping of wetland and stream extent, if resources are available to develop and 

employ these methods. While it is not currently possible to fully automate the generation 

of FGDC standard compliant data (i.e., for wetland data having 0.2 ha using 1 m imagery 

at the 1:12,000 scale; FGDC 2009), several remote sensing approaches may prove useful in 

reducing manual processing and interpretations. Box 1 provides a primer for the types of 

remote sensing that are potentially used to map headwaters and wetlands.

5.1.1 LiDAR—The continued development and use of DEMs derived from LiDAR, 

combined with Geographic Information Systems (GIS) and machine learning statistical 

methods, will help to improve estimates of headwaters and wetland extents as well as reduce 

spatial inconsistencies in the data. LiDAR aerial surveys have progressed in spatial and 

temporal coverage significantly in the past decade. Much of the CONUS now has at least 

one LiDAR coverage housed within NOAA’s US Interagency Elevation Inventory, which 

will work towards a nationally consistent LiDAR dataset and 1 m DEMs within the USGS 

3D Elevation Program (3DEP; Figure 6a; NOAA 2021; USGS 2022). 3DEP products will 

be used to improve the detail and positional accuracy of nationwide stream mapping through 

the USGS 3D Hydrography Program (3DHP; Archuleta and Terziotti 2020; Terziotti and 

Archuleta 2020). The current Iowa stream layer (Table 3) was developed using LiDAR and 

demonstrates the promising approaches used to create more consistent and repeatable maps 

of aquatic systems (Figure 6b).

LiDAR is also helpful to define detailed linear flow paths for stream extent estimates in 

steep (Sofia et al. 2011; Russell et al. 2015) and low-gradient landscapes (Bailly et al. 

2008; Lang et al. 2012; Roelens et al. 2018). One challenge is determining where along a 

headwater flowpath the stream begins (channel head) because stream initiation often results 

from a complex combination of geology, landcover, climate, and topography (Jaeger et al. 

2007; Garrett and Wohl 2017; Wohl 2018). The simplest methods for estimating channel 

initiation involve catchment area thresholds and catchment-slope relationships (Montgomery 

and Dietrich 1989; Montgomery and Dietrich 1992; Montgomery and Foufoula-Georgiou 

1993; Clarke et al. 2008; Matsunaga et al. 2009; James and Hunt. 2010; Henkle et al. 2011; 

Avcioglu et al. 2017; Wohl 2018; Pena et al. 2018). However, this approach sometimes 

performs poorly (Wohl 2018).

Given the complexities of headwater initiation, several studies rely on the morphology of 

the initiation area. Curvature (rapid changes in slope or aspect) and other linear features 

can help identify channel heads using moderate resolution DEM (James and Hunt 2010; 

Gonzalez-Ferreras and Barquin 2017; Gonga-Saholiariliva et al. 2011; Julian et al. 2012) 

and LiDAR (e.g., Pirotti and Tarolli 2010; Sofia et al. 2011; Cazorzi et al. 2013; Hooshyar 

et al. 2016; Roelens et al. 2018; Shavers and Stanislawski 2020). As an example, Shavers 

and Stanislawski (2020) used LiDAR and measured variation in curvature at cross-sections 
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to determine where the stream profile becomes less visible and thus where channel head 

initiation was likely to occur.

To aid in channel delineation and initiation, several tools have been developed to prepare 

LiDAR-derived DEMs. Artifacts generated during LiDAR data collection or processing 

(e.g., false “pits”) and apparent barriers to flow (e.g., bridges, culverts, dams) often need 

to be corrected before realistic drainage and flow paths can be created. While challenging 

to apply at broader scales, several approaches, including filling and breaching techniques 

(Poppenga et al. 2013; Lindsay 2016; Sangireddy et al. 2016; Xu et al. 2021), have been 

used to automatically pre-process LiDAR DEMs. Once corrected, tools can then identify 

and connect physical flowpaths and estimate channel heads by either curvature, variation 

in that curvature, or other filters (Lashermes et al. 2007; Clubb et al. 2014; Passalacqua 

et al. 2010; Pelletier 2013; Sangireddy et al. 2016; Xu et al. 2021). Xu et al. (2021), for 

example, used multiple LiDAR derivatives with neural networks to extract streamlines and 

associated waterbodies for a small catchment in North Carolina. Aerial imagery can also aid 

in identification of channel initiation when used together with the LiDAR (Lang et al. 2012).

LiDAR evaluations have mostly been tested on small areas of interest, yet statistical and 

machine learning approaches may help expand LiDAR estimates to larger areas. Russell 

et al. (2015) used a multiple logistic regression on field-verified channel initiation sites in 

Western North Carolina that included LiDAR-derived slope, drainage area, area-slope and 

curvature measures combined with land cover and soil factors. Similarly, Villines et al. 

(2015) used 10 m-derived DEM metrics to identify channel heads via field surveys and to 

develop Random Forest models that included DEM, geologic, and soil metrics to predict 

channel initiation locations across the entire catchment.

LiDAR-based mapping of wetlands has primarily focused on identifying and characterizing 

depressions and other areas of water accumulation within the landscape. LiDAR-derived 

digital elevation models (DEMs) and other associated derivatives (e.g., maximum vegetation 

height, topographic wetness indices, landform indices) have expanded rapidly in the last 

decade and have been used to help map depressional wetlands (Lang et al. 2013; Rampi et 

al. 2014a; Millard and Richardson 2015; Wu and Lane 2016; Jones et al. 2018; Wu et al. 

2019a; O’Neil et al. 2019; O’Neil et al. 2020). However, elevation data only indicates the 

relative likelihood of wetlands in depressional areas (Lang et al. 2013; O’Neil et al. 2019) 

or the maximum extent of pooled water (Lane and D’Amico 2010; Serran and Creed 2015; 

Wu and Lane 2017; Jones et al. 2018; Wu et al. 2019a). Therefore, elevation data are often 

used in conjunction with other imagery to determine wetland extents (Figure 7; Maxa and 

Bolstad 2009; Wu et al. 2014; Kloiber et al. 2015; Millard and Richardson 2015; Hird et al. 

2017; Vanderhoof et al. 2017a; Vanderhoof et al. 2018; Wu et al. 2019b). LiDAR elevation 

can also help mask upland areas or identify where shadows might cause spectral confusion 

during landscape classification (Irwin et al. 2017).

In addition to the LiDAR elevation data that provide high horizontal resolution for DEMs, 

the intensity (relative strength) of LiDAR return signals provides information about the 

materials reflecting LiDAR pulses and thus can also inform stream and wetland mapping. 

High absorption of LiDAR near-infrared by surface water results in weak (low intensity) 
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returns compared to dry land. Thus, several researchers have used LiDAR intensity datasets 

to help map riparian vegetation and stream edges (Liu et al. 2018), wet stream segments in 

California (Hooshyar et al. 2015), streamlines in North Carolina (Xu et al. 2019), drainage 

ditches in Belgium (Roelens et al. 2018), forested depressions in Delmarva bays (Lang and 

McCarty 2009; Huang et al. 2014; Lang et al. 2020), and open surface waters (Höfle et al. 

2009; Rampi et al. 2014b; Rapinel et al. 2015; Hird et al. 2017; Wu and Lane 2017). Huang 

et al. (2014) used intensity data from two dates to identify areas of inundation in Delmarva 

bays, then related inundation to Landsat imagery to develop sub-pixel inundations estimates. 

While LiDAR intensities are helpful in mapping detailed waters, they are often limited to 

only one or two time periods making it difficult to use in any temporal analyses.

5.1.2 Multi-Spectral Remote Sensing—High-resolution (< 10 m pixel) remote 

sensing platforms are available for mapping headwaters (Table 5), but their use is limited. 

Numerous examples illustrate the use of medium resolution, or > 10 m, multispectral 

imagery (e.g., 30 m resolution Landsat) to help map river systems at regional (Das et 

al. 2007; Jiang et al. 2014), national (Allen et al. 2020; Gardner et al. 2021) and global 

(Yamazaki et al. 2015; Pekel et al. 2016; Allen and Pavelsky 2018) extents (Table 5). 

However, at medium spatial resolutions, streams and rivers with widths less than 30–90 

m are not reliably captured (Allen and Pavelsky 2018; Vanderhoof and Lane 2019) – and 

this would include most headwaters (Allen et al. 2018). While relatively few headwater 

studies have used multispectral data, higher resolution imagery (<3 m) can be used in arid, 

glacial, and agricultural areas where lack of trees or unique riparian vegetation allow for 

identification. However, these analyses have been limited to small areas (Table 6; Akasheh 

et al. 2008; Dunn et al. 2011; Yang and Smith 2012; Hamada et al. 2016; Spence and 

Mengistu 2016; Macfarlane et al. 2017; Manning et al. 2020). For example, Vanderhoof and 

Burt (2018) used panchromatic brightness on Worldview imagery and object-based analysis 

to measure change in four stream segments in the Missouri River headwaters with a high 

degree of accuracy.

High-resolution multispectral sensors are more common in wetland systems. They have 

been successfully deployed throughout multiple settings and can support more accurate and 

frequent mapping of wetland extent and spatiotemporal dynamics (examples within Table 7). 

Several reviews have detailed these approaches for mapping headwater extents and dynamics 

(Klemas 2013; Tiner et al. 2015 and numerous chapters therein; Guo and Li 2017, Wu 2018, 

Mahdianpari et al. 2020a).

Historically, researchers relied on aerial imagery for high-resolution wetland mapping, and 

these approaches have been maintained by the NWI through the present. Thus, aerial 

imagery has been used in multiple studies at high resolutions with both sub-meter imagery 

(e.g., Neale et al. 2007) and publicly available 1–2 m imagery to identify wetlands (Bowen 

et al. 2010; Halabisky et al. 2011; Wu et al. 2019b). The publicly available aerial imagery 

(Table 5) is typically leaf-on imagery, which limits the detection of underlying water in 

forested or riparian wetlands (Vanderhoof et al 2017a). There are additional examples of 

leaf-off imagery used to help identify geographically isolated wetlands in South Carolina 

forests (Pitt et al. 2011), Minnesota wetlands (Rampi et al. 2014b), and vernal pools in 

Massachusetts (Burne and Lathrop 2008). Classification of high-resolution aerial imagery 
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has often relied on some manual interpretation (e.g., Bowen et al. 2010), which raises the 

time, costs, and repeatability of the project. The use of Unmanned Aerial Vehicles (UAVs) 

has aided wetland mapping (Abeysinghe et al. 2019; Briggs et al. 2019). While limited to 

smaller areas, the use of UAVs in wetland and stream mapping is likely to increase in the 

future for two primary reasons: (1) the cost savings over aircraft and (2) the use of UAVs in 

other related commercial industries like field mapping for precision agriculture.

With the increasing availability of high-resolution satellite imagery (Table 5) and the 

computational power to store and process that imagery, continued surface water mapping 

will rely more on satellite sources. Several studies have used high resolution satellite 

imagery to map wetlands (Table 7) including IKONOS imagery (3 m; Wei and Chow-Fraser 

2007; Maxa and Bolstad 2009), Quickbird (2.4 m; Kumar and Sinha 2014) and WorldView 

(2 m; Irwin et al. 2017; McCarthy et al. 2018; Vanderhoof and Lane 2019). The advent of 

high-resolution satellites with expansive coverage and rapid revisit times (e.g., Worldview 

3 or the Planet constellation) creates powerful potential to advance the mapping of wetland 

dynamics. Yet these advancements in surface water mapping using commercial imagery may 

be slowed in the near term by limited data years, computational and storage constraints, 

and the costs of acquiring commercial data. Furthermore, as new high-resolution imagery 

is acquired, additional challenges include the limited number of bands (e.g., a lack of Short 

Wave Infrared, SWIR, which is helpful in identifying surface water) and variability with 

georeferencing – both of which add to the complexity of using high-resolution imagery in 

time-series analyses.

High-resolution imagery typically forces limitations on the size of the area and the 

temporal record of analysis because of the previously discussed challenges. Therefore, many 

researchers still employ moderate resolution imagery like the publicly available Landsat (30 

m), which has a long-term library that can be used to consider wetland change mapping 

over multiple decades (Berhane et al. 2020; Vanderhoof et al. 2020) and dynamic wetland 

hydrology (Baker et al. 2006; Frohn et al. 2011; Rover et al. 2010; Mwita et al. 2013; Xie et 

al. 2015; Dvorett et al. 2016; Pekel et al. 2016). The 30 m resolution for Landsat inherently 

means that derived wetland maps will omit small wetlands (<1 ha; Reif et al. 2009). 

Thus, mixed-pixel approaches (percent water fraction or water-vegetation mixtures) are used 

to partially reduce such omissions (Huang et al. 2014; Halabisky et al. 2016; DeVries 

et al. 2017; Jones 2019; Vanderhoof et al. 2020). Though actual wetland classification 

is not assigned, sub-pixel products can help differentiate vegetated wetlands from other 

land covers (Jones 2019). As Sentinel 2 imagery (10 m) becomes more available, more 

research will likely use the increased resolution to aid in mapping smaller wetlands as 

exemplified by Hird et al. (2017) in Alberta, Canada (Table 7) or Mahdianpari et al. (2019) 

in Newfoundland, Canada. Likewise, the increasing computation power through cloud-based 

tools such as Google Earth Engine and the inclusion of more processing tools and data on 

these public platforms will further enhance wetland mapping (Wu et al. 2019b; Mahdianpari 

et al. 2019; Vanderhoof et al. 2020; Amani et al. 2020; Mahdianpari et al. 2021).

5.1.3 Synthetic Aperture Radar (SAR)—SAR can be used to map stream systems 

and has two main benefits: it has less obstruction by clouds and vegetation, and it can be 

collected at night (Martinis and Rieke 2015; Hess et al. 2015). Yet these platforms currently 
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have minimum spatial resolutions of 10–20 m and are therefore currently too coarse to map 

many headwaters and wetlands. While future satellites like the NASA-ISRO SAR (NISAR) 

mission scheduled for 2024 may introduce some SAR capabilities for headwaters, with 

potential imagery captures up to 3 m resolution every 6–12 days (https://nisar.jpl.nasa.gov/- 

accessed 11/23/2021), the only active sensors currently well suited for mapping headwaters 

are interferometric synthetic aperture radar (IfSAR) flown for coastal areas and Alaska 

(Stanislawski et al. 2021) and LiDAR (discussed in 5.1.1).

The use of microwave sensors such as SAR to map wetlands is much more prevalent than 

for streams (Table 8). Surface waters have been clearly identified using C-band (Brisco et 

al. 2009; White et al. 2015) and X-band SAR (Irwin et al. 2017). C-Band SAR platforms 

(RADARSAT and Sentinel-1) have been useful to map marshes in the US and Canadian 

Great Lakes (Bourgeau-Chavez et al. 2009, Battaglia et al. 2021), France (Muro et al. 2016) 

and forested wetlands in Maryland using data with smaller incidence angles (Lang and 

Kasischke 2008; Lang et al. 2008). The longer wavelengths (L-band) can penetrate farther 

into tree canopies, and L-band sensors have been successfully used to map inundation 

patterns in vegetated wetlands in Minnesota (Kloiber et al. 2015), California (Torbick and 

Salas 2015), Alaska (Whitcomb et al. 2009; Clewley et al. 2015), and the Amazon (Hess et 

al. 2015). The combination of the various SAR bands is likely to provide greater accuracy 

than any single band alone (Fu et al. 2017; Mahdianpari et al. 2017; Mahdianpari et al. 

2021). The planned NISAR mission may also further the availability and utility of L-band 

imagery for smaller wetlands.

SAR products have unique advantages that help detect wetlands, but SAR data also can 

be challenging because several factors, including season, soil moisture, the angle and 

direction of the satellite and distortions from topography, affect the wave signal. Additional 

information about techniques and challenges using SAR to map wetlands can be found in 

Brisco et al. (2015) and White et al. (2015).

5.1.4 Fusion of Multi-Sensor, Multi-temporal Platforms—While single platforms 

(e.g., Landsat imagery) with pixel-based classifications (e.g., Maximum Likelihood) are still 

used to classify pixels individually (e.g., Jollineau and Howarth 2008; Kumar and Sinha 

2014; Pistolesi et al. 2015; Dvorett et al. 2016), researchers are increasingly moving towards 

employing combinations of platforms and classification schemes (Table 7 and 8; Figures 

5 and 6). The use of image segmentation and object-oriented analyses moves away from 

pixel-based classifiers and towards pattern recognition approaches for identifying features 

(objects) and typically outperforms traditional classifiers (Frohn et al. 2009; Frohn et al. 

