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Abstract

Heterogeneity in medical data, e.g., from data collected at different sites and with different 

protocols in a clinical study, is a fundamental hurdle for accurate prediction using machine 

learning models, as such models often fail to generalize well. This paper leverages a recently 

proposed normalizing-flow-based method to perform counterfactual inference upon a structural 

causal model (SCM), in order to achieve harmonization of such data. A causal model is used 

to model observed effects (brain magnetic resonance imaging data) that result from known 

confounders (site, gender and age) and exogenous noise variables. Our formulation exploits the 

bijection induced by flow for the purpose of harmonization. We infer the posterior of exogenous 

variables, intervene on observations, and draw samples from the resultant SCM to obtain 

counterfactuals. This approach is evaluated extensively on multiple, large, real-world medical 

datasets and displayed better cross-domain generalization compared to state-of-the-art algorithms. 

Further experiments that evaluate the quality of confounder-independent data generated by our 

model using regression and classification tasks are provided.
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1 Introduction

Deep learning models have shown great promise in medical imaging diagnostics [11] 

and predictive modeling with applications ranging from segmentation tasks [19] to more 

complex decision-support functions for phenotyping brain diseases and personalized 

prognosis. However deep learning models tend to have poor reproducibility across hospitals, 

scanners, and patient cohorts; these high-dimensional models tend to overfit to specific 
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datasets and generalize poorly across training data [6]. One potential solution to the above 

problem is to train on very large and diverse databases but this can be prohibitive, because 

data may change frequently (e.g., new imaging devices are introduced) and gathering 

training labels for medical images is expensive. More importantly, even if it were possible 

to train a model on data that covers all possible variations across images, such a model 

would almost certainly sacrifice accuracy in favor of generalization—it would rely on 

coarse imaging features that are stable across, say imaging devices and patient populations, 

and might fail to capture more subtle and informative detail. Methods that can tackle 

heterogeneity in medical data without sacrificing predictive accuracy are needed, including 

methods for “data harmonization”, which would allow training a classifier on, say data from 

one site, and obtaining similar predictive accuracy on data from another site.

Contributions.

We build upon a recently proposed framework [26] for causal inference, by modeling brain 

imaging data and clinical variables via a causal graph and focus on how causes (site, gender 

and age) result in the effects, namely imaging measurements (herein we use region of 

interest (ROI) volumes obtained by preprocessing brain MRI data). This framework uses a 

normalizing flow parameterized by deep networks to learn the structural assignments in a 

causal graph. We demonstrate how harmonization of data can be performed efficiently using 

counterfactual inference on such a flow-based causal model. Given a dataset pertaining to 

one site (source), we perform a counterfactