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Abstract

Background: Chronic diseases are becoming a critical challenge to the aging Chinese population. Biobanks with extensive genomic
and environmental data offer opportunities to elucidate the complex gene–environment interactions underlying their aetiology.
Genome-wide genotyping array remains an efficient approach for large-scale genomic data collection. However, most commercial
arrays have reduced performance for biobanking in the Chinese population.

Materials and methods: Deep whole-genome sequencing data from 2 641 Chinese individuals were used as a reference to develop the
CAS array, a custom-designed genotyping array for precision medicine. Evaluation of the array was performed by comparing data from
384 individuals assayed both by the array and whole-genome sequencing. Validation of its mitochondrial copy number estimating
capacity was conducted by examining its association with established covariates among 10 162 Chinese elderly.

Results: The CAS Array adopts the proven Axiom technology and is restricted to 652 429 single-nucleotide polymorphism (SNP) mark-
ers. Its call rate of 99.79% and concordance rate of 99.89% are both higher than for commercial arrays. Its imputation-based genome
coverage reached 98.3% for common SNPs and 63.0% for low-frequency SNPs, both comparable to commercial arrays with larger SNP
capacity. After validating its mitochondrial copy number estimates, we developed a publicly available software tool to facilitate the
array utility.

Conclusion: Based on recent advances in genomic science, we designed and implemented a high-throughput and low-cost genotyping
array. It is more cost-effective than commercial arrays for large-scale Chinese biobanking.

Keywords: genotyping, single-nucleotide polymorphism (SNP), mitochondrial copy number, chronic disease, precision medicine, SNP
array

Introduction
Chronic diseases are the major cause of mortality in the elderly.1,2

With the rapid progress of population aging, chronic diseases are
becoming a critical public health issue and economic burden in
China.3,4 Due to the complex gene–environment interplay in their
aetiology, better understanding of the chronic disease mechanism
and discovery of novel biomarkers are urgently required to facili-
tate precision medicine.5,6

Large prospective cohorts such as the UK Biobank, which col-
lected extensive environmental information coupled with ge-
nomic data, have been proved capable of dissecting the complex
aetiology of common chronic diseases.5–8 However, both the ge-
netic background and environmental factors affecting those com-
plex diseases can vary between populations.6 Therefore, large
perspective cohort studies coupled with biobanks are essential
to meet the challenge of Chinese population-specific precision
medicine for the aging population.

High-throughput and cost-effective genomic techniques have
advanced dramatically. Whole-genome sequencing (WGS) can
identify genetic variations accurately with any allele frequency
across the whole genome.9 While the cost of WGS has dropped
significantly, single-nucleotide polymorphism (SNP) genotyping

arrays remain the most cost-effective way of collecting genomic
data on a biobank scale. SNP arrays focus on more informative
variants among the genome to achieve higher throughput at a
lower cost. Together with imputation methods, SNP arrays can
generate a relatively accurate genotype, except for extremely rare
variants.9 Imputed genotypes derived from SNP arrays can pro-
vide similar statistical power to those from WGS for genome-wide
association studies (GWAS).10,11 However, most commercial SNP
arrays were designed to maximize genome coverage and imputa-
tion accuracy in populations of European ancestry. These arrays
include a significant proportion of SNPs that are monomorphic
while genotyping samples from the other ethnic groups, resulting
in a loss of valid information content. That is why most national
biobanks worldwide have chosen to design a customized SNP ar-
ray for genomic data collection.12–14

As large-scale biobanks of Chinese cohorts are currently un-
derway, an SNP array optimized for large Chinese prospective co-
hort studies is urgently needed. The existing SNP arrays designed
for the Chinese population were mostly based on small global
genome reference panels such as the 1000 Genomes Project (1kGP)
or the HapMap established more than a decade ago.15,16 With
the recent advance in large-scale population sequencing in the
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Chinese population,17 genomic mapping with higher resolution
offered an opportunity to design a more efficient SNP array for
Chinese biobanks.

Another recent advance in human genetics is the confirmation
of mitochondrial DNA copy number (MCN) as a novel biomarker
of aging-related diseases and all-cause mortality.18,19 Studying
MCN in large cohorts and biobanks was made possible by the de-
velopment of methodologies that could estimate MCN through
analysing raw genotyping intensity data from existing SNP ar-
rays.20–22 However, none of the existing SNP arrays were optimized
for MCN estimation, and had either insufficient markers or unbal-
anced intensities.20,22 Therefore, future SNP arrays could be de-
signed to include more mitochondrial markers to facilitate MCN
estimation as an extra type of genetic biomarker content for stud-
ies of ageing-related outcomes.

Here we describe the design and assessment of a genome-wide
SNP array, the CAS Array, specifically optimized for cost-effective
whole genome genotyping in the Chinese population. The array
design took advantage of a large high-quality Chinese genomic
reference panel and incorporated the latest methodological devel-
opments for MCN estimation, providing an efficient tool for preci-
sion medicine in Chinese individuals.

Materials and methods
Datasets
Three main datasets were used for the development and assess-
ment of the CAS Array. The development dataset is part of the
NyuWa reference panel, which includes deep (30x) WGS data of
2 641 Chinese individuals across China.17 It was mainly used to
construct two reference panels for SNP selection and imputation
validation. The evaluation dataset consists of another 384 Chinese
individuals with both WGS and CAS Array data available.23 This
was used for evaluating the genotyping accuracy and imputation
performance. The validation dataset came from a large popula-
tion cohort, which includes 10 162 elderlies recruited from Kun-
shan City, Jiangsu, China. These individuals were genotyped with
the CAS Array to validate the MCN estimates by assessing their
association with established age-related biomarkers recorded in
the electronic health records.

Construction of the Chinese reference panels
For array design, a tagging reference marker panel was con-
structed from the development dataset of 2 641 Chinese indi-
viduals with WGS variant calls. Quality control [Variant Quality
Score Recalibration (VQSR) passed, SNPs only, missing rate < 0.05,
minor allele count ≥ 3, quality value ≥ 30, read depth (DP) ≥ 3,
and Hardy–Weinberg equilibrium (HWE), P value > 10−6] was con-
ducted by VCFtools.24 A total of 17.3 M SNPs, including 5 M com-
mon (minor allele frequency (MAF) ≥ 0.05) SNPs and 71 k rare
(0.001 < MAF < 0.05) coding SNPs passed the quality control and
were used for GWAS tagging marker selection.

To derive the reference panel for imputation, slightly different
quality control steps were applied to the development dataset.
Among the SNPs passing VQSR, those with missing rate > 0.05,
HWE P value < 10−6 or minor allele count < 3 were excluded. Sam-
ples that were probably contaminated (deviate ± 3 SD from mean
heterozygosity rate), relatives within the third degree or abnor-
mally recorded data were excluded. The sex of each individual was
inferred by F coefficient and SNP observation on the Y chromo-
some. A putative XO type sample was marked as male to match
the haploid state of the X chromosome. The relationship infer-
ence was done by KING software and other quality control steps

were done by PLINK.25,26 The genotype was phased and converted
to IMPUTE2 reference panel format by SHAPEIT2 software with a
0.5 Mb window size as recommended for WGS data.27 The genetic
maps used for phasing were obtained from SHAPEIT4.28 The final
reference panel contains 2 562 samples with 17.9 M SNPs.

Array design
As for genotyping arrays chosen by most national biobanks, the
CAS Array utilized a ThermoFisher Axiom custom array harbor-
ing up to 675 k markers. The SNP markers were selected according
to three priorities. Firstly, to achieve adequate coverage of com-
mon variants for imputation-based GWAS, common SNPs on the
Axiom APMRA with proven technical efficacy were anchored.29

They were then complemented by greedy tagging on our refer-
ence panel to cover all the common (MAF > 0.05) SNPs. The sec-
ond priority was to directly type as many coding variants with
MAF > 0.001 as possible in our reference panel that Axiom tech-
nical efficacy allowed. Finally, a total of 776 mitochondrial mark-
ers were selected to enable more accurate MCN estimation. Addi-
tional markers were added to the array for a wider range of appli-
cations in medical research. Markers in the human leukocyte anti-
gen (HLA) region, pharmacokinetic variants in drug absorption,
distribution, metabolism, and excretion (ADME), ancestry infor-
mative markers (AIMS), and mitochondrial markers were selected
based on the reference set validated by Illumina and Affymatrix.
HLA markers, ADME markers and AIMS with MAF > 0.01 in our
development dataset were included while all available mitochon-
drial markers were included on the array.

