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Background and Hypothesis:  Quantitative acoustic 
and textual measures derived from speech (“speech fea-
tures”) may provide valuable biomarkers for psychiatric 
disorders, particularly schizophrenia spectrum disorders 
(SSD). We sought to identify cross-diagnostic latent fac-
tors for speech disturbance with relevance for SSD and 
computational modeling.  Study Design:  Clinical ratings 
for speech disturbance were generated across 14 items for 
a cross-diagnostic sample (N = 343), including SSD (n = 
90). Speech features were quantified using an automated 
pipeline for brief recorded samples of free speech. Factor 
models for the clinical ratings were generated using ex-
ploratory factor analysis, then tested with confirmatory 
factor analysis in the cross-diagnostic and SSD groups. 
The relationships between factor scores and computa-
tional speech features were examined for 202 of the parti-
cipants.  Study Results:  We found a 3-factor model with 
a good fit in the cross-diagnostic group and an acceptable 
fit for the SSD subsample. The model identifies an im-
paired expressivity factor and 2 interrelated disorganized 
factors for inefficient and incoherent speech. Incoherent 
speech was specific to psychosis groups, while inefficient 
speech and impaired expressivity showed intermediate ef-
fects in people with nonpsychotic disorders. Each of the 
3 factors had significant and distinct relationships with 
speech features, which differed for the cross-diagnostic v.s.  
SSD groups.  Conclusions:  We report a cross-diagnostic 
3-factor model for speech disturbance which is supported 
by good statistical measures, intuitive, applicable to SSD, 
and relatable to linguistic theories. It provides a valuable 
framework for understanding speech disturbance and ap-
propriate targets for modeling with quantitative speech 
features. 

Key words: natural language processing/schizophrenia/p
sychosis/thought disorder/disorganization/alogia/graph 
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Introduction

Quantitative features derived from the speech are increas-
ingly recognized as valuable predictors and objective 
biomarkers for psychiatric disorders, notably including 
schizophrenia spectrum disorders (SSD).1–4 But, speech 
and language phenotypes in psychiatric disorders are het-
erogeneous. Which (and how many) clinical phenotypes 
should we target when modeling and deriving computa-
tional features? In this article, we identify cross-diagnostic 
latent factors for language disturbance based on clinical 
ratings, then demonstrate the relevance of these fac-
tors for computational linguistic modeling in relation to 
general psychopathology and in SSD. We regard speech 
as speech, without making inferences regarding “thought 
disorder,” a related construct that infers disruptions to 
thought based on observable changes in speech.

A range of  speech features appears promising as 
predictors of  psychiatric diagnoses and biomarkers 
of  individual symptom dimensions. We use the term 
“speech features” broadly to indicate quantitative met-
rics derived from speech samples, including phonetic, 
acoustic, and textual measures. Significant advance-
ments have been made in SSD to identify clinically 
relevant speech features. For example, SSD diagnosis 
can be classified with >80% accuracy relative to healthy 
volunteers (HV) using measurements of  semantic dis-
tance, which quantify the “closeness” of  the meaning 
in successive sentences or segments of  words.5,6 This 
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strategy can be combined with other automated meas-
urements of  syntax/parts-of-speech,7–9 referential am-
biguity,9 and metaphoricity.10 Acoustic features (pitch, 
voice quality, and pauses) also successfully predict SSD 
diagnosis.11 Additionally, transition to psychosis among 
individuals at clinical high risk can be predicted with 
83%–97% accuracy using automatic measurements of 
semantic density,12 detections of  metaphorical speech 
or nonstandard meanings,10 and a combination of  se-
mantic distance and parts-of-speech.13,14 Speech fea-
tures are also promising biomarkers for other clinical 
contexts, including mania,15 depression,16 autism,17 and 
dementia.18,19