2011; Serran and Creed 2015; Knight et al. 2015, Mahdianpari et al. 2020a). The fusion 

of temporal stacks of imagery and multiple platforms for wetland classification has often 

used decision trees (Baker et al. 2006; Corcorcan et al. 2011; Panigrahy et al., 2012; Rapinel 

et al. 2015; Irwin et al. 2017; McCarthy et al. 2018; Mahdianpari et al. 2020b, 2021) and 

machine-learning based Random Forest algorithms (Whitcomb et al. 2005; Corcoran et al. 

2011; Torbick and Salas 2015; Kloiber et al. 2015; Clewley et al. 2015; Bourgeau-Chavez et 

al. 2015; Vanderhoof et al. 2017a; Chignell et al. 2018; Berhane et al. 2018). For example, 

Clewley et al. (2015) incorporated L-band data from multiple platforms, topographic data 

(e.g., slope, elevation) and locational information (latitude, longitude) and trained the model 
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using Random Forest to derive a map of vegetated wetlands in Alaska. Vanderhoof et 

al. (2017a) used RADARSAT at multiple dates, worldview imagery and LiDAR-derived 

depression and wetness indices within Random Forest to determine forested depressions in 

Maryland (Figure 8).

High-power computing capability, increasing availability of multi-source imagery, and 

advances in multisource data fusion techniques are relying on other machine learning 

techniques, including support vector machine learning (Xie et al. 2015), and shallow and 

deep neural networks (Morris et al. 2005; Rezaee et al. 2018; Mahdianpari et al. 2018; 

Pouliot et al. 2019; Du et al. 2020; O’Neil et al. 2020; Hosseiny et al. 2021; Stanislawski 

et al. 2021; Xu et al. 2021). In particular, deep convolutional neural network (CNN) models 

have been applied to map Alaska streams (Stanislawski et al. 2021) and forested Maryland 

wetlands (Du et al. 2020), landscapes that pose unique challenges to remote sensing of 

hydrographic features. One factor typically limiting the automation of remotely sensed 

images is the lack of large-scale reliable training data (Huang et al. 2017). Transfer learning 

could provide a potential solution to the paucity of labeled training data in remote sensing 

(Yosinksi et al. 2014; Pires de Lima and Marfurt 2020; Brewer et al. 2021). Transfer 

learning, in part, involves training a model (e.g., wetland type in a particular data-rich 

location) and applying those results/weights later on or in a differ neural network to help 

solve a related classification (e.g, similar wetland type in a different location; Brewer et al. 

2021).

5.2 Field-based Data to Inform LiDAR and RS Applications

While remotely sensed products of DEMs and imagery are essential to expanding headwater 

and wetland mapping, results must rely on field-based training and validation data to 

create and verify classifications or to calibrate statistical relationships. Headwaters are often 

small and narrow; therefore, mapping often involves physically walking watershed stream 

networks to discern channel heads and dynamics flows. Some groups have conducted single 

field visits to map channel heads (e.g., Brooks and Colburn 2011; Henkle et al. 2011; Julian 

et al. 2012; Russell et al. 2015) and others have looked at either entire stream networks or 

specified stream segments during wet and dry seasons to map stream dynamics (Wigington 

et al. 2005; Roy et al. 2009; Fritz et al. 2013; Godsey and Kirchner 2014; Shaw 2016; 

Whiting and Godsey 2016; Jensen et al. 2017; Lovill et al. 2018). Water level data loggers 

have also been used to map stream extents and dynamics (see section 7.2; Jaeger and Olden 

2012; Goulsbra et al. 2014; Jensen et al. 2019).

Most stream mapping efforts to date use a static representation of the stream extent. Yet 

some statistical methods also consider overall measures of stream length, density and the 

dynamics of extent and flow (see section 7), which are difficult to convey in static maps. 

Furthermore, field observations of stream length and density have been quantitatively related 

to discharge (Godsey and Kirchner 2014; Whiting and Godsey 2016), topographic properties 

like slope and curvature (Prancevic and Kirchner 2019), and local geology (Jensen et al. 

2017).

Few fully field-based wetland mapping efforts exist in recent literature. The lack of field-

based wetland methods may be due to the evolution of digital imagery: fine-scale imagery 
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and topographic maps can estimate standing water in pools to sufficient detail and can 

identify wetland vegetation and depressions. Indeed, most research with a field-based 

wetland mapping component is either to support the development or validation of remote 

sensing methods (Neale et al. 2007; Burne and Lathrop 2008; Lang et al. 2008; Rebelo et 

al. 2009; Bowen et al. 2010; Panigrahy et al. 2012; Kumar and Sinha 2014; Vanderhoof et 

al. 2018), the mapping of specific wetland vegetation (e.g., Underwood et al. 2006, Jollineau 

and Howarth 2008; Zomer et al. 2009) or identification of hydrologic functions of small 

wetland complexes (e.g., Brooks and Colburn 2011). A few notable examples of mapping 

wetlands in the field are at long-term study sites that seek to understand the dynamics 

of wetland complexes (Winter 2003; LaBaugh et al. 2016; Leibowitz et al. 2016) or their 

interactions with the stream network (Spence 2007; Shaw et al. 2012).

Wetland field work does significantly contribute to the specific mapping of individual 

wetlands for the express purposes of wetland delineations for US federal or state permits. 

Regulatory definitions for wetlands considered for US Clean Water Act protection require 

precise boundary determinations and confirmation of hydrology, wetland soils, and wetland 

plant characteristics which are difficult to determine solely from remote sensing. The 

US Army Corps of Engineers (USACE) has developed both national delineation manuals 

(Environmental Laboratory 1987) and regional supplements (USACE 2012) to measure 

specific indicators of hydric soils, provide lists of approved hydrophytic vegetation, and 

provide guidelines for identifying the presence of hydrology. Handbooks and guides have 

been written and updated to supplement the training of wetland field specialists for 

government and private consultants (Tiner 2016; Lyon and Lyon 2019). Publicly available 

spatial datasets that house confirmed field-based delineations are lacking or incomplete but 

could be used to inform models and wetland analyses (Vanderhoof et al. 2020).

6. Emerging Approaches in Streamflow Permanence

6.1 Remote Sensing in Arid or Low-Vegetation Regions

Advances in remote sensing techniques for estimating headwater streamflow permanence 

are currently limited and focus primarily on large river or low-vegetation systems. However, 

some promising results are emerging. Multi-temporal remote sensing platforms like Landsat, 

Sentinel-1, and Sentinel-2 provide insights into streamflow dynamics but are necessarily 

focused on efforts in large rivers (Tulbure et al. 2016; Miller et al. 2014; Isikdogan et al. 

2017; Allen and Pavelsky 2018; DeVries et al. 2020; Yang et al. 2020), particularly in 

intermittent rivers in arid regions (Hou et al. 2019; Pereira et al. 2019; Kostianoy et al. 

2020). For example, Hou et al. (2019) used Landsat imagery over 27 years to track river 

dynamics within rivers with a width >25 m in Australia.

Remote sensing as a tool for headwater streamflow duration is currently limited by the 

resolution of existing imagery, the temporal frequency of the imagery, and the presence of 

vegetative cover, and cloud cover for optical sensors. However, pixel-fraction approaches 

developed with Sentinel data (10 m resolution) and used for wetlands (Mahdianpari et al. 

2019) may find similar utility in intermittent streams and rivers and may help determine 

streamflow permanence. As high-resolution, high-frequency imagery, such as the Planet 

constellation (3–4 m resolution with 1–3 day intervals), become more available and 
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develop a more robust temporal record, work in arid and semi-arid areas with reduced 

vegetative cover may yield useful analyses of temporal dynamics and streamflow duration in 

headwaters. Proof of concept approaches have begun and are promising (Garcia et al. 2020).

6.2 Field-based Methods to Support Emerging Models

Streamflow duration literature often rely on field-based techniques to understand 

hydrological processes, dynamics, and duration classifications. These techniques include 

long-term repeat observations via stream gauges, recording the stream extent on multiple 

field visits, and logger or time-lapse photography data that indicate the presence of 

streamflow at specific points through time.

Long-term streamflow gauges often provide continuous data about hydrology and have 

been used extensively to produce hydrologic metrics that inform classification schemes 

(Olden and Poff 2003; Henriksen et al. 2006; Olden et al. 2012; Eng et al. 2017). Specific 

hydrologic metrics have been used to classify streamflow duration including: days or percent 

of the year with flow or with zero flows (Granato et al. 2017; Yu et al. 2018; Reynolds 

et al. 2015), thresholds or minimums of daily discharge (e.g., Beaufort et al. 2018; Rea 

and Skinner 2009), drying regimes (Price et al. 2021), or creating flow duration curves 

thresholds that define periods of low flow or minimum flows (Booker and Snelder 2012; 

Huxter and van Meerveld 2012; Pruski et al. 2013). As an example, Reynolds et al. (2015) 

analyzed 115 gauging stations in the Upper Colorado River Basin and determined a third 

of the gauges were on strongly or weakly intermittent reaches based on the number of zero 

flow days and zero flow months. A more detailed list of hydrologic metrics relevant to 

duration classifications can be found in Fritz et al. (2020).