Evaluation of coding variants coverage
Coding variants were more likely to be identified as clinically rel-
evant.30 However, clinical translation of such knowledge of preci-
sion medicine requires high genotyping accuracy to maintain rea-
sonable sensitivity and specificity, which could be better achieved
by directly genotyping rather than using imputed genotypes. The
coverage of coding variants with MAF > 0.001 was examined on
the latest ChinaMAP reference panel.31 Variants position, alleles
labels, and frequencies derived from WGS data of 10 588 Chi-
nese individuals were downloaded and annotated with ANNO-
VAR.32 There were 107.4 k variants marked as coding variants
with MAF > 0.001 in ChinaMAP. The coding variants coverage of
the CAS Array was defined as the proportion of variants having
matched position and alleles with the designed markers on the
arrays relative to the total of 107.4 k variants on ChinaMAP.

Evaluation of genotyping accuracy
Genotyping accuracy of the CAS Array was evaluated by calculat-
ing the concordance rate between WGS calls and array genotyp-
ing results in the array evaluation dataset. Quality control of WGS
data was the same as that applied to the imputation reference
panel. Array genotyping SNPs were called by APT software follow-
ing the manufacturer’s instructions.33 Five samples having incon-
sistent sex or that were duplicated were removed by PLINK.26 The
array genotyping call rate was defined as the proportion of recom-
mended variants relative to the total number of designed markers
on the array. Within these successfully called SNPs on the array,
concordance rate was calculated as the proportion of concordant
genotypes relative to all non-missing variant calls from WGS.

Evaluation of imputation performance
The evaluation dataset was also used to evaluate the imputa-
tion performance of the CAS Array as compared to eight com-
monly used commercial arrays, including Genome-Wide Human
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SNP Array 6.0 (Affy SNP6), Axiom Precision Medicine Research Ar-
ray (Axiom PMRA), Axiom Asia Precision Medicine Research Ar-
ray (Axiom APMRA), Infinium Global Screening Array (Illumina
GSA), Infinium Asian Screening Array (Illumina ASA), Infinium
HumanOmni1 (Illumina Omni1), Infinium OmniExpress (Illumina
OE), and Infinium OmniZhongHua (Illumina OZH). Manifest files
were downloaded from the respective official websites of these ar-
rays and the positions of the markers were converted to genome
build hg38 by UCSC liftOver.34 Genotypes with matching physical
position and alleles were extracted from the WGS dataset as sim-
ulated genotyping calls. Low-quality variants including those with
call rate < 0.95, MAF < 0.01, or HWE P value < 10−6 were excluded
before imputation. Autosomes and chromosome X genotypes of
each array were phased by SHAPEIT2 using the genetic map from
SHAPEIT4.27,28 The reference strands were aligned to our Chinese
reference panel derived from the NyuWa reference panel by Geno-
type Harmonizer.35 Imputation was performed by IMPUTE2 with
the same reference panel.36

The imputation performance of each array was evaluated by
comparing the imputed genotypes with the original WGS out-
puts. We used imputation r2, discordance rate, and imputation-
based genomic coverage to assess the performance of the arrays
as in previous studies.13,14,37 The imputation r2 was defined as
the squared Pearson correlation r2 between the allele dosages of
WGS and imputed genotypes. The discordance rate was defined
as the proportion of the mismatching genotypes between WGS
results and the most possible genotypes at each site generated by
imputation. Coverage was defined as the proportion of the vari-
ants having imputation r2 greater than a given threshold (typically
r2 > 0.8). Average imputation r2 and discordance rate was calcu-
lated for each array. Coverage of common SNPs (MAF ≥ 0.05) and
low-frequency SNPs (0.01 ≤ MAF < 0.05) were calculated sepa-
rately for the arrays.