Presumably, speech features predict clinical charac-
teristics by reflecting speech-related symptoms such as 
decreased prosody, tangentiality, and changes in quan-
tity. However, most studies have used speech features to 
directly predict diagnosis or outcomes, without relating 
features to observable speech disturbances.5–14 There are 
weaknesses to this approach. First, there is substantial 
heterogeneity in speech phenotypes within diagnoses, 
perhaps explaining the limited reproducibility of results 
across linguistic and experimental contexts.20,21 Cross-
diagnostically, and within SSD, positive/disorganized vs 
negative/impoverished dimensions have been consistently 
reported2,22,23; they are poorly and sometimes even neg-
atively correlated with one another.24 Therefore, greater 
precision may be achieved by modeling specific types of 
speech disturbance, rather than diagnostic phenotypes as 
a whole.24–26 Second, speech disturbances may be shared 
across disorders, with implications for underlying neuro-
biology. We need to define cross-diagnostically valid con-
structs in order to determine whether speech features can 
be used consistently across disorders as biomarkers for 
particular speech phenotypes. Notably, in a large sample 
(N = 1071), Stein et al. found 3 factors of speech dis-
turbance (emptiness, disorganization, and incoherence) 
which were linked to changes in distinct brain regions 
and valid across diagnoses.27 Speech graph features have 
been shown to be a good marker of thought disorder in 
mania and SSD,15 and to be related to cross-diagnostic 
psychopathological dimensions.28 However, there are few 
studies examining whether quantitative speech features 
are consistently related to cross-diagnostic dimensions of 
speech disturbance.

Previous studies have reported factor analyses on clin-
ical ratings for thought disorder, but results are varied, 
mostly limited to SSD cohorts, and relevance for compu-
tational modeling is unclear. The two-factor model dis-
tinguishing impoverished speech (eg, poverty of speech, 
latency, and concreteness) from disorganized speech (eg, 
tangentiality, derailment, incoherence, neologisms, and 
clanging) is the most consistent.2,22,23 However, “disorgan-
ized speech” is inconsistently defined across studies and 
encompasses a broad collection of individual symptoms 
which may require different computational strategies. A 

6-factor model has been replicated in SSD, but several 
factors are not likely to be relevant cross-diagnostically 
(eg, idiosyncratic: Word approximations and stilted 
speech; referential: Echolalia and self-reference).23,29

The objective of this study was to delineate dimen-
sions of speech disturbance suitable as targets for com-
putational modeling in SSD and across diagnoses. First, 
we used factor analyses to identify and test interpretable 
models based on clinical ratings for speech disturbances. 
Then, we evaluated the factors’ clinical relevance by com-
paring severity across diagnostic groups, with the expecta-
tion that clinically relevant factors should show different 
patterns in different groups. Finally, we related the fac-
tors to multimodal speech features cross-diagnostically 
and within an SSD subgroup, similarly to the expectation 
that for the factor solution to be computationally mean-
ingful, the factors should be significantly and distinctly 
related to different speech features.

Methods

Participants

The cross-diagnostic sample included brief recordings of 
free speech (~1.5–3 min) from 343 individuals, including 
90 definitively diagnosed with SSD (schizophrenia, 
schizoaffective disorder, schizophreniform disorder, de-
lusional disorder, or unspecified psychotic disorder), 47  
with affective psychosis (bipolar disorder or major de-
pressive disorder with psychotic features) or probable but 
unconfirmed psychotic disorder (PSY), 130 with other 
nonpsychotic disorders (OD), and 76 HV (Table 1). Other 
psychiatric disorders included unipolar and bipolar mood 
disorders without psychotic features, anxiety disorders, 
obsessive-compulsive disorder, borderline personality dis-
order, attention-deficit hyperactivity disorder, and sub-
stance use disorders. Many participants were diagnosed 
with multiple comorbid conditions, so diagnoses were not 
mutually exclusive. Individuals with developmental, neu-
rological, or medical conditions likely to impact speech 
were excluded, including intellectual disability, autism 
spectrum disorder, and dementia. Sampling approaches 
were heterogeneous, with 47 samples derived from pub-
licly available videos of psychiatric interviews, 170 partici-
pants evaluated in person, and 126 participants evaluated 
virtually. All recruited participants signed informed con-
sent, and human subjects research ethical approval was 
given by the IRB at the Feinstein Institutes for Medical 
Research. Additional details on ascertainment and sample 
collection are provided in the supplement.

