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Background and Hypothesis:  Automated language analysis 
is becoming an increasingly popular tool in clinical research 
involving individuals with mental health disorders. Previous 
work has largely focused on using high-dimensional lan-
guage features to develop diagnostic and prognostic models, 
but less work has been done to use linguistic output to as-
sess downstream functional outcomes, which is critically 
important for clinical care. In this work, we study the rela-
tionship between automated language composites and clin-
ical variables that characterize mental health status and 
functional competency using predictive modeling. Study 
Design:  Conversational transcripts were collected from a 
social skills assessment of individuals with schizophrenia 
(n = 141), bipolar disorder (n = 140), and healthy controls 
(n = 22). A set of composite language features based on a 
theoretical framework of speech production were extracted 
from each transcript and predictive models were trained. 
The prediction targets included clinical variables for as-
sessment of mental health status and social and functional 
competency. All models were validated on a held-out test 
sample not accessible to the model designer. Study Results:  
Our models predicted the neurocognitive composite with 
Pearson correlation PCC = 0.674; PANSS-positive with 
PCC = 0.509; PANSS-negative with PCC = 0.767; social 
skills composite with PCC = 0.785; functional competency 
composite with PCC = 0.616. Language features related 
to volition, affect, semantic coherence, appropriateness of 
response, and lexical diversity were useful for prediction of 
clinical variables. Conclusions:  Language samples provide 
useful information for the prediction of a variety of clinical 

variables that characterize mental health status and func-
tional competency. 
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Introduction

Schizophrenia and bipolar disorder (BD) are chronic, se-
vere mental illnesses that manifest early in life and persist 
throughout, presenting significant challenges to individ-
uals, families, and healthcare providers. The symptoms 
associated with these conditions are a primary source of 
disability for affected individuals and can have a drastic 
detrimental impact on real-world functional outcomes, 
including attaining employment, forming personal rela-
tionships, and maintaining social connectedness.1,2

Speech and language abnormalities are included in cri-
teria for diagnosing schizophrenia and BD and establishing 
symptom severity.3 In schizophrenia, poverty of speech and 
disorganized or incoherent speech are common. In BD, de-
pressive and manic mood states are associated with different 
speech and language symptoms.3,4 Manic episodes are char-
acterized by rapid pressured speech, increased verbosity, 
and flight of ideas.5 Depressive episodes result in poverty 
of speech or increased pause times, similar to impairments 
associated with negative symptoms of schizophrenia.

Speech and language measures have promise as new bio-
markers in digital health applications, with the potential 
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to extend clinical reach through remote assessment.6–10 
Figure 1 shows the central role that speech and language 
play in mental health disorders for ascertaining both the 
upstream information about presence, severity, and prog-
nosis of the underlying neurological changes,11,12 and the 
downstream impact of the symptoms on activities of daily 
living and quality of life. While a few studies have exam-
ined how speech and language relate to downstream func-
tional competency,2,11,13 most of the previous work in this 
area has focused on answering the upstream questions.

Several recent articles have reviewed the use of com-
putational linguistic and speech processing methods for 
detection, assessment and identification of schizophrenia 
and BD.6–10 A seminal study of language metrics to pre-
dict formal thought disorder (FTD)14 compared healthy 
and FTD participants using latent semantic analysis 
(LSA)15 to generate objective estimates of language sim-
ilarity scores across samples elicited using a variety of 
tasks. Bedi et al.16 and Corcoran et al.17 also made use 
of LSA to predict the onset of psychosis in clinically 
high-risk youth. More recent work has also made use of 
neural word and sentence embeddings (ie, word2vec18 and 
GloVe19) to assess similar types of coherence in speech 
from those with schizophrenia or BD.20,21 A novel ap-
proach using neural word embeddings was recently 
proposed by Rezaii et al.22 in which a vector unpacking 
approach was used to decompose an average sentence 
vector into its most significant components. They showed 
that low semantic density for given language elicitation 
tasks could reliably predict psychosis onset. Beyond se-
mantics, other aspects of language have been computa-
tionally analyzed for individuals with schizophrenia and 
BD. Previous work has measured different features re-
lated to syntax,23 conversational pragmatics,24 linguistic 
complexity,21 and ambiguous pronouns,17 among others. 
These largely data-driven studies converge in identifying 
language metrics as useful upstream prognostic and diag-
nostic markers for schizophrenia and BD.