MCN estimation
MCN estimation was conducted in a similar manner as imple-
mented by two previous MCN estimation pipelines, MitoPipeline
and AutoMitoC.20,21 In brief, the MCN was estimated by the in-
tensity of fluorescent signal of mitochondrial markers indicat-
ing the segments of mitochondrial DNA captured by the cor-
responding probes. The intensities of autosomal markers were
used as a reference to capture latent confounding factors such
as batch effects and variation in DNA concentrations. Firstly,
raw genotyping intensity files were processed for quality control
by APT Software.33 Genotype calls and normalized signal inten-
sity were also generated by APT. Log R ratios (LRRs) were cal-
culated as an intensity measure and corrected for GC content
to adjust for genomic waves by PennCNV.38,39 To select high-
quality markers for MCN estimation, PLINK and BLAST+ were
used for quality control.26,40 Markers with multiple alignment of
percentage of identical matches > 80% were excluded for po-
tential off-target. For autosomal markers, additional quality con-
trol including call rate > 95%, HWE P-value > 10−6, linkage dis-
equilibrium (LD)-pruning (r2 < 0.3), and maximum spacing was
done. After filtering, 47 102 autosomal markers and 166 mito-
chondrial markers were left as high-quality markers for MCN es-
timation. Principal component analysis (PCA) was applied on the
LRRs of high-quality autosomal markers generating 80 PCs us-
ing R.41 The LRRs of high-quality mitochondrial markers were
adjusted by regressing out the PCs of the autosomal markers.
The final MCN estimates were extracted from the adjusted mi-
tochondrial LRRs by PCA and converted to a standard normal

Table 1. Summary of the contents of CAS Array.

Category
Number of

markers
Proportion of

markers

GWAS tagging markers 525 113 80.49%
Coding variants 108 261 16.59%
HLA markers 14 843 2.28%
ADME markers 1 403 0.22%
AIMS 2 033 0.31%
Mitochondrial markers 776 0.12%
Total 652 429 100.00%

distribution. After excluding samples with low genotyping qual-
ity (call rate < 0.95), fluctuating LRR (LRR SD > 0.35), inconsis-
tent sex calling, or without available phenotype data, the valida-
tion data set was finally used to examine the association between
estimated MCN and age-related biochemical traits such as white
blood cells count (WBC), haemoglobin (HEMO), and platelets (PLT).
The same pipeline was also applied on the evaluation dataset,
where MCN estimated from array data could be compared di-
rectly with MCN estimated from WGS as twice the ratio of the
sequencing depth between mitochondrial reads and autosomal
reads.

Results
Content of CAS Array
We designed an Axiom SNP array based on the large Chinese
NyuWa genome reference panel of 2641 individuals.17 The CAS Ar-
ray includes a total of 652 429 SNPs selected for different purposes
(Table 1). Of these, 525 k variants were selected as genome-wide
tagging SNPs (MAF > 0.01) for GWAS. Another 108 k of the markers
offer high direct coverage of coding variants with MAF > 0.001 in
the Chinese population. In addition to the small numbers of SNPs
selected for other types of precision medicine investigations, 776
mitochondrial SNP markers were included for MCN estimation.

Genotyping call rate and accuracy
Call rate and accuracy of the CAS Array were evaluated by assay-
ing 384 Chinese individuals with both the CAS Array and WGS. Of
the 652 577 SNP markers on the array (including technical mark-
ers of Axiom), 645 327 were genotyped and passed quality con-
trol, resulting in a raw call rate of 98.89%. Of the 582 342 non-
ambiguous variants that overlapped between CAS Array and WGS,
the average concordance rate across samples was 99.89%. These
results indicate that the in-house genotyping accuracy of the CAS
Array was comparable to most commercial SNP arrays.13,14,42

Coverage of coding variants in the Chinese
population
To evaluate the coverage of coding variants in the Chinese popula-
tion, we utilized the large external genome reference panel of the
ChinaMAP.31 Out of the 107 403 coding variants with MAF > 0.001
in the ChinaMAP, 74 470 (69.3%) were directly captured by the CAS
Array and passed quality control. Compared to other commonly
used commercial SNP arrays, CAS Array has a much higher direct
coverage of coding variants that are more relevant to precision
medicine (Table 2).