Clinical Ratings of Speech Disturbance

To clinically characterize language disturbances, all 
samples were given ratings using the 18 items from the 
Scale for the Assessment of Thought Language and 
Communication (TLC)30 and 2 additional speech-related 
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items from the Scale for the Assessment of Negative 
Symptoms (SANS)31 which were not included in the 
TLC (SANS-06: Decreased Vocal Inflection; SANS-
11: Increased Latency of Response). These scales were 
chosen because they are commonly used and represent 
a comprehensive range of psychiatrically relevant speech 
and language phenotypes. For prospectively evaluated 
participants, the ratings were based on the full assess-
ment, including other language tasks and clinical inter-
views, and not specifically for the isolated sample that 
underwent computational analysis. Consistent with pre-
vious reports,23,30,32 we found low prevalence (absent in 
>90% of the sample), low interrater reliability, or low 
sampling adequacy for 6 TLC items: Echolalia, blocking, 
clanging, word approximation, self-reference, and stilted 
speech. These were not included in the analyses. Each of 
the remaining 14 items exhibited excellent interrater reli-
ability (ICC≥0.9).

Speech Features

For a subsample of 202 participants (37 HV, 87 OD,  
14 PSY, and 64 SSD), speech samples were transcribed 
verbatim and processed through an automated pipeline 
to extract acoustic (prosody and voice quality, speaking 
tempo, and pauses) and textual features (semantic dis-
tances, dysfluencies and speech errors, speech graph 
measures, lexical characteristics, sentiment, parts-of-
speech, and speech quantity). This subsample includes 
only prospectively assessed participants responding to 
standardized open-ended prompts for whom data had 

been fully processed at the time of the analysis. We ini-
tially selected 79 features for analysis that were previously 
found to be relevant for psychiatric disorders. To improve 
the interpretability of comparisons between computed 
speech features and clinical variables, we calculated vari-
ance inflation factors (VIF) for each category of features 
and omitted redundant features. Twenty-seven features 
were included in the final analysis. Additional details are 
provided in the supplement.

Factor Analyses

Exploratory factor analysis (eFA) was used to generate 
potential models for latent factors for clinical speech 
disturbance ratings in the cross-diagnostic sample, in-
cluding all 343 participants. Usual assumptions were 
met: Bartlett Test of Sphericity: P < .001; Kaiser–Meyer-
Olkin measure of sampling adequacy = 0.9; determinant 
= 0.0004. Visual inspection of the scree plot (supplemen-
tary figure 1) suggested 2–3 latent factors. We used the 
psych package33 in R34 to generate 2- and 3-factor prin-
cipal axis solutions with Promax rotations. We chose an 
oblique rotation because we hypothesized that latent fac-
tors may be correlated with one another. Confirmatory 
factor analysis (cFA) was used to examine fit statistics for 
the full cross-diagnostic sample and the SSD subgroup. 
Maximum likelihood estimation from lavaan package35 
was used. Speech factor scores were computed based on 
the final 3-factor model and the main group effect on 
factor scores was evaluated using ANOVA and pair-wise 
comparisons were made using t-tests.

Table 1. Participant and Sample Characteristics

Healthy  
Volunteers (HV)

Other Psychiatric 
Disorders (OD)

Other or Undetermined 
Psychosis (PSY)

Schizophrenia Spec-
trum Disorders (SSD)

Total 
Sample P - Value

N 76 130 47 90 343
Age - Mean 
(SD)

29.0 (6.7) 23.6 (5.4) 27.1 (8.5) 27.0 (6.7) 26.2 (6.7) <.001

Gender - n (%) .007
  Man 35 (46%) 44 (34%) 25 (53%) 54 (60%) 155 (46%)
  Non-Binary 2 (3%) 11 (9%) 1 (2%) 4 (4%) 18 (5%)
  Woman 39 (51%) 74 (57%) 21 (45%) 30 (33%) 164 (48%)
Race – n (%) .003
  Asian 11 (15%) 15 (14%) 4 (21%) 12 (14%) 42 (14%)
  Black 29 (38%) 19 (17%) 7 (37%) 37 (42%) 92 (31%)
  Multiple 5 (7%) 9 (8%) 0 (0%) 7 (8%) 21 (7%)
  Other 2 (2%) 6 (6%) 2 (11%) 11 (13%) 21 (7%)
  White 29 (38%) 60 (55%) 6 (32%) 20 (23%) 115 (40%)
  Unknown 

Race
0 21 28 3 52

Hispanic – n (%) 10 (13%) 20 (18%) 2 (11%) 14 (16%) 46 (16%) .72
  Unknown 

Ethnicity
0 21 28 2 51

TLC Global – 
mean (SD)

0.1 (0.4) 0.4 (0.6) 1.4 (1.2) 1.4 (1.0) 0.8 (1.0) <0.001

Note: SD, standard deviation, TLC Global, Global score from the Scale for the Assessment of Thought Language and Communication.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac145#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac145#supplementary-data
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Correlations and Network Generation

Spearman correlations were calculated between factor 
scores and computed speech features. A network was 
constructed to further illustrate correlational relation-
ships. Nodes represent factor scores, speech features, and 
clinical characteristics. Edges represent Spearman corre-
lation coefficients with ρ > 0.2 and P < .05. The graph 
was plotted in R using the igraph package36 and network 
descriptors were calculated for the degree (number of 
connections for each node), betweenness centrality (how 
much the node serves as a conduit for the shortest paths 
connecting all node-pairs), and the overall density of the 
graph (interconnectedness of all nodes). All metadata, 
code, and resources for replicating our factor score calcu-
lations are available at: https://github.com/STANG-lab/
Analysis/tree/main/Factor-network.

Accounting for Demographic and Sampling Differences

There were significant group differences in gender, age, 
and race as well as the sampling method. To account for 
the demographic group differences, we repeated the cFA 
in the following subsamples: matching for gender (N = 
188), including all 4 groups; matching for age and race (N 
= 228), excluding the PSY group due to insufficient sam-
ples. Of note, age remained statistically significantly dif-
ferent but averaged in the mid-late twenties for all groups. 
We also reexamined correlations between factor scores 
and speech features in another subsample matched for 
age, gender, and race (N = 111). Optimal matching with 
probit propensity scores was completed using the MatchIt 
package in R.37 Because different sampling strategies 
were used for different participant populations (eg, in-
patients participated in person, outpatients, and HV gen-
erally participated virtually), it was not possible to take 
a matched-sample approach. For the factor analyses, the 
purpose was to identify latent factors which explain how 
speech and language disturbances manifest, as reflected 
by subjective clinical ratings—ie, which types of symp-
toms tend to occur together. Therefore, we optimize the 
accuracy and generalizability of the results by including 
the largest and most diverse sample possible, and sam-
pling variability is not a major limitation as long as the 
ratings are done consistently and reliably. Our purpose 
in looking at speech features was to validate the factor 
scores as making meaningful distinctions in observable 
speech and language disturbance which may generate 
better, targeted analytical methods and more accurate 
computational modeling of speech and language dis-
turbance down the road. Modeling these factors with 
specific features was not within the scope of this ar-
ticle and may require a series of iterative future efforts. 
However, even in this limited scope, sampling method 
may significantly affect computed speech features. We 
limit this by including only samples from prospectively 
collected open-ended prompts (albeit some in person 

and some virtually, with different recording devices), and 
choosing normalized acoustic features which should not 
be affected by recording method. We also include an ad-
ditional correlational analysis which teases apart assess-
ment methods.

Results

Latent Factors of Language Disturbance

Results of the eFA (table 2, supplementary figures 2 and 
3) suggested 2- and 3-factor models based on 14 clinical 
ratings for speech and language disturbance symptoms in 
the cross-diagnostic sample. The 2-factor model identi-
fied factors related to disorganized speech and impaired ex-
pressivity (decreased speech content and expressiveness), 
explaining 40% and 12% of the variance, respectively. 
The 3-factor model also produced the impaired expres-
sivity factor (5% variance) and further divided disorgan-
ized speech into items consistent with inefficient speech 
(poor organization across ideas; 41% of variance) and in-
coherent speech (nonsensical or unintelligible utterances; 
12% of variance). Each model was tested using cFA in 
both the overall sample and the SSD subgroup. The 
2-factor model was a poor fit for both the cross-diagnostic 
and SSD samples (Cross-diagnostic: Comparative Fit 
Index (CFI) = 0.850, Tucker-Lewis Index (TLI) = 0.821, 
Root Mean Square Error of Approximation (RMSEA) = 
0.095; SSD: CFI = 0.832, TLI = 0.799, RMSEA = 0.117). 
Because the 3-factor model had multiple cross-loadings 
which are not suitable for cFA, we tested this model in 2 
ways: First, by omitting the cross-loaded items (Poverty 
of Content of Speech, Derailment, and Loss of Goal) and 
then by including a separate fourth factor with the cross-
loaded items. Both approaches demonstrated good fit for 
the final model in the cross-diagnostic sample: Without 
cross-loaded items (3-factor): CFI = 0.965, TLI = 0.953, 
RMSEA = 0.047; With separate factor (4-factor): CFI = 
0.954, TLI = 0.941, RMSEA = 0.054. In the SSD sub-
sample, the fit was acceptable without cross-loaded items 
(3-factor): CFI = 0.911, TLI = 0.880, RMSEA = 0.085; 
and good with the separate factor (4-factor): CFI = 0.918, 
TLI = 0.923, RMSEA = 0.074.