In contrast, few studies have explored the opportunity 
to use automated language metrics to objectively assess 
downstream problems, such as the impact of symptoms 
on social and functional competency.25 Our work aims 
to use a set of language measures based on a theoret-
ical model of speech production in service of this goal. 
The utility of upstream measures for earlier diagnosis 
and prognosis is self-evident; however, we posit that the 
downstream problem is equally important, and has been 
addressed to a much lesser extent. Illness recovery in-
creasingly considers social participation and quality of 
life. Recently, there has been a concerted effort to develop 
digital therapeutics that target social competency in pa-
tients with schizophrenia.26 To that end, objective proxies 
for constructs like social competency, which affect partic-
ipation and quality of life, are critical in evaluating the 
real-world impact of interventions.

We expand on previous work by introducing a set of 
composite features guided by a theoretical model of 
speech and language production. We then use these fea-
tures to develop robust models for addressing both the 
upstream and the downstream problems. Importantly, 
the models are evaluated on holdout test data that the 
machine learning model designer did not have access to 
during development. The composite representation we 
propose is based on a model proposed by Levelt27,28 that 
characterizes spoken language production as a complex, 
multi-stage event consisting of three major stages:

1.	Conceptualization: involves abstract idea formation 
and the intent or volition to communicate the idea.

2.	Formulation: involves selection and sequencing of 
words and the precise linguistic construction of an ut-
terance, along with a sensorimotor score for muscle 
activation.

3.	Articulation: involves execution of this sensorimotor 
score by activation and coordination of speech muscu-
lature (i.e. respiratory, phonatory, articulatory, etc.)

Fig. 1.  Speech and language abnormalities are manifestations of the underlying upstream neurological function, and they impact the 
downstream functions of activities of daily living and participation (social and functional competency).
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This framework has previously been applied in work 
to assess depression, cognition, and thought disorders.6,29 
Figure 2 shows our instantiation of this framework fo-
cusing on Conceptualization and Formulation, along 
with a set of domains for each. We do not explore the 
articulation stage in this study because acoustic speech 
samples were not available for the transcripts studied 
herein. We posit that the theoretical framework provides 
a more interpretable means by which to interrogate the 
relationship between different aspects of speech produc-
tion and clinical variables of interest than would a purely 
data-driven approach.

One of the challenges with operationalizing the frame-
work is reliable measurement of the latent domains listed 
in figure 2. These are likely multidimensional constructs 
that have yet to be operationally defined in the literature. 

Briefly, our measurement model consists of three parts: 
extraction of a set of low-level features that have been 
used in previous work, mapping of these features to the 
individual Levelt stages, and denoising of these features 
using principal components analysis (PCA).30–32 The 
denoising step is critical as there is converging evidence 
that out-of-the-box speech and language features may 
be highly variable, prone to confounding, and can ex-
hibit poor test–retest reliability.25,33 Furthermore, machine 
learning models built on top of these features sometimes 
exhibit poor external validity.34 The Levelt model serves as 
a theoretical guide for grouping the less reliable low-level 
features that aim to represent similar constructs into com-
posites. In the section that follows, we provide a high-level 
overview of the methods. The supplementary material 
provides a more detailed description of the methods.

Fig. 2.  Two of the 3 stages of the speech production framework, a brief  description of each stage (second row), and list of domains that 
characterize each stage (third row). We note that the “Articulation” stage is not included here because acoustic speech samples were not 
available for the transcripts studied.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac176#supplementary-data
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Methods

Data Used for Model Development and Evaluation

Data from a total of 281 participants with a clinical di-
agnosis of either schizophrenia/schizoaffective (Sz/Sza) 
disorder (n = 140) or BD (n = 141) and 22 healthy con-
trols were used in this study. The demographics of the 
participants in this study are seen in table 1. Participants 
underwent extensive clinical evaluations that consisted 
of neurocognitive batteries, symptom ratings, social, 
and functional assessments, including the Social Skills 
Performance Assessment (SSPA),35 the Specific Level of 
Functioning (SLOF)36 scale, the Positive and Negative 
Syndrome Scale (PANSS),37 and a neurocognitive com-
posite2 from standardized z-scores from eight well-known 
neurocognitive batteries.

Language Samples: Language samples were elicited via 
the SSPA,35 a role-playing task that can serve as a measure-
ment of skills related to social competence. Participants 
are asked to act out the following three “scenes” with a 
clinical assessor:

•	 Scene 1 (practice): plan a weekend activity with a 
friend (~1 min).

•	 Scene 2 (scored): introduce a new neighbor to your 
neighborhood (~3 min).

•	 Scene 3 (scored): negotiate with a difficult landlord to 
fix a leak in your apartment (~ 3 min).

Scenes 2 and 3 are individually scored on a scale from 
1 to 5 across a variety of  dimensions, such as overall 
interest/disinterest, affect, negotiation ability, and flu-
ency. An overall score for each scene is computed by 

averaging the scores across each dimension for each 
scene.

The SSPA was administered by doctoral-level psych-
ologists and coded by trained research assistants who 
were not aware of study aims, group membership, or 
hypotheses. The samples were manually transcribed by 
two research assistants and discrepancies were reviewed 
and corrected. The assistants were naïve to study design, 
group membership, or hypotheses.

Development/test split: Prior to the development of 
any models, the schizophrenia group and bipolar group 
were randomly split into two sets individually, a develop-
ment set and a test set. The split was performed multiple 
times until the range of SSPA scores was approximately 
matched between the development and test set. The 
healthy controls were randomly split once as they did not 
have much variation in the SSPA. This was done to ensure 
we had sufficient variability in the SSPA samples in both 
the development and test set. The development set was 
used by the algorithm developer (Stegmann) to develop 
the model. Importantly, the algorithm developer did not 
have access to the test set at any point during model de-
velopment. Once the models were fixed, they were shared 
with the first author, who evaluated the performance of 
the model on the test sets.

Language Feature Composites and Model Development.  A 
detailed description of the computed features and model 
fitting is provided in the supplementary material. Briefly, 
we sorted our computed features into the seven domains 
across the two stages listed in figure 2, to create composite 
variables for assessment of schizophrenia and BD. For 

Table 1.  Demographic information for each of the cohorts

Sample Size (Gender) Age Years of Education

Training
 � Sz/Sza N = 98 (37 F, 61 M) µ: 51.27 

σ2: 10.10 
R: 25–75

µ: 14.43 
σ2: 2.65 
R: 6–20

 � BD N = 98 (51 F, 47 M) µ: 47.45 
σ2: 13.23 
R: 18–80

µ: 16.08 
σ2: 2.20 

R: 11–20
 � Control N = 11 (3 F, 7 M, 1 undisclosed) µ: 38.4 

σ2: 10.42 
R: 23–52

µ: 16.40 
σ2: 1.96 

R: 13–18
Out-of-sample
 � Sz/Sza N = 43 (18 F, 24 M, 1 undisclosed) µ: 50.26 

σ2: 10.83 
R: 23–78

µ: 13.73 
σ2: 2.76 
R: 8–18

 � BD N = 42 (18 F, 24 M) µ: 50.57 
σ2: 11.83 
R: 21–75

µ: 16.29 
σ2: 1.78 

R: 12–20
 � Control N = 11 (8 F, 3 undisclosed) µ: 43.63 

σ2: 10.90 
R: 24–57

µ: 16.75 
σ2: 1.49 

R: 14–18

Note: Not all information was available for each participant; therefore, we report the sample size for each variable separately.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac176#supplementary-data
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each of the seven categories, we applied principal compo-
nent analysis (PCA)30 to produce composite features that 
contain most of the information.

We began with a set of 43 low-level features that spanned 
the seven domains. The number of principal components 
(PCs) used to represent each domain was chosen such 
that they contain at least 85% of the variance of all vari-
ables within that domain. As a result, we obtained 2 PCs 
for volition, 4 PCs for affect, 2 PCs for lexical diversity, 
2 PCs for lexical density, 1 PC for syntactic complexity, 6 
PCs for semantic similarity, and 4 PCs for appropriate-
ness of response (a total of 21 features). These were pro-
vided to the model designer along with the raw count of 
word tokens (W) to use for model development. Recent 
analysis has shown that many computational measures 
for assessment in psychosis are highly correlated with 
the number of words spoken.25 Therefore, we controlled 
for W in each of the models and assessed the additional 
value provided by the more complex language measures.

This feature set was used to develop several down-
stream and upstream prediction models: The models 
are:

•	 Prediction of average SSPA score.
•	 Prediction of functional competency SLOF scores (3 

subscales and overall functional competency).
•	 Prediction of the neurocognitive composite score.
•	 Prediction of symptom ratings on the PANSS scale 

(positive symptoms mean and negative symptoms 
mean).