Imputation performance
Imputation performance was evaluated on both accuracy and
coverage using the evaluation dataset. Within the post quality
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Table 2. Direct coverage of coding variants (MAF > 0.001) in Chi-
naMAP WGS results of CAS Array and commonly used commer-
cial SNP arrays.

Array name
Number of coding
variants covered

Proportion of coding
variants covered

CAS Array 74 470 69.3%
Affy SNP6 6 528 6.1%
Axiom PMRA 6 917 6.4%
Axiom APMRA 31 155 29.0%
Illumina GSA 12 732 11.9%
Illumina ASA 22 657 21.1%
Illumina Omni1 27 584 25.7%
Illumina OE 16 740 15.6%
Illumina OZH 22 463 20.9%

control WGS data, there are 4.2 M common SNPs (MAF ≥ 0.05)
and 1.6 M low-frequency SNPs (0.01 ≤ MAF < 0.05). Figure 1
shows the imputation r2 distribution across the allele frequency
spectrum for the nine arrays. CAS Array demonstrated the high-
est overall imputation accuracy, probably due to the fact that
up to 90.6% of its limited contents are common and informa-
tive to imputation. A similar pattern was observed when discor-
dance rate was used to evaluate accuracy (supplementary Tables
1 and 2, see online supplementary material). When imputed geno-
types with r2 > 0.8 were set as the good coverage target, CAS
Array achieved rates of 98.3% and 63.0% for common and rare
SNPs respectively, higher than most commercial arrays containing

more SNP markers. These results indicate that CAS Array out-
performed most commonly used commercial SNP arrays on im-
putation accuracy and genome coverage despite its limited SNP
content.

MCN estimation and validation
We developed a pipeline to estimate the MCN from raw genotyp-
ing intensity data of the CAS Array and applied it to the validation
dataset. After quality control, 378 individuals in the evaluation
dataset had their MCN estimated by 47 878 high-quality mark-
ers, including 134 mitochondrial markers. The MCN estimated
from CAS Array was positively correlated with the MCN estimated
from WGS (spearman correlation rho = 0.52, P < 2.2 × 10−16).
For the validation dataset, a total of 8 584 individuals passed
quality control and their MCN was estimated by 47 268 high-
quality markers, including 166 mitochondrial markers. As shown
in Fig. 2, MCN estimates were significantly associated with age,
sex, WBC, HEMO, and PLT, in keeping with previous studies.22,43,44

The pipeline was packed into an R package available on GitHub
(https://github.com/Zijian-Tian/CASMCN).

Discussion
We designed an Axiom SNP array that is suitable for high-
throughput and low-cost genotyping in large Chinese cohorts.
With a limited content of ∼675 k markers, the CAS Array achieved
a relatively high genotyping accuracy and high genome coverage
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Figure 2. Association between mitochondrial copy number estimates and different phenotypes. The plot shows the spearman rank correlation
coefficients with 95% confidence intervals (CI) and P-values of the association between mitochondrial copy number estimated from CAS Array and
corresponding phenotypes in 8 584 Chinese individuals.

via imputation. Given the design features of direct coverage on
coding variants and MCN estimation, the CAS Array should be-
come a good choice for biobank-scale genotyping and precision
medicine in Chinese population.