Once classification via the gauge data has occurred, statistical techniques (e.g., multiple 

regression and Random Forest) have been used to predict classifications in neighboring 

catchments and basins based on relationships to climate, landscape, and topological 

variables. Prediction of gauge-related stream duration classifications have been primarily 

done at regional (Bent and Steeves 2006; McManamay et al. 2012; Pruski et al. 2013; 

Snelder et al. 2013; Reynolds et al. 2015), national (Kennard et al. 2010; Dhungel et al. 

2016), and global levels (Messager et al. 2021). The approaches have helped identify the 

ubiquity of non-permanent systems (Messager et al. 2021) and their sensitivity to shifts 

in climate (Dhungel et al. 2016). Headwater gauges, however, are limited (Poff et al. 

2006), though some conclusions can be reached if small, gauged catchments are exclusively 

selected. For example, Prancevic and Kirchner (2019) studied gauges from 17 small, 

mountain stream networks from across the US and found that stream length, expansion, 

and contraction and drainage density were primarily functions of catchment area, slope, and 

curvature. Expansion of gauge networks across headwater streams are needed if gauge data 

is expected to contribute fully to future headwater classifications.

In the absence of stream gauge data, walking streams lengths to determine the presence or 

absence of streamflow is a primary method of studying headwater dynamics. Due to the 

inherent difficulty of multiple visits, often in rough or vegetated terrain, the area studied 

and the number of repeat visits are often small but still informative. The time period used 

in past studies varied from single low-flow season visits (Olson and Brouillette 2006), to 

Christensen et al. Page 19

Earth Sci Rev. Author manuscript; available in PMC 2023 December 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



multiple season visits within one year (Shaw 2016; Robinson et al. 2016; Whiting and 

Godsey 2016; Jensen et al. 2017) to limited seasonal visits each year for multiple years 

(Fritz et al. 2008; Johnson et al. 2009; Roy et al. 2009 Fritz et al. 2013; Godsey and Kirchner 

2014; Gonzalez-Ferreras and Barquin 2017; Jensen et al. 2017; Lovill et al. 2018). For 

example, Lovill et al. (2018) walked and mapped wetted area across four small catchments 

during wet and dry seasons for three years, hiking over 1,000 km through rugged terrain 

in Northern California. Targeting specific reaches in proximity to roads allows for greater 

spatial coverage and potential prediction (Olson and Brouillette 2006; Roy et al. 2009; 

Fritz et al. 2013; Gonzalez-Ferreras and Barquin 2017). Field-validated segments can then 

be used to inform or validate statistical and mechanistic modeling of wetting and drying 

(Jensen et al. 2017; Ward et al. 2018; Jensen et al. 2019). Methodologies for determining 

reach-specific streamflow duration classifications via rapid assessment methods (Streamflow 

Duration Assessment Methods) have also been developed using field visits and are an 

important tool in supporting and managing headwaters (Nadeau et al. 2015; Fritz et al. 2020; 

Mazor et al. 2021).

An emerging approach to minimize the time and efforts required for field visits is the 

development of citizen science and data mining of historical records to inform streamflow 

duration classifications and predictions. Citizen-organized surveys of wet and dry stream 

segments along select rivers is helping to better understand stream and river dynamics 

along Arizona intermittent rivers (Turner and Richter 2011; Allen et al. 2019) and in 

streams in France (Datry et al. 2016). Several mobile applications are being developed 

to assist in collecting and recording citizen-science stream data (www.streamtracker.org; 

www.crowdhydrology.com; www.crowdwater.ch). Furthermore, data mining of historical 

data has helped inform the development streamflow duration classifications in Montana 

(Sando and Blasch 2015) and the Pacific Northwest (Jaeger et al. 2019), highlighting the 

usefulness and importance of data collection and data availability as well as the need for 

collaborative integration of existing and future data collection (Jaeger et al. 2021).

Various types of automated field data collection can assist streamflow duration studies. 

Automated loggers have been used with more frequency in recent years to inform 

streamflow duration classifications. Inexpensive data loggers that use relative electrical 

conductivity (EC) can signal a shift from dry to wet conditions and record the state change 

(Blasch et al. 2002; Chapin et al. 2014). Since their development, EC loggers have been used 

to determine wet/dry conditions in the arid southwest (Jaeger and Olden 2012; Arismedni et 

al. 2017; Levick et al. 2018; Gallo et al. 2020), deciduous forests in the Indiana, Kentucky, 

Ohio, and Virginia (Johnson et al. 2009, Williamson et al. 2015, Jensen et al. 2019), 

peatlands in the United Kingdom (Goulsbra et al. 2014), and in a mixed catchment in 

Luxembourg (Kaplan et al. 2019). Multiple EC loggers have measured longitudinal network 

connectivity and disconnectivity along reaches (e.g., Jaeger and Olden 2012; Jensen et al. 

2019) while other studies have deployed EC loggers across watersheds to validate seasonal 

field measurements (Fritz et al. 2020) or modeling results (Williamson et al. 2015).

In addition to loggers, time-lapse photography has also shown promise for measuring stage 

and flow in headwaters in New York and Connecticut (Royem et al. 2012; Bellucci et 

al. 2020), arid urban headwaters in New Mexico (Schoener 2018), and headwaters in 
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Luxembourg (Kaplan et al. 2019). The benefit of photography over data loggers is that the 

image may be more representative of the larger reach and multiple metrics including flow 

magnitude can be considered in addition to a wet/dry status in the classification (Bellucci 

et al. 2020). However, image processing can be time-consuming and the thresholds of wet 

versus dry may be challenging to discern (Royem et al. 2012; Bellucci et al. 2020). In 

addition, remote or trail cameras may experience issues with image quality (Royem et al. 

2012; Kaplan et al. 2019) or vandalism (Kaplan et al. 2019).

6.3 Modeling for Streamflow Permanence for Probabilities of Flow

With adequate field data, statistical models are well positioned to estimate probabilities of 

streamflow intermittency (Olson and Brouillette 2006) or permanence (Bent and Steeves 

2006; Jaeger et al. 2019; Sando et al. in review). Likewise, statistical water balance 

models with appropriate zero-flow thresholds may provide estimates of intermittency (Yu 

et al. 2018; Yu et al. 2020; Hafen et al. 2022). Probabilities describe the continuum of 

permanence, and such continuous measures may be useful in determining the cumulative 

influence of stream reaches. Yet continuous measures of streamflow permanence are likely 

regional and complex. While measurements could potentially be taken in multiple regions, 

large amounts of training data – resulting in high resource expenditures – would be required 

for accurate predictions. Thus, a combination of continued and new strategically identified 

field data collection, data mining, and collaboration is needed. In addition, many current 

policies and management strategies continue to rely on discrete streamflow permanence 

classifications, so the complex relationship between probability measures and classifications 

requires further study.

Process-based watershed modeling can also aid in determining streamflow duration and 

provide probabilities of flow based on simulated model output. Process-based models 

employ the first principles of physics and time-step simulations of water balances using 

ordinary or partial differential equations. While the discipline of process-based hydrologic 

modeling for streamflow in river systems is extensive, many models are too coarse in their 

depiction of stream networks to include headwaters (Figure 4a). Moreover, low flows are 

difficult to predict (Belmar et al. 2011; Querner et al. 2016; Hafen et al. 2022). In semi-arid 

regions where intermittent rivers are prevalent, rainfall-runoff models have approximated 

months with relative zero flows (Belmar et al. 2011).

The few examples of process-based watershed models explicitly including headwaters have 

been developed at the small catchment scale, focusing on modeling streamflow duration 

and spatial dynamics. Ward et al. (2018; 2020) developed a simplified mechanistic model 

of the stream channel and its hyporheic zone to estimate current and future streamflow and 

reach connectivity in small mountain catchments in Oregon. Validation of the model was 

provided by headwater gauges and field observations of wet and dry sections. Williamson 

et al. (2015) used a regional rainfall-saturation excess model (TOPMODEL), which focused 

on the upland contributions to the stream network for a forested catchment in Kentucky. The 

model was more successful with differentiating the duration of upland contributions between 

perennial and intermittent reaches while contributions to intermittent and ephemeral reaches 

had greater overlap.
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7. Emerging Approaches for Better Wetland-Stream Integration

Only a limited number of studies have considered wetlands with their connection to stream 

systems, even though wetland-headwater stream interactions are important to understanding 

how wetland, stream, and watershed systems function (Calhoun et al. 2017; Golden et al. 

2017; Leibowitz et al. 2018; Evenson et al. 2021; Lane et al. 2022). Studies focused in 

areas with high densities of wetlands and streams in the US are limited, with most relevant 

research occurring in the Delmarva Peninsula (Delaware, Maryland, and Virginia) or in the 

Prairie Pothole Region (PPR, mainly North Dakota, South Dakota, Iowa, Minnesota, and 

Montana in the US, though the PPR reaches far into Canada).

Several studies of wetland-stream interactions via remote sensing have been published in the 

Delmarva Peninsula, Maryland, where depressional wetlands are surrounded by both natural 

and altered streams (Lang et al. 2012; Vanderhoof et al. 2018; Yeo et al. 2019a). Yeo et al. 

(2019a) developed inundation maps derived from sub-pixel water extent with Landsat and 

combined them with weather and hydrological records as well as the NWI and found that 

inundation was highly correlated to local stream discharge (r=0.81). Within the PPR, the 

connections between wetlands and streams were studied using 20 years of Landsat imagery 

(Vanderhoof et al. 2016; 2017b), LiDAR-derived flowpaths and aerial imagery (Wu and 

Lane 2017), aerial imagery and field observations (Phillips et al. 2011), and Landsat imagery 

combined with isotopic evaporative signals (Brooks et al. 2018). As high-resolution imagery 

continues to advance, inclusion of both streams and wetlands in surface water designations 

will further the ability to consider both surface waters in models and management.

Several models also link the spatial and temporal connection of wetland with streams (e.g., 

Golden et al. 2014; Jones et al. 2019). In the Delmarva peninsula, wetland depressions were 

incorporated into process-based watershed hydrology models to link wetlands and streams to 

determine the effects of depressional storage on watershed discharge (Evenson et al. 2018; 

Yeo et al. 2019b). Evenson et al. (2018) used remote sensing to help validate water storage 

estimates but also noted that their model stream network was limited in extent. Likewise, the 

PPR of the US and Canada contains significant surface water storage in wetlands and has 

thus been the subject of hydrology models where individual wetlands and a stream network 

were included (Shook and Pomeroy 2011; Chu et al. 2013; Shook et al. 2013; Evenson 

et al. 2016; Ahmed et al. 2020). For example, Ameli and Creed (2017) delineated over 

130,000 depressions in a PPR watershed located in Alberta, Canada and modeled surface 

and subsurface flows with a new computationally efficient model that combined a 3-D 

groundwater-surface hydrology model with a 2-D overland flow model. Ahmed et al. (2020) 

developed an efficient cellular automata model of simulating fill-spill-merge dynamics with 

depression complexes and connected them to streams via overland flow in two Canadian 

PPR watersheds of 11 km2 and 22 km2. High-resolution images confirmed the modeled 

surface water extents within the basins with 85% accuracy.

8. Future directions for mapping headwater streams and wetlands

Headwater stream and wetland mapping has come a long way in the US over the past several 

decades. However, it is evident that clear gaps in the data remain, and emerging methods can 

Christensen et al. Page 22

Earth Sci Rev. Author manuscript; available in PMC 2023 December 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



help us move toward closing these gaps. Therefore, based on our literature review findings, 

we call for the following to facilitate improved future mapping of headwater streams and 

inland wetlands:

A. Support the NHD enhancement via LiDAR for stream networks.

This action is needed to improve consistency and the inclusion of headwaters in national 

datasets. The NHD is the most comprehensive stream dataset that we have for the United 

States. Policy makers, managers, and researchers rely on the NHD for information about 

stream extent and streamflow classes. With such heavy reliance, there are numerous efforts 

between the USGS and collaborators to improve and enhance those datasets, notably 

through the USGS 3DEP, which is acquiring nationwide LiDAR (IfSAR in Alaska) to 

establish a national baseline of consistent high-resolution topographic elevation data (see 

section 3.1.1). As high-quality LiDAR is acquired, USGS is in the initial stages of 

implementing the 3DHP and continued research is needed to efficiently process the LiDAR-

derived layers and extract accurate representations of complete stream networks nationwide. 

Work must be done to understand how methods for automating those extractions might 

differ across regions and land uses, and how to effectively work with and process such large 

data volumes. Machine learning approaches will assist greatly in this effort and tools that 

can automate the multiple processes will be needed.

B. Support the production of contemporary, interoperable NWI data using multiplatform 
inputs and techniques.

States, tribal communities, federal agencies, non-profits, and the commercial sector rely 

on NWI data to support strategic, science-based decision-making across multiple high-

priority areas, including infrastructure development, natural disaster mitigation, conservation 

planning, and climate change response. Although it is not currently possible to create FGDC 

standard compliant wetlands data solely using an automated workflow, recent advancements 

in the availability of fine resolution input data (e.g., LiDAR and multispectral imagery) 

as well as new processing techniques (e.g., artificial intelligence and cloud computing) 

hold promise for improving the efficiency of NWI data production. Additional research is 

needed to refine workflows that leverage these approaches and integrate them within NWI’s 

established framework.

C. Strengthen existing partnerships and promote access to high-resolution data for NWI 
and NHD enhancement, including more accurate representation of stream and wetland 
dynamics.

Both the NWI and NHD continue to develop and update their respective products with 

new high-resolution imagery, since they are the primary foundations for nationally mapped 

surface water data. However, the programs receive limited funding and lack automated 

processes and tools for data extraction. While the volume of high-resolution imagery has 

increased dramatically in the past 5–10 years, public-private partnerships are needed to 

make the imagery more publicly available. This public availability will, in turn, expedite 

classification technique innovations, automated processing workflows, and usable tools. For 

stream dynamics, high spatial and temporal-resolution optical imagery (e.g., new Planet 

Lab constellations) may be used in streams without extensive tree cover though temporal 
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analyses may require efforts to improve imagery geolocation. New high-resolution platforms 

of L-band SAR (e.g., NISAR (10 m resolution with a planned launch in 2024) can aid 

mapping stream and wetland dynamics in more vegetated systems in the future. As those 

datasets and surrounding tools mature, methods and workflows to handle such large data 

analysis need continued development and will likely occur in cloud-based server platforms.

D. Encourage the use of multiplatform, multitemporal combinations to improve surface 
water mapping and allow for analysis of temporal dynamics.

Tremendous opportunities are available to improve the spatial and temporal resolution of 

wetland and headwater mapping as multiple platforms and stacks of temporal images 

are combined, analyzed, and enhanced via advanced machine learning approaches and 

cloud computing technologies. These approaches have already shown promise in wetland 

classifications. Therefore, it is anticipated that developing temporal stacks of high resolution 

imagery used within machine learning will aid in the development of remote sensing 

techniques in stream networks as well.

E. Develop probabilistic streamflow models and metrics for more regions and over the 
entire water year.

Additional ways to estimate, visualize, and “bin” streamflow permanence are needed. 

Probabilistic methods and machine learning have already shown their value for stream 

permanence classification in efforts like the PROSPER model developed for the Pacific 

Northwest for wet or dry classifications during summer. Continued research in probabilistic 

streamflow estimation and related data collection to develop metrics for other regions 

are encouraged. To support the implementation and management of policies related to 

stream permanence, more research is needed to describe relationships between probabilistic 

continuums and discrete classifications. Along with the statistical models, process-based 

watershed models that include headwaters can simulate streamflow dynamics, highlight 

dominant processes and drivers in various regions, and derive streamflow metrics. Dominant 

processes of those more spatially focused process-based models should also be connected to 

larger scale models so that regional differences in streamflow permanence in headwaters can 

be examined.

F. Encourage continued stream field data collection, citizen science and collaborative 
datasets to provide training and validation data.

While advanced LiDAR, imagery, machine learning, and modeling approaches will be 

essential to building more accurate and detailed headwater and wetland datasets, these 

approaches cannot succeed without observations on the ground to support them. Accurate 

model results will continue to depend on training data of wetland, stream, and channel 

head location. Sustaining field operations (e.g., Stream Duration Assessment Methods) and 

field observations via headwater gauges, emerging logger technologies, UAV technologies, 

and the development of citizen scientist programs and apps need to be prioritized and 

encouraged. Much of current stream mapping efforts are limited to mountain streams. 

Therefore, continued efforts of field mapping in diverse locations are needed and might 

benefit from citizen science efforts. Collaborative datasets will also be key in providing 
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training data, whether from data mining and collaborative science or additional public data 

from federal entities (e.g., delineated wetland permits).

G. Increase the integration of wetland and stream systems in datasets and process-
based models with remotely sensed inputs.

A striking result of this review of headwater streams and inland wetlands is the limited 

number of studies that consider both headwater and wetland systems together (see section 

7), despite the fact that wetland-headwater stream interactions are critical to understanding 

whole-watershed functions. First, efforts to enhance NWI-NHD interoperability through 

various governance structures (e.g., National Geospatial Data Asset Water-Inland 

Theme; https://ngda-water-inland-geoplatform.hub.arcgis.com/), should greatly improve the 

synergistic use of these datasets and foster the development of models that holistically 

address the interaction between wetlands and streams. Second, efforts to explore combined 

dynamics of headwaters and wetlands in the US via modeling and remote sensing have been 

focused in the Mid-Atlantic Coastal Plain and Northern Plains. More work is needed in 

developing process-based watershed models to simulate stream-wetland interactions in other 

regions. Remote sensing techniques with increased observations could help in calibrating 

and validating statistical and process-based models as well.

H. Develop tools using integrated models to address short- and long-term management 
needs arising from changing climate and land use.

As integrated models are developed to account for both wetlands and headwaters, such tools 

can be used to better understand how changing conditions and future scenarios will affect 

these freshwater resources.

9. Conclusion

Mapping and understanding of the dynamics of headwaters and wetlands has advanced 

remarkedly over the past two decades. Existing national datasets and related efforts 

continually support and inform important policies and management related to protecting 

and maintaining aquatic resources. These should be prioritized for continued support 

and development. To aid in that development and refinement, emerging remote sensing 

platforms that provide finer and more frequent imagery, classification techniques and fusion 

approaches that highlight and identify the unique strengths of each data layer, and additional 

software technologies that allow the incorporation and analysis of large amounts of data, 

will continue to advance the science. Modeling advancements will build upon and integrate 

with these remotely sensed products. The continued collection of field data through gauges, 

loggers, and citizen science will support and validate the emerging work from remotely 

sensed and modeling products. To fully take advantage of these advancements, research 

must focus on the wetland landscape and watershed system in its entirety when mapping, 

modeling, and understanding our aquatic resources. Using this holistic systems approach 

will better inform policy and management and minimize uncertainties into the future.
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Box 1.

Remote Sensing Primer

Remote Sensing Primer: Broadly defined, remote sensing is the process of detecting 

and monitoring physical characteristics of the earth by measuring reflected and emitted 

radiation at a distance, typically from aircraft or satellites. The types of sensors used in 

mapping streams and wetlands include:

(1) Active optical sensors (e.g., use of laser emissions in light detection and ranging, 

LiDAR) that transmit pulses of visible or near-infrared (NIR) energy at ground targets 

to obtain information about their shapes and material properties. By precisely measuring 

the timing and intensity of those returns, detailed bare-earth elevation maps, vegetation 

heights, and numerous other LiDAR-derived products are created.

(2) Passive optical sensors that depend on natural solar radiation, which is absorbed 

and reflected differently by different surface features. Multispectral imagery typically 

includes sensors that capture a small number of bands (often 3–6) of electromagnetic 

waves reflecting from the earth’s surface. These bands are usually within the visible 

spectrum of blue, green and red wavelengths but may also include infrared bands such 

as near-infrared (NIR) and shortwave infrared (SWIR) wavelengths. The inclusion of the 

NIR and SWIR wavelengths is extremely helpful in providing a strong contrast between 

water (IR absorbed) and vegetation (IR strongly reflected) and is used in helpful indices 

like the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference 

Water Index (NDWI) (Lang et al. 2015). Hyperspectral imagery refers to numerous, 

narrow bands (100+) that encompass the electromagnetic spectrum from UV to infrared 

and provide a continuous spectral signature for each pixel. Few satellite hyperspectral 

platforms exist at moderate or fine resolution, limiting their applicability for mapping 

small aquatic features.

(3) Active radar sensors such as Synthetic Aperture Radar (SAR) that illuminate the 

ground with radio frequency waves (typically in the microwave bands: C, L, and X) 

and can function at night and penetrate clouds and some vegetative cover. SAR sensors 

measure the intensity and polarization of the microwave returns to detect physical 

properties of water, soil, and vegetation. Open, smooth water reflects the waves away 

from the sensor (diffuse reflection or “specular scatter”) creating weak to no returns 

over open water. Vegetation with water below creates a “double-bounce” return making 

the signal distinct from those vegetated areas with no water below which produces 

backscatter in multiple directions or “volume scatter”. Most current sensors have both 

horizontal (H) and vertical (V) polarizations and the intensity return of horizonal (HH) or 

vertical (VV) or a switch in polarization (HV or VH) can be diagnostic in determining 

structure (Bourgeau-Chavez et al. 2009).

Sources of remotely sensed imagery are characterized by their spatial resolution, 

temporal resolution (revisit period), and receiving bands which in the case of optical 

sensors, influence spectral resolution (Table 5). While single platform approaches rely 

on only one sensor to identify surface waters, current research demonstrates that multi-
source remote sensing approaches that use imagery from multiple sensors, often in 
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combination with ancillary data, can improve the detection and classification of small or 

variable surface water features (e.g., Kloiber et al. 2015; Judah and Hu 2019; Amani et al. 

2020; Mahdianpari et al. 2020a; Battaglia et al. 2021).
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Figure 1. 
Depiction of National Hydrography Dataset (NHD) High Resolution (HR) for the CONUS 

by stream order. Note that stream order 1 has been removed from the image to allow for the 

visualization of the remaining orders. Darker shades of blue indicate high stream orders (i.e., 

larger streams/rivers). The variability of stream densities due to geophysical properties (e.g., 

West Texas) or cartographic decisions (e.g,. Indiana) is visible. Due to scale, streams appear 

to cover much of the CONUS, please refer to figure 4 for local scale depictions of the NHD 

HR.
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Figure 2. 
Number of US state-level datasets found according to their source data and stated resolution. 

NHD – National Hydrography Dataset; NHDVA – National Hydrography Dataset with 

value added attributes; NHD added – National Hydrography Dataset with state-derived 

stream additions; Other Fed – includes EPA reach files, US Census TIGER (Topologically 

Integrated Geographic Encoding and Referencing), and National Scenic Rivers data. See SI 

Table 1 for the underlying datasets.
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Figure 3. 
State participation in USGS StreamStats identifying those states that have low flow 

estimations, probabilities of zero flow or perennial flow, estimates from the PROSPER 

model, or other StreamStats information (e.g., peak streamflow). See SI Table 2 for state 

specific flow metrics. Current as of March 2022.
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Figure 4. 
A) Comparison of a LiDAR-derived stream network, NHD (1:24,000 or better resolution), 

NHD legacy (1:100,000), and stream segments for a local (SWAT; Evenson et al. 2018) and 

a national scale hydrology model (PRMS; Regan et al. 2018) in the Choptank catchment 

of Maryland and Delaware. B) Comparison of NHD 1:24,000 or better resolution along the 

Illinois-Indiana border to demonstrate the shift of stream density between the two states.
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Figure 5. 
Conceptual diagram of various emerging approaches to aid in the mapping of headwaters 

and wetlands.
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Figure 6. 
a) Current LiDAR coverage within the US Interagency Elevation Inventory as of February 

2022 showing datasets that meet, are expected to meet, or are planned for the USGS 3D 

Elevation Program (3DEP), and LiDAR of unknown quality or at lower resolutions that 

will not be included in 3DEP. b) Example of the Iowa stream layer in Story County, Iowa 

showing the overlap of the Iowa stream layer and the NHD. The layer is derived from 

previous 3 m LiDAR DEMs (in grey), a 9.7 ha flow accumulation threshold and 1 m 
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imagery, which allows for the creation of a more consistent and repeatable workflow when 

mapping stream networks. The NHD streams are at 1:24,000 resolution.
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Figure 7. 
An example of LiDAR-derived surface depressions for an area of the Prairie Pothole Region 

in North Dakota. The image shows an elevation relief map from 1 m LiDAR data (a) and the 

maximum inundation extent for potholes derived from the 1 m LiDAR data. The maximum 

extent is overlaid on a 1 m National Agricultural Imagery Program (NAIP) imagery from 

September 2015 to show the extent of surface waters to compare actual and maximum 

extents. Reprinted from Remote Sensing of Environment, vol 228, Wu et al. Integrating 
LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using 
Google Earth Engine. July 2019, p1–13. with permission from Elsevier.
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Figure 8. 
Derived from Figure 6 of Vanderhoof et al. (2017a). An example of mapping forested 

surface waters in the Delmarva Peninsula, Maryland/Delaware USA, using a Radarsat-2 

(R2) image, a Worldview-3 (WV3) image, and the combination of R2, WV3 and a relief-

enhanced topographic wetness index (ETWI) based on LiDAR (3m) to highlight depressions 

on the landscape. All three inputs were placed within a Random Forest model for surface 

water classification and filtered by a LiDAR-derived depression layer to achieve overall 

accuracy of 94%. Copyright 2017 Digital Globe. Next View License. Used with permission.
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Table 1.