•	 Diagnostic group classification.

For all predictive analyses, linear regression models 
were developed and optimized using leave-one-out cross-
validation on only the training samples; the best per-
forming model was selected, fixed, and subsequently 
evaluated on the test samples. Note that healthy control 
target scores are only available for the SSPA prediction 
model. For all other analyses, we only considered the Sz/
Sza and BD samples.

Results

A table of  descriptive statistics for all relevant out-
come measures is shown in the top part of  table 2. The 
cross-validation results on the development set and 
the out-of-sample results on the test sets are reported 
separately.. 

A summary of the cross-validation (for model devel-
opment) and holdout test performance for SSPA, SLOF, 
PANSS, and neurocognition regression models is shown 
in figure 3 and table 3. A summary of the diagnostic clas-
sification models (Clinical vs. Control and BPD vs. Sz/
Sza) is shown in figure 4 and table 4.

For all regression models in figure 3, we show a visual rep-
resentation of model performance by plotting the Predicted 
vs. True values. In table 3, we also provide the Pearson 

correlation coefficient (PCC) and the mean square error 
(MSE) between the predicted and true values, computed 
using cross-validation and on the out-of-sample test set.

Similarly, for the classification models, we show a visual 
representation of model performance on the out-of-
sample data. In addition, we describe model performance 
with average precision, recall, the F1-score for correctly 
predicting each class (weighted by the support of that 
class), and the area-under-curve (AUC) for the receiver 
operating characteristic (ROC) curve to evaluate the per-
formance of the classifier. It is clear in figure 4a that the 
clinical and healthy control classification model performs 
very well even on new unseen transcripts, but that the Sz/
Sza vs. BD classification problem in figure 4b is more dif-
ficult. Still, the tabulated results across both tables 3 and 
4 demonstrate that the learned models perform similarly 
well using cross-validation as they do on the holdout data.

In the supplementary material, we provide extended 
data analyses for interpretation of the relationship between 
the composites and the neuropsychological variables. In 
that analysis, we constrain our composite definitions to 
one dimension so that we can evaluate the directionality 
of the features relative to the neuropsychological variables 
we predict. For all models in both sets of analyses we con-
trolled for raw word count (W) to interpret the additional 
predictive value of the PCs associated with these features.

Discussion

While there is converging evidence that speech and language 
analytics can play an important role in computational psy-
chiatry, a well-accepted measurement model for clinical 
speech applications has yet to be defined. The approach 
adopted in most studies has been inclusion of large num-
bers of low-level features into machine learning models; 
however, recent evidence suggests that low-level features are 
highly variable and that models built with such features have 
poor external validity.25,33,34 This is not surprising given that 
training robust machine learning models requires massive 
data sets, whereas in psychiatry research the sample sizes 
are relatively small. In fact, recent work has shown that 
the ML paradigm can result in overoptimistic models, es-
pecially in digital health applications where clinical data is 
sparsely available and problem complexity is high (eg, large 
numbers of features are needed)38 That is, even when best 
practices are followed, the models exhibit seemingly good 
performance during model development and testing but ex-
hibit drastically reduced performance when deployed. The 
reduction in performance can be explained by “blind spots” 
in the training data. If there are regions in feature space that 
are not well-represented during training (ie, blind spots), we 
never observe the model’s performance with data from those 
regions. If data from those regions are encountered post de-
ployment, we will not know how the model will perform.

One way to mitigate the impact of blind spots is to use 
theory to guide model development (eg, see Section titled 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac176#supplementary-data


S188

R. Voleti et al

“Feature Engineering” in38). Reducing feature dimen-
sion using a theory-guided approach reduces the likeli-
hood that features are coincidentally correlated with the 
outcome. Further, it allows for individual interrogation 
and optimization of features in a clinically-interpretable 
way. In this paper we used the Levelt model, focusing on 
the stages of Conceptualization and Formulation (see 
figure 2), as a guide to operationally define domains of 
speech production for inclusion as features into predictive 
models. We used a variety of NLP techniques combined 
with principal components analysis for feature denoising 
to compute several composites that characterize each of 
these domains and are known to be impaired in schizo-
phrenia and BD, including volition, affect, semantic co-
herence and appropriateness of thought, lexical diversity, 

lexical density, and syntactic complexity. Since these con-
structs are complex and multidimensional, the composites 
themselves are multidimensional. In the discussion that 
follows, we provide an overview of the relationship be-
tween the language domain composites and the measures 
of mental health status and social and functional capacity.