As with other custom-designed genotyping arrays for biobanks,
the main purpose of CAS Array is to facilitate cost-effective large-
scale GWAS via imputation.36 The comparison of post-imputation
accuracy and genome coverage shows that CAS Array is gener-
ally more suitable than most commercial arrays for GWAS in the
Chinese population. Axiom APMRA achieved better performance
than the CAS array at the low-frequency (MAF < 0.05) end of
SNP distribution, but only at the cost of ∼150 k extra rare mark-
ers on the array (supplementary Table 3, see online supplemen-
tary material). At the high-frequency (MAF > 0.2) end, the Illu-
mina OmniZhongHua (OZH) array outperformed CAS Array at the
cost of genotyping a total of 1.1 M SNPs with reduced through-
put. Therefore, on the balance of cost effectiveness, CAS Array

is a more reliable and attractive option for low-cost and high-
throughput genotyping in the Chinese population.

In addition to facilitating the marker selection on the CAS ar-
ray, the high-quality Chinese reference panel also played an im-
portant role in improving its imputation performance. Our re-
sults show that all SNP arrays had better imputation performance
when using the large NyuWa Chinese reference panel compared
to the widely-used 1kGP reference panel,17,45 especially on low-
frequency SNPs (Fig. 1, supplementary Figs. 1–5, see online sup-
plementary material). This advantage is likely driven by the fact
that our reference panel was not only larger than the extended
1kGP panel but also more representative of the Chinese popula-
tion. As described in the original publications, the 1kGP reference
panel included 585 east Asian individuals and only 163 of them
are southern Han Chinese.45 In contrast, the NyuWa reference
panel consists of 2 562 Chinese individuals from 23 of 34 adminis-
trative divisions in China.17 Therefore, the CAS Array would serve
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genotyping of Chinese individuals better, especially with the large
Chinese imputation reference panels that are increasingly avail-
able.

The designing priority to directly genotype more coding vari-
ants is another key feature of CAS Array. This group of vari-
ants has been proven by accumulating GWAS results to be the
most likely type of causal variants for a wide range of complex
phenotypes.46 The direct calling of these variants would enable
more accurate genotyping than imputation. In turn, the down-
stream association analyses and genetic risk profiling would be
more powerful and accurate with these directly assayed geno-
types. More importantly, these more accurate genotype calls
would also benefit the translation of genomic knowledge into
potential clinical practice. As suggested by multiple biobanks
around the world, pre-emptive genotyping of key pharmacoge-
netic variants, which are mostly coding variants, would ben-
efit from more reliable genotype data to achieve high speci-
ficity.47

CAS Array is the first genotyping array designed with MCN es-
timation in mind, aiming to better serve the investigations into
complex age-related diseases. Compared to other commonly used
arrays with dozens to 300 mitochondrial probes, CAS Array har-
bors 776 mitochondrial SNP markers. Therefore, it has more com-
prehensive data and statistical power to estimate MCN. We also
implemented an array-specific pipeline to estimate MCN from raw
genotyping intensity signals. Using the large validation dataset,
we further demonstrated that the MCN estimated from CAS Ar-
ray was indeed associated with established biomarkers, paving
the path to use the array for more precision medicine research
in the elderly.

The CAS Array design is inherently limited by the total num-
ber of markers it can carry, in order to meet the requirement
of cost-effective genotyping. However, with the support of more
comprehensive Chinese reference genome panels, the CAS Array
outperformed most commercial arrays in terms of imputation-
based GWAS for complex trait gene mapping. Although coding
variants were prioritized on the CAS Array, higher coverage of vari-
ants with translational potential is still limited. A more purpose-
built translation-oriented genotyping array will become a useful
tool when more Chinese-specific functional variants are discov-
ered by large-scale biobank studies. It is also worth noting that
the accuracy of array-based MCN estimation is prone to technical
fluctuations, and is thus more appropriate for large sample inves-
tigations.

In conclusion, we designed and implemented the CAS Array
based on a large comprehensive Chinese reference genome panel.
Albeit restricted by the SNP content, its relatively high genotyping
accuracy and imputation performance, high coverage of coding
variants, and convenient MCN estimation, together make the ar-
ray a cost-effective tool for large Chinese biobanking and precision
medicine studies.

Supplementary data
Supplementary data is available at PCMEDI online.
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