Search terms used to look in federal and state websites for relevant stream and wetland datasets.

Level: Search Terms used:

Federal stream, wetland, river, GIS, channel head, channel origin, tributary, ditch, drainage ditch extent

State remote sensing, river, waterway, stream, wetland, hydrology, GIS, Geographic Information System, geodatabase, database, channel 
head, channel origin, tributary, ditch, drainage ditch extent
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Table 2.

US National stream datasets identified during review. USGS National Hydrography current and legacy 

datasets found at https://www.usgs.gov/national-hydrography/nhdplus-high-resolution. NHDPlus dataset 

found at https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus. National Waterway 

Network dataset found at https://geospatial-usace.opendata.arcgis.com/. Wild and Scenic Rivers dataset found 

at https://www.rivers.gov/mapping-gis.php.

National Stream Datasets Resolution Extent Source

National Hydrography Dataset - Legacy 
(Medium Resolution)

1:100,000 CONUS, HI, partial AK USGS National Hydrography

National Hydrography Dataset - Current (High 
Resolution)

1:24,000 min, 1:63,360 
min Alaska

CONUS, HI, partial AK USGS National Hydrography

National Hydrography Dataset Plus (NHDPlus) 1:100,000 CONUS, HI, partial AK USEPA Water Data

National Hydrography Dataset Plus High 
Resolution (NDHPlus HR)

1:24,000 min, 1:63,360 
min Alaska

CONUS, HI, partial AK USGS National Hydrography

National Waterway Network 1:100,000 CONUS USACE Digital Library

NLCS Wild and Scenic Rivers 1:24,000 Select rivers in 39 states US Forest Service Geospatial 
Data Discovery

Earth Sci Rev. Author manuscript; available in PMC 2023 December 01.

https://www.usgs.gov/national-hydrography/nhdplus-high-resolution
https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus
https://geospatial-usace.opendata.arcgis.com/
https://www.rivers.gov/mapping-gis.php


E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Christensen et al. Page 55

Table 3.

US state-level datasets that modify stream network or duration class information beyond the National 

Hydrography Dataset (NHD). DEMs – Digital Elevation Models. USGS PROSPER – Probability of 

Streamflow Permanence model (Jaeger et al. 2019). See SI Table 1 for more details on NHD headwater extents 

and source links. See SI Table 3 for more details and available source links on state-level streamflow duration 

classes.

State Datasets that modify NHD headwater extent

 State Method Resolution Statewide?

 California Modified with aerial imagery 1:24000 No - ad-hoc additions

 Massachusetts Modified with aerial imagery 1:12000 Yes

 Minnesota Modified with aerial imagery 1:24000 No - ad-hoc additions

 Rhode Island Modified with aerial imagery 1:5000 Yes

 Vermont Modified with aerial imagery 1:5000 Yes

 Washington Modified with aerial imagery 1:24000 No - ad-hoc additions

 West Virginia Modified with aerial imagery 1:4800 Yes

 Idaho Modified with DEMs 1:24,000 Yes

 Indiana Modified with DEMs 2.4 Ha threshold Yes

 Iowa Modified with DEMs 9.7 Ha threshold Yes

 North Carolina Modified with DEMs 2.4 Ha threshold No -western North Carolina

State Datasets that modify existing streamflow duration classes

 Vermont Intermittent streams via landscape and soils regression 1:5000 No - 2 counties with no soils data 
excluded

 Idaho Perennial Streams via modeled flow threshold 1:24,000 Yes

 Michigan Non-perennial via base flow separation regression 1:24,000 Yes

 Idaho Probability classes of perennial flow (PROSPER) 1:100,000 Yes

 Oregon Probability classes of perennial flow (PROSPER) 1:100,000 Yes

 Washington Probability classes of perennial flow (PROSPER) 1:100,000 Yes

 Montana Probability classes of perennial flow (PROSPER) 1:100,000–1:24,000 Western Montana
Eastern Montana

 North Dakota Probability classes of perennial flow (PROSPER) 1:24,000 No – Upper Missouri only

 South Dakota Probability classes of perennial flow (PROSPER) 1:24,000 No – Upper Missouri only

 Wyoming Probability classes of perennial flow (PROSPER) 1:24,000 No – Upper Missouri only
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Table 4.

Summary of US federal wetland datasets and state datasets that include additional information not found 

solely in the National Wetlands Inventory (NWI). NHD- National Hydrography Dataset, NLCD – National 

Land Cover Dataset, C-CAP – Coastal Change Analysis Program.

Federal Datasets resolution Extent Method

NWI 1:12,000 to 
1:80,000

CONUS, HI, partial 
AK

Aerial Imagery interpretation with limited field 
verification

NHD waterbodies 1:24,000 CONUS, HI, partial 
AK

Aerial Imagery interpretation with limited field 
verification

NLCD 30 m grid All of US Landsat imagery

C-CAP 30 m grid Coastal CONUS, HI Landsat imagery

C-CAP High Res 1-5 m grid Limited projects Aerial Imagery

GAP 30 m grid CONUS Landsat imagery

Dynamic Surface Water Extent 30 m grid All of US Landsat imagery – no wetland classification

State Datasets – modified NWI

Delaware – wetlands 1:10,000 state-wide updated imagery, enhanced with landform, water flow 
path, and other information.

Idaho – wetlands 1:24,000 specific projects Includes NWI plus other landcover inputs for wetland 
prioritization, condition, and potential occurrence.

Idaho – Wetland Assessment Area 1:24,000 specific projects Includes NWI in rapid assessment model assessing 
potential functions, values, and condition

Maine – Wetlands 
Characterization

1:24,000 state-wide NWI wetlands characterized for six different wetland 
functions and values (floodflow alteration, sediment 
retention, finfish habitat, shellfish habitat, plant and 
animal habitat, and cultural value)

New Hampshire – Wetlands Base 
Map

Unknown state-wide NWI polygons dissolved to create unique wetland 
complexes to assess water quality

New Hampshire – NWI Plus Unknown state-wide Adds a set of hydrogeomorphic-type descriptors to NWI 
for the prediction of wetland functions

North Carolina – NC CREWS Unknown Eastern Counties Combines NWI, soils, and Landsat to determine probable 
wetland locations

South Carolina – NWI 1:24,000 state-wide NWI with uplands added

Vermont – Significant Wetlands 
Inventory

1:24,000 state-wide Adds class or protection information to NWI wetlands 
with some added wetlands

Vermont – Wetlands Advisory 
Layer

1:24,000 state-wide Repurposed NWI with additions of class for state 
purposes

Washington – Forest Practices 
Wetlands

1:4,800+ state-wide Reclassified NWI to classes to include hydric soils in 
forested regions

Unique State Datasets

Alaska – Anchorage Watershed 
Management Wetland Mapping

1:100,000 Municipality of 
Anchorage

Methodology unknown

Boulder, Colorado Wetlands Unknown Boulder, Colorado Wetland locations and boundaries within the City of 
Boulder based on field visits to each site.

Kansas – Playa wetlands 1:12,000 state-wide Set criteria for playas of disconnection from streams and 
playa soils together with 1 m imagery

Arkansas – Potential Unknown Southeastern Compilation of wetland coverages from 5 major

Natural Vegetations and Wetlands Arkansas projects
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Federal Datasets resolution Extent Method

Kansas – Potential Wetland Areas 1:24,000 Potential wetland identified using topographic tools

Wisconsin – Wetland Monitoring 
Layer Gallery

Unknown state-wide Aerial Imagery interpretation with limited field 
verification

Wisconsin Wetland Inventory Unknown state-wide Aerial Imagery interpretation with limited field 
verification and reconfigured to be incorporated into the 
NWI
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Table 5.