Volition

By controlling for the raw word count in the model, we in-
troduce collinearity between the volition variables and the 
control variable (since the word count is also used in the  
volition composite). This makes it difficult to isolate 
the contribution of volition to the models individually. 
Nevertheless, we found that the PCs associated with volition 

Table 2.  The Top Half of This Table Shows Participant Statistics for Downstream Assessments of Social and Functional Competency. 
Healthy Control Participants Were Only Evaluated on the SSPA Task. The Bottom Half of the Table Shows Statistics for Clinical 
Upstream Assessments of Neurocognition and Symptom Ratings

Sz/Sza BD Control

Out-of-SampleTraining Out-of-Sample Training Out-of-Sample Training

Downstream
 � SSPA Avg. n 97 43 98 42 11 11

µ 3.79 3.61 4.42 4.37 4.48 4.47
σ2 0.73 0.70 0.39 0.40 0.24 0.26
R 1.11–5.00 2.07–4.83 3.58–5.00 3.58–5.00 4.14–4.88 3.90–4.88

 � SLOF
  �  Interpersonal n 98 42 97 42 — —

µ 3.93 3.95 4.49 4.44 — —
σ2 0.85 0.94 0.67 0.66 — —
R 1.57–5.00 1.29–5.00 2.14–5.00 2.57–5.00 — —

  �  Activities n 96 42 97 42 — —
µ 4.44 4.31 4.82 4.82 — —
σ2 0.64 0.64 0.28 0.30 — —
R 1.73–5.00 2.55–5.00 3.45–5.00 3.50–5.00 — —

  �  Work n 93 41 98 41 — —
µ 3.56 3.34 4.37 4.26 — —
σ2 1.03 0.87 0.84 0.82 — —
R 1.40-5.00 1.83–5.00 1.67–5.00 2.33–5.00 — —

  �  Fx composite n 92 41 97 41 — —
µ 11.94 11.57 13.67 13.50 — —
σ2 2.04 1.98 1.55 1.38 — —
R 5.68–15.00 6.00–15.00 8.55–15.00 10.32–15.00 — —

Upstream
 � Neurocog. composite n 97 43 98 42 — —

µ −1.13 –1.43 –0.34 –0.42 — —
σ2 1.00 1.10 0.85 0.87 — —
R (−3.27) to (+0.76) (−3.63) to (+0.53) (−2.40) to (+1.41) (−2.48) to (+0.93) — —

 � PANSS
  �  Pos. symptoms mean n 98 43 98 42 — —

µ 2.27 2.44 1.53 1.40 — —
σ2 0.87 0.76 0.59 0.47 — —
R 1.00–4.85 1.14–4.00 1.00–3.29 1.00–3.14 — —

  �  Neg. symptoms mean n 98 43 98 42 — —
µ 2.38 2.41 1.26 1.39 — —
σ2 1.12 1.22 0.37 0.48 — —
R 1.00–5.86 1.00–6.14 1.00–2.43 1.00–3.00 — —

Note: SSPA, Social Skills Performance Assessment; Sz/Sza, schizophrenia/schizoaffective; BD, bipolar disorder; SLOF, Specific Level of 
Functioning; PANSS, Positive and Negative Syndrome Scale. Not all information was available for each participant; therefore, we report 
the sample size for each variable separately.
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Fig. 3.  Visual representations of the regression prediction results for the (a) Average SSPA score, (b) SLOF Fx, (c) neurocognitive composite 
score, (d) PANSS positive symptoms average, and (e) PANSS negative symptoms average. Detailed statistics can be found in Table 3. 

were particularly useful in our assessment of PANSS posi-
tive symptoms. Positive symptoms are associated with over-
active expression (eg, hallucinations, delusions) and would 
therefore be directly impacted by increased or decreased 
volition.3 Previous work has confirmed that the impact 
on social competency outcomes can be mediated by posi-
tive symptom severity.2 Consistent with these findings, we 
found that the PCs associated with volition were also useful 
in predicting our SSPA score outcomes. It is surprising that 
volition did not appear as important for PANSS negative 
symptoms; however, this is likely due to the collinearity 
issue mentioned above. The raw word count captures much 
of the variation in that predictive model and renders the 
volition composite irrelevant.

Affect

Schizophrenia and BD have overlapping features, in-
cluding cognitive and mood symptoms. Individuals with 
schizophrenia often exhibit poverty of speech and re-
duced affective experience and expression. In BD, indi-
viduals experience a wide range of emotions and moods. 

During a manic episode they may be unusually upbeat 
and even exhibit euphoria, and during a depressive ep-
isode they may express extreme sadness, hopelessness, 
worthlessness, or guilt. All these emotional expressions 
contrast with what we expect with healthy individuals.

The SSPA task itself  is not ideal for a natural expres-
sion of  emotions, as the participants are required to per-
form a specific exercise in which they are role-playing 
for a short amount of  time. Still, we did expect to see 
differences in emotional processing for individuals in 
each group based on these measures, as the two scored 
scenes (new neighbor and landlord conversations) are 
intended to contain very different emotional content.

Emotional processing is often thought of separately from 
cognition, but several researchers have argued that they are 
more directly linked in both BD and schizophrenia. In BD, 
neurocognitive and emotional deficits are known to have 
impacts on downstream social and functional outcomes 
and are closely linked.39 For schizophrenia, Anticevic and 
Corlett40 argue that cognition plays a critical role in the 
maintenance of emotional information, and it is thought 
that neurocognitive deficits are partially responsible for 
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the emotional disassociation that affected individuals ex-
hibit. To this end, we found that affect played an important 
role in computing the neurocognitive composite score for 
our upstream regression model. Similarly, we found that 
the downstream impacts of affect are also apparent in our 
model predicting overall SSPA score. As argued by Bowie 
et al.,2 social competency (measured by the SSPA) is di-
rectly correlated with neurocognitive measures.

Semantic Coherence & Appropriateness of Response

Semantically incoherent speech is observed as a 
common occurrence for many individuals with schiz-
ophrenia (associated with Formal Thought Disorder), 
and it is occasionally observed for those with BD.3 
Disorganized and incoherent speech has been previ-
ously cited as an early predictor of  an oncoming psy-
chotic episode16,17 and as a useful feature for classifying 
between healthy controls and those with psychosis.21,24 
In our work, the language samples that were collected 

for the SSPA task are conversational in nature. This al-
lows us to take a closer look at the semantic coherence 
of  provided responses and the appropriateness of  those 
responses in context.

Indeed, our models revealed that features from the ap-
propriateness and semantic coherence domains were useful 
in separating impaired individuals (Sz/Sza or BD) from 
healthy control participants. We also found that semantic 
coherence was especially useful in discriminating between 
individuals with Sz/Sza and BD, in line with results from 
previous work.21 Positive symptom severity is also known 
to differ between those with each condition,41 which is evi-
dent from our previous observation that positive symptom 
severity can be predicted with these variables.

For the downstream models, appropriateness was 
important for predicting the overall average SSPA and 
SLOF-Activities scores; semantic coherence variables 
were significant in the prediction of  the other two SLOF 
subscales (work skills and interpersonal relationships) as 
well as the overall SLOF functional score (SLOF-Fx). In 

Table 3.  Results of regression prediction models. Note that the SSPA Average results are reported separately using all samples with 
superscript (a) and for only clinical samples with superscript (b). All other predictions are only available for clinical (Sz/Sza + BD) 
samples. We report the Pearson correlation coefficient (PCC) and the mean squared error (MSE).