Group Differences in Factor Scores

Each of the 3 factors exhibited significant group effects 
(P < .001) but with different patterns (figure 1). Inefficient 
speech showed a graded effect with significant differ-
ences between each pair of groups; inefficient speech was 
highest in the SSD group, followed by PSY, then OD, 
and HV. Incoherent speech was specific to psychosis and 
was elevated in both psychotic groups (SSD and PSY) 
compared to both nonpsychotic groups (OD and HV); 
with no significant difference between SSD and PSY or 
between OD and HV. Clinically significant impaired ex-
pressivity symptoms were present across all groups, but 

https://github.com/STANG-lab/Analysis/tree/main/Factor-network
https://github.com/STANG-lab/Analysis/tree/main/Factor-network
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac145#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac145#supplementary-data
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highest in the psychosis groups (SSD and PSY), inter-
mediate for participants with other psychiatric disorders 
(OD), and lowest for healthy volunteers (HV). The group 
effects were consistent when examining subsamples where 
we attempted to match for gender, age, and race (supple-
mentary figures 4 and 5).

Relationships to Computational Features

Figure 2 illustrates the distinct relationships between factor 
scores and computed speech features. For example, in the 
SSD group, inefficient speech was most closely related to 
speaking rate (ρ = 0.63) and mean age of acquisition (ρ 
= 0.54); incoherent speech was most closely related to de-
creased positive valence (ρ = −0.50) and use of particles (ρ 
= 0.41), along with mean speaking rate (ρ = 0.41); and im-
paired expressivity was most closely related to decreased 
mean pitch (ρ = −0.41) and higher mean turn latency (ρ = 
0.41). The strength of the correlations, and occasionally, 
the direction, also differed across the 4 groups. However, 
in all cases, none of the 3 factors showed redundant rela-
tionships to computed speech features. This was also true 
in the demographically matched subsample (supplemen-
tary table 7 and figure 6). Examining assessment types 
separately, there is also variability between SSD inpatients 
assessed in person and SSD outpatients assessed virtually 
(supplementary figure 7).

Networks generated for the factor scores further dem-
onstrate these distinct relationships with speech features, 
as well as interrelationships among all measures for the 
cross-diagnostic and SSD samples (figure 3). The overall 
densities of the networks were similar (cross-diagnostic: 
0.21, SSD: 0.19), suggesting that there was a similar 
amount of interconnectedness among all features. In both 
cases, among the factor scores, inefficient speech showed 
the greatest amount of connectedness to speech features 
as reflected by degree (cross-diagnostic: 8; SSD: 9) and 
betweenness centrality (cross-diagnostic: 25.3; SSD: 
47.9). In the cross-diagnostic sample, incoherence was the 
least connected factor, while in the SSD sample, impaired 
expressivity was least connected, perhaps reflecting the 
extent to which variability in speech and language pheno-
type is related to these factors. The relationships to com-
puted speech features differed for each of the 3-factor 
scores, and also between the cross-diagnostic and SSD 
samples, as further illustrated through dendrograms in 
supplementary figure 8.