Common medium resolution (>10m) and high resolution (<10m) imagery used to identify stream and wetland 

systems and dynamics used across CONUS. Current as of March 2022, although new commercial satellite 

ventures are rapidly being added. NAIP - National Agricultural Imagery Program, NAPP- National Aerial 

Photography Program, Pan – panchromatic, CIR – color and infrared, B&W – black and white, NIR – near-

infrared, SWIR – short-wave infrared.

Imagery Type Platform resolution (m) Revisit period Bands data years Availability

Aerial imagery NAIP 0.5–2 m 1–3 years 3–4 True Color, CIR 2002-present Public

NAPP 1:40,000 var B&W, CIR 1987–2007 Public

Multispectral satellite imagery

Medium Res. Landsat ETM+ 15–30 m 16 days 8-Pan, Blue-SWIR 1999-present Public

Landsat 8 OLI 15–30 m 16 days 9-Pan, Coastal-SWIR 2013-present Public

Sentinel 2 10–20 m 5–10 days 12 - Coastal to SWIR 2015-present Public

High Res Rapid Eye 5 m 1–5 days 5-Blue-NIR 2008–2020 commercial*

SPOT 6–7 1.5–6 m task, 5-Pan, Blue-NIR 2012-present commercial

PlanetScope 3–5 m <1 day 4-Blue-NIR 2015-present commercial*

Pleiades system 1–3 m 1 day 5-Pan, Blue-NIR 2012-present commercial

BlackSky 0.9–1.1 m <1 day 4- Pan, Blue-Red 2018-present commercial*

IKONOS 0.8–3.2 m 3 days 5-Pan, Blue-NIR 1999–2015 commercial*

Quickbird 0.7–2.4 m 1–4 days 5-Pan, Blue-NIR 2001–2014 commercial*

Worldview 2 0.5–1.8 m 1–2 days 9-Pan, Blue-NIR 2009-present commercial*

GeoEye-1 0.5–1.7 m 2–8 days 5-Blue-NIR 2009-present commercial*

Worldview 3 0.3–1.3 m 1 day 17-Pan, Blue-NIR, 
SWIR

2014-present commercial*

Worldview 4 0.3–1.3 m <1 day 5-Pan, Blue-NIR 2016–2019 commercial*

Planet SkySat 0.5m <1 day 5-Pan, Blue-NIR 2013-present commercial*

Synthetic Aperture Radar (SAR)

Sentinel 1 5–40 m 6–12 days C (VV-VH) 2014-present Public

RADARSAT-1 8–100 m 24 days C (HH) 1995–2013 Public

RADARSAT-2 3–300 m 24 days C (Quad-Pol)+ 2007-present Public

RADARSAT 
constellation

3–300 m 4 days C (Quad-Pol)+ 2019-present Public

PALSAR 10–100 m 46 days
L (HH-HV globally)

^ 2006–2011 Public

TerraSAR-X 1–40 m 3–11 days X (Quad-Pol) 2007-present public-

commercial‡

*
Some government – commercial partnerships exist with access limited to one or more participating science agencies. Such licensing agreements 

and the imagery included in those agreements changes frequently.

+
Resolution for Quad-Pol (HH+VV+HV+VH) is 9 m, all other combinations have 3–100 m depending on the swath mode

^
Globally PALSAR collected various polarizations depending on the time of year and the region. See earth.esa.int for more info
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‡
Public-commercial designation for TerraSAR-X refers to the joint partnership of the platform. Scientific uses of the data require a submitted 

proposal by government agencies, in this case the German government.
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Table 6.

Highlighted examples of stream extent mapping at local spatial scales. NAIP - National Agricultural Imagery 

Program, UAV – Unmanned Aerial Vehicle.

Sensor/Platform Application Spatial scale Methods Citation

Worldview-2 Mapping glacial 
meltwater stream 
networks

Greenland, six test sites ranging 
from 1.7 to 9.3 km2.

Use normalized difference 
index thresholds and shape 
analysis

Yang and Smith 
2012

Worldview-2 Mapping surface water 
extent of headwater 
streams

Montana (US), four stream 
segments ranging from 0.8 to 3.8 
km.

Use panchromatic 
brightness and object-based 
analysis

Vanderhoof and 
Burt 2018

NAIP – 1 m 
imagery

Mapping riparian 
vegetation in an arid 
watershed

Arizona (US), ~1.1 km of stream 
length

Normalized difference 
indices with thresholds

Manning et al. 2020

UAV – 0.02 m Mapping intermittent 
streams within a wetland 
complex

Saskatchewan (Canada), streams 
and wetlands in a 0.09 km2 area

Supervised classification of 
the UAV imagery

Spence and 
Mengistu 2016

Airborne 0.15 m 
imagery

Mapping ephemeral 
stream networks in an arid 
watershed

California (US), calibrated 600 m 
of stream, applied to 150 km2 area

Vegetation and surface 
brightness and object-based 
analysis

Hamada et al. 2016
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Table 7.

Highlighted examples of wetland extent mapping at local to regional spatial scales. NAIP - National 

Agricultural Imagery Program, DEM-Digital Elevation Model, UAV – Unmanned Aerial Vehicle, AOI- area of 

interest.

Sensor/Platform Application Spatial extent and scale Methods Citation

NAIP – 1 m imagery Mapping 
depressional 
wetlands

Western Kansas (US), 46 counties 
minimal mapping unit of 0.03 ha

Manual delineation combined 
with DEM and soils data

Bowen et al. 2010

Airborne 0.5 m 
imagery – leaf off

Mapping 
depressional and 
forested wetlands

Minnesota (US), three watersheds 
ranging from 53 to 717 km2. 
Minimum mapping unit of 0.2 ha

Automated delineation 
combined with LiDAR-
derivatives and object-based 
analysis

Rampi et al. 2014b

UAV - 0.14 m Mapping coastal 
wetland vegetation

Lake Erie, Ohio (US) 1.8 mk2 AOI Mid and later season 
imagery products within 
neural network model

Abeysinghe et al. 
2019

Worldview-2 Mapping forested 
wetlands

Florida (US), 6500 km2 watershed. 4 
m resolution

Semi-automated processing 
of seasonal images using 
decision tree analysis

McCarthy et al. 
2018

Sentinel-2 Mapping forested 
wetlands, bogs, and 
peatlands

Alberta (Canada), 13,700 km2 AOI. 
10 m resolution

Random Forest model 
combining Sentinel 1 and 2 
and LiDAR indices

Hird et al. 2017

Landsat TM, ETM+, 
OLI

Mapping surface 
water fractions in 
wetlands

Saskatchewan (Canada), Delmarva 
Peninsula, MD (US) and Everglades, 
FL (US). 30 m resolution

Automated sub-pixel water 
fraction approach using 
Random Forest model

DeVries et al. 2017
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Table 8.

Highlighted examples of wetland extent mapping at local to regional spatial scales using Synthetic Aperture 

Radar (SAR). AOI – Area of Interest, TSX – TerraSAR-X

Active radar sensors: Synthetic Aperture Radar

Sensor/Platform Application Spatial scale Methods

Sentinel-1 C-
band

Mapping a range of 
wetland types and 
complexes

Newfoundland (Canada) 3,500 
km2 AOI, 10 m resolution

Multi-temporal stack of SAR and 
Sentinel-2 imagery in deep learning 
models

Hosseiny et al. 2021

Radarsat-2 C-
band

Mapping surface 
water and flooded 
vegetation

Lake Ontario (Canada), 1,872 
km2 AOI, 14 m resolution

Multi-temporal stack of SAR and 
fine DEMs in Random Forest models

Battaglia et al. 2021

PALSAR L-band Mapping northern 
vegetated wetlands

Alaska (US), 590,000 km2, 50 
m resolution

SAR, slope, elevation and location 
within a Random Forest model

Clewley et al. 2015

TSX X-band Mapping of surface 
waters

Ontario (Canada), 4 km2 AOI SAR, LiDAR derivatives, Worldview 
2 classifications fused into decision 
tree

Irwin et al. 2017

Multi-SAR Mapping forested 
wetlands

Newfoundland (Canada), 700 
km2 AOI; Canadian Wetland 
Inventory Map, 9.9 million km2 

AOI

RadarSat-2, PALSAR, TSX, and 
Rapid-Eye within an object based 
Random Forest model; Sentinel-1 
and PALSAR-2 imagery with fine 
DEMs in Random Forest model

Mahdianpari et al. 
2017; 2021
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