Regression  PCC MSE 

Downstream
SSPA Avg. Cross-validation 0.787a

0.791b
0.178a

0.185b

Out-of-sample 0.785a 0.171a

p <0.0001a

0.789b

p <0.0001b

0.182b

SLOF
Interpersonal Cross-validation 0.473 0.511

Out-of-sample 0.569
p <0.0001

0.493

Activities Cross-validation 0.647 0.160
Out-of-sample 0.572

p <0.0001
0.211

Work Cross-validation 0.535 0.734
Out-of-sample 0.351

p <0.01
0.830

Fx Composite Cross-validation 0.608 2.507
Out-of-sample 0.616

p <0.0001
2.422

Upstream
Neurocognitive Composite Cross-validation 0.621 0.623

Out-of-sample 0.674
p <0.0001

0.682

PANSS
Positive Symptoms Mean Cross-validation 0.497 0.515

Out-of-sample 0.509
p <0.0001

0.492

Negative Symptoms Mean Cross-validation 0.718 0.487
Out-of-sample 0.767

p <0.0001
0.476

a: clinical + healthy control, b: clinical only (Sz/Sza + BD)
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the case of  the SSPA score prediction, appropriateness 
of  response measures were arguably among the most 
important features used in the regression model. In pre-
vious work, Bowie et al.2 examined how adaptive and 
social competency measures (such as those measured by 
the SSPA) are good predictors of  downstream functional 
assessments measured by the SLOF scale. Therefore, it 
is reasonable to expect to find that these same features 
may play a role in determining functional competency 
outcomes in our models predicting the SLOF subscale 
assessments. Bowie et al. found that the interpersonal re-
lationships and work skills SLOF subscales showed di-
rect correlation with social competency measures from 
the SSPA scale. They also used a separate set of  adaptive 

competency measures and showed their strong relation-
ship to the SLOF-Activities subscale; the adaptive com-
petency test consists of  the UCSD Performance-based 
Skills Assessment (UPSA-B)42 that evaluates several 
functional skills in communication and financial lit-
eracy. They found that there was no clear relationship 
between the SSPA and the activities subscale for SLOF. 
However, in our work, we found that our measures of 
appropriateness of  response in a social context were im-
portant components of  the SLOF-Activities subscale 
prediction. From previous work,35,36 we see that there is 
a strong negative correlation between PANSS positive 
symptoms and performance on the UPSA-B evalua-
tion. Since appropriateness was useful in measuring the 

Fig. 4.  Visual representation of the two classification prediction experiments conducted in this study. The first plot shows the out-
of-sample test set results for the clinical vs healthy control classification, and the second plot shows the same for the BPD vs Sz/Sza 
classification. Associated statistics are reported in Table 4. 

Table 4.  Diagnostic group classification results with confusion matrices for the Clinical vs Control classification model and the BD vs. 
Sz/Sza classification model. Note: The precision and recall statistics reported here are a weighted average of the precision and recall for 
each class in the binary classification problem to account for class imbalance.

Clinical vs. Control

Cross Validation  Out-of-Sample   

Clin. Predicted Cont. Predicted Clin. Predicted Cont. Predicted
Clin. True 193 3 Clin. True 84 1
Cont. True 3 8 Cont. True 2 9

Precision = 0.971, Recall = 0.971
F1 = 0.971, AUC = 0.856

Precision = 0.968, Recall = 0.969
F1 = 0.968, AUC = 0.903

BPD vs Sz/Sza

Cross Validation  Out-of-Sample

BPD Predicted Sz/Sza Predicted BPD Predicted Sz/Sza Predicted
BPD True 74 24 BPD True 26 16
Sz/Sza True 29 69 Sz/Sza True 12 31

Precision = 0.730, Recall = 0.730
F1 = 0.729, AUC = 0.730

Precision = 0.672, Recall = 0.671
F1 = 0.670, AUC = 0.670
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severity of  positive symptoms, we posit that variables 
from this domain serve as a proxy for positive symptom 
severity in predicting SLOF-Activities outcomes.

Lexical Diversity

Some declines in lexical diversity (ie, unique vocabu-
lary usage) are observed at late stages of aging,43 but are 
more significantly impacted when cognitive deficits are 
present. In many previous studies, lexical diversity has 
been a direct indicator of a decline in cognitive ability 
for those with dementia,44,45 chronic traumatic encepha-
lopathy (CTE),46 and our previous work on Sz/Sza and 
BD.21 In this study, we provide further evidence on the 
importance of lexical diversity as the variables associated 
with this domain were a critical component of our model 
predicting the neurocognitive composite score.

The neurocognitive deficits that are measured by 
these variables have a known impact on downstream 
outcomes. As we noticed with appropriateness of  re-
sponse and semantic coherence, we saw a significant 
correlation between lexical diversity measures and 
downstream SSPA task performance. It is possible that 
this impact on the social competency outcomes is medi-
ated by the positive symptom severity measured by the 
PANSS scale, which is also correlated with lexical di-
versity in our models. This is consistent with previous 
work by Bowie et al.2 and our previous work with SSPA 
language samples.21

Feature Domains Not Used in Our Prediction Models

The final two feature domains, lexical density and syn-
tactic complexity were not subsequently chosen by the in-
dependent algorithm designer for any of our predictions. 
Both were included in the domain set since previous work 
demonstrated their ability to measure important outcomes 
for individuals with cognitive and thought disorders.6,47 
Here, we provide some insight as to why these feature do-
mains were not found to be as significant in our study.

Lexical density is defined as a measure of “information 
packaging” in each utterance. Syntactic complexity as-
sesses the complexity of the sentence structures formed in 
speech. Previous studies have found such measures to be 
useful in assessing cognitive deficits associated with mild 
cognitive impairment (MCI),48 dementia,49–51 primary 
progressive aphasia (PPA),52 and several others. For this 
reason, we anticipated these measures to be potentially 
useful in our study looking at upstream and downstream 
outcomes in Sz/Sza and BD; however, this was not the 
case. The conversational nature of our transcripts likely 
plays a significant role in determining the utility of these 
variables. Many participant responses in the SSPA elicita-
tion task are quite short in nature (ie, “yes” or “okay”) and 
do not lend themselves well to measures of lexical density 

or syntactic complexity, which are more insightful with 
increased verbal output. Most previous work using these 
variables was performed with language samples that were 
spoken or written with much more natural verbal output.

Limitations of This Work

There are several limitations associated with this work. 
First, the speech elicitation task is optimized for as-
sessing social skills and, as a result, is likely not optimal 
for assessing other upstream or downstream variables. 
Follow-on work should be conducted with a more di-
verse set of  language samples (eg, some that are cogni-
tively more taxing or that tap into sensorimotor control) 
such that we can fully understand the potential of  using 
these computational variables in our model develop-
ment. Similarly, the existing analysis did not use any 
variables from the articulation stage of  speech produc-
tion as the acoustic signal was unavailable for anal-
ysis. Several studies have shown that there is important 
clinical information that can be measured from speech 
acoustics6,53; as such, future studies should consider these 
variables in the analyses also. It is likely that acoustic 
metrics such as speaking rate, prosodic variation, and ar-
ticulatory precision will further strengthen the models’ 
predictive value.

An additional limitation of this work is that we did 
not consider whether the BD individuals are in a clinical 
(manic or depressed) or non-clinical phase. It is likely that 
BD individuals will appear more like Sz/Sza when they 
are in a clinical phase and this could explain the overlap 
between the two classes in figure 4b; however, this requires 
additional exploration in future prospective studies.

Future work can improve upon the foundation laid 
here in several ways. First, our control sample was 
smaller compared to our clinical sample and younger in 
age. A larger matched sample could improve the robust-
ness of  our model design. Second, the language samples 
were only of  SSPA conversations and were not opti-
mized for measurement of  features requiring long and 
complex narratives. Lastly, the measurement model pro-
posed herein provides a step forward in the development 
of  an interpretable set of  clinically important features; 
however additional work remains. Although the clinical 
groups were matched on age and gender, the Sz/Sza group 
had fewer years of  education. We posit that individual 
norming of  the language features using large-scale cor-
pora from the general population will further help to re-
duce feature variability, place less emphasis on matching 
cohorts on demographics, and improve the quality of 
models built on these features by accounting for age/
gender/demographic-related changes to the language 
domains. Finally, the Levelt model was used as a theo-
retical guide to combine the low-level features. However, 
this model also contains feedback components that are 
not directly observable during data acquisition. As a 
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result, we did not attempt to directly model the feedback 
component during feature learning in this work. Future 
work can focus on modeling the feedback component; 
this would likely require a fundamentally new elicitation 
task where the input stimulus is actively modified (eg, via 
perturbation).

Conclusion

Language parameters measured from conversations 
elicited from the SSPA protocol35 allowed us to predict 
several measures of  mental health status and social and 
functional competency. The best model performance 
was obtained for the regression models that predicted 
average SSPA performance. This was expected since 
the SSPA transcripts were the source of  our language 
samples, however, reasonable predictive value also 
was shown for measures of  neurocognition, symptom 
ratings, and functional competency tasks. In addition, 
classification of  individuals into their respective diag-
nostic groups was also possible from the SSPA language 
samples, even though the SSPA is not intended as a clin-
ical diagnostic tool. Most importantly, on every regres-
sion and classification model that was developed, the 
model performance generalized well to transcripts that 
were never seen during training by an independent bio-
statistician; this bolsters confidence in the external va-
lidity of  the models.
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Supplementary material is available at https://academic.
oup.com/schizophreniabulletin/.
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