Discussion

In this study, we identified a 3-factor model that describes 
speech and language disturbance with good fit in cross-
diagnostic and SSD samples. An impaired expressivity 
factor included items related to decreased quantity and 

Table 2. Factor Loadings

2-Factor Model
Speech and  

Language Items

3-Factor Model

Disorganized Speech Impaired Expressivity Inefficient Speech Incoherent Speech Impaired Expressivity

0.77 Poverty of Speech 
(TLC-01)

0.81

0.87 Poverty of Content of 
Speech (TLC-02)

0.46 0.47

0.65 −0.34 Pressured Speech 
(TLC-03)

0.79

0.49 Distractible Speech 
(TLC-04)

0.58

0.85 Tangentiality  
(TLC-05)

0.92

0.89 Derailment (TLC-06) 0.58 0.39
0.65 Incoherence (TLC-07) 0.89
0.73 Illogicality (TLC-08) 0.67
0.38 Neologism (TLC-10) 0.58
0.72 Circumstantiality 

(TLC-12)
0.84

0.82 Loss of Goal  
(TLC-13)

0.45 0.43

0.66 Perseverations  
(TLC-14)

0.58

0.62 Decreased Vocal In-
flections (SANS-06)

0.69

0.57 Increased Latency of 
Response (SANS-11)

0.56

Note: Loadings <0.3 are masked. TLC, Scale for the Assessment of Thought Language and Communication; SANS, Scale for the As-
sessment of Negative Symptoms.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac145#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac145#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac145#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac145#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac145#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac145#supplementary-data
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expressiveness. Two interrelated disorganized factors 
emerged: an inefficiency factor included items describing 
poorly related, redundant, or excessive speech, and an 
incoherent factor included items relating to nonsensical 
or unintelligible speech. Fittingly, derailment, loss of 
goal, and poverty of content of speech were cross-loaded 
on both the inefficient and the incoherent factors. Our 
confirmatory models suggest a good fit for the 3-factor 
model in the cross-diagnostic sample, and an adequate 
fit for the SSD subgroup which is comparable to previ-
ously reported models.23 The distinction between im-
paired expressivity and disorganization-type symptoms 
is well-replicated in SSD23 and cross-diagnostically.2 A 
latent factor for the poverty of thought and decreased 
expressiveness has been found by independent groups 
and using other rating scales.38,39 Factor analysis of the 
Thought and Language Index also suggests that unu-
sual word usage, sentence structure, and logic (consistent 
with our incoherence factor) may be differentiated from 
distractibility and perseveration (included in our ineffi-
ciency factor).40 Overall, our model is very similar to the 
3-factor model for formal thought disorder reported by 
Stein et al. in their cross-diagnostic sample of N = 1071.27 
They describe an emptiness factor (poverty of speech 
and content, increased latency, and blocking), a disor-
ganization factor (tangentiality, circumstantiality, de-
railment, and pressure of speech), and an incoherence 

factor (incoherence, illogicality, and distractibility). The 
principal differences are that we include decreased vocal 
inflection in our impaired expressivity factor (since we are 
looking at speech as a whole, and not specifically thought 
disorder) and that we prefer the term “inefficiency” over 
“disorganization” because “disorganization” is an overly 
broad term that can include incoherence and other items. 
Notably, Stein et al. report distinct correlations to brain 
structure for their 3 factors. The similarity between our 
findings, and the fact that the samples were collected in 
different languages and rated by different teams, provides 
added confidence for the 3-factor model we propose.

The 3-factor model proposed here can be understood 
in the context of linguistic theories on pragmatics. In 
classical Gricean pragmatics, a speech act is carried out 
successfully when the addressee is made to recognize the 
speaker’s communicative intent (“Meaning-intention” 
or “M-intention”).41,42 Understanding the M-intention 
necessitates not only deciphering the semantic content 
(literal meaning) of what is spoken, but also the conversa-
tional implicatures which are grounded in the context of 
the discourse and in the cooperative principle. Per Grice, 
the cooperative principle assumes that a cooperative 
and rational speaker is always following 4 maxims: (1) 
Quantity: Be informative, but not overly informative, (2) 
Quality: Be truthful, to the best of one’s knowledge, (3) 
Relation: Be relevant, and (4) Manner: Be perspicuous 

Fig. 1. Group Differences In Factor Scores: Pair-wise comparisons made using t-tests. Significance levels shown on the graph are 
uncorrected values. Results are largely consistent after correcting for multiple comparisons with the FDR method, the pair-wise P values 
are as follows. Inefficient speech: HV*OD = 0.05; PSY*SSD = 0.003; all others P < .001. Incoherent speech: HV*OD & PSY*SSD NS; 
all others P < .001. Impaired Expressivity: HV*OD & PSY*SSD NS; HV*OD, HV*SSD, and OD*SSD P < .001; OD*PSY = 0.01.  
NS, Not significant; * P < .05; ** P < .01; ***P < .001. HV, healthy volunteers; OD, other psychiatric disorders; PSY, other or 
undetermined psychotic disorders; SSD, schizophrenia spectrum disorders.
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Fig. 2. Spearman Correlations between Factor Scores and Computed Speech Features. HV, healthy volunteers; OD, other psychiatric 
disorders; PSY, other or undetermined psychotic disorders; SSD, schizophrenia spectrum disorders. See supplementary table 3 for 
descriptions of the speech features.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac145#supplementary-data
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Fig. 3. Network of Factor Scores and Computed Speech Features: Nodes represent factor scores, acoustics, and lexical features; size is 
proportional to the degree of the node. Edges represent Spearman correlation coefficients with cutoff  of ρ = 0.2 and P = .05; weight 
is proportional to absolute value. A) Cross-diagnostic sample (n = 202). Density = 0.21. Degree (D) of each speech factor: Inefficient 
Speech = 8, Incoherent Speech = 6, Impaired Expressivity = 7. Betweenness centrality (BC) of each speech factor: Inefficient Speech = 
25.3, Incoherent Speech = 13.0, Impaired Expressivity = 18.3. Speech features with the highest connectedness: type-token ratio (D = 
11, BC = 31.8), largest clique in sequential graph (D = 11, BC = 42.0), positive sentiment (D = 11, BC = 49.6), mean sentence length (D 
= 10, BC = 63.8). B) Schizophrenia Spectrum Disorders (n=64). Density = 0.18. Degree of each speech factor: Inefficient Speech = 9, 
Incoherent Speech = 4, Impaired Expressivity = 2. Betweenness centrality of each speech factor: Inefficient Speech = 47.9, Incoherent 
Speech = 2.4, Impaired Expressivity = 0.37. Speech features with the highest connectedness: minimum speaking rate (D=11, BC=50.1), 
largest clique in sequential graph (D=10, BC=54.4), positive sentiment (D = 10, BC = 33.4), mean turn latency (D = 10, BC = 29.1), 
pitch range (D = 9, BC = 35.5).
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and avoid ambiguity (clear). Along these lines, we can 
characterize the impaired expressivity factor as violation 
of the maxim on quantity—specifically, delivery of in-
sufficient information. Inefficiency and incoherence both 
involve violations of relation, manner, and (excessive) 
quantity, but differ in degree. With incoherent speech, 
the violations are severe to the point of preventing the 
M-intention from being inferred. With inefficient speech, 
the violations of the cooperative principle are perceived, 
but the M-intention can still be ascertained, although 
costly pragmatic reasoning might be needed to make 
sense of the utterance. We can also differentiate between 
incoherent and inefficient disorganized speech by refer-
ring to Grosz’s theories on centering and discourse struc-
ture.43,44 She suggests that, just as individual sentences can 
be broken down into a hierarchical structure of phrases 
that give meaning to one another, so can discourse be 
broken into a hierarchy of discourse segments (each con-
taining one or more utterances). In coherent discourse, 
individual utterances within a discourse segment collab-
orate to convey the discourse segment purpose (local co-
herence), and multiple discourse segments relate to one 
another to satisfy the overall high-level discourse purpose 
(global coherence). With respect to our work, we would 
characterize inefficiency as disruptions in global coher-
ence, where there are disruptions or inefficiencies in sat-
isfying the overall discourse purpose, while incoherence 
arises from disruptions to local coherence that cause the 
discourse segment purpose to be obscured.

We also found distinct and significant relationships 
to different diagnostic groups for each of the 3 factors, 
suggesting that the model is not just statistically and the-
oretically sound, but also clinically meaningful. There 
were intermediate effects for nonpsychotic disorders 
in inefficiency and impaired expressivity, but incoher-
ence was specific to people with psychosis and rarely 
elevated in either HV or people with nonpsychotic dis-
orders. Intuitively, this pattern may be explained by the 
sensitivity of impaired expressivity and inefficiency to 
nonpsychiatric (e.g. personality, culture, and social con-
text)45,46 and nonspecific variables (eg, impaired attention, 
psychomotor retardation, and ruminations and repetitive 
thinking).27,47 In contrast, incoherence may be more spe-
cific to psychosis-related brain changes.

The objective of examining the relationships between 
factor scores and computed speech features was to ex-
amine the relevance of the factors for computational 
speech and language analysis. The expectation is that 
meaningful distinctions in clinical speech dimensions 
should correspond to nonredundant relationships to dif-
ferent speech features; i.e. that different computational 
strategies should be pursued to objectively characterize 
each of these dimensions of speech disturbance. Indeed, 
across all diagnostic groups and sampling strategies, the 3 
factors showed distinct relationships to computed speech 
features. Some of the relationships recapitulate findings in 

the literature: eg, “negative symptoms” are related to de-
creased speaking rate.48,49 Other findings need to be more 
closely examined to tease apart diagnostic, demographic, 
and sampling effects. We believe that the distinction be-
tween inefficient and incoherent speech is particularly im-
portant to note with respect to computational analyses 
because departing from previous works which usually 
conflate the 2, we can imagine that some strategies are 
better suited to target one vs the other—e.g. perhaps cal-
culating distances better measures inefficiency and is ap-
plicable cross-diagnostically, while perplexity paradigms 
may better measure incoherence and be more specific to 
psychosis-related language disturbance. It is possible that 
focusing on cross-diagnostically relevant symptom di-
mensions as represented by the factors may improve the 
reproducibility and generalizability of findings relating 
computational speech features to psychopathology.20,21

There were several limitations in our work. There were 
heterogeneities in demographic characteristics and data 
collection methods, which require further validation 
in independent samples to fully resolve. We attempted 
to limit these concerns by evaluating demographically 
matched subsamples, looking only at open-ended au-
tobiographical narrative speech, and choosing speech 
features that should be minimally affected by different 
recording situations. We were not fully able to match for 
age in the sample examining group effects on the factor 
scores, but the absolute differences were small. Because 
different sampling strategies were used for different par-
ticipant groups, not all of the potential moderating effects 
can be teased apart—for example, the effects of in-person 
vs virtual assessment. In addition, while we attempted to 
standardize recording conditions by conducting our ses-
sions in a private space with minimal background noise, 
we did not systematically evaluate or correct for back-
ground noise. All speech samples used for the computa-
tional analyses were in response to 2 autobiographical 
narrative questions, and participants were encouraged to 
speak for at least 2 minutes, but there was still significant 
variability in the amount of speech produced, possibly 
influenced by the assessment environment (inpatient vs 
outpatient and in-person vs virtual). We attempted to 
normalize for this variability based on the total number 
of words or utterances, where appropriate. While brief  
assessments may be more efficient, they may also be less 
sensitive or accurate than longer language samples, which 
allow for symptoms to emerge and evolve. Additionally, 
all samples were collected in North American English 
and rated with the TLC scale (with 2 SANS items) at 
a single site. A larger multilingual study using multiple 
rating scales would further support the generalizability of 
our findings. Here, we were interested in the real-world 
phenomenology of speech and language symptoms, so 
we did not account for medication effects which are likely 
to have a significant effect on both clinical ratings and 
computational features. Future studies should investigate 
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the relative impact of medications vs underlying psycho-
pathology on speech and language symptoms.

In this study, we report a cross-diagnostic 3-factor 
model for speech and language disturbance which is sup-
ported by good statistical measures, intuitive, applicable 
to SSD, and relatable to linguistic theories. Impaired ex-
pressivity, inefficiency, and incoherence show meaning-
fully distinct patterns in different diagnostic groups, with 
incoherent speech being most specific to psychosis. Each 
factor was closely but distinctly related to other clinical 
characteristics and computational speech features. The 
factors also inspire different computational strategies, 
perhaps allowing for improved accuracy, specificity, and 
reproducibility relative to overly heterogeneous diag-
nostic groups or overly specific individual symptoms. In 
conclusion, the 3-factor model reported here is a valu-
able framework for understanding speech and language 
disturbance cross-diagnostically and in SSD particularly, 
and the factor scores are appropriate targets for modeling 
with quantitative speech features.

Supplementary Material

Supplementary material is available at https://academic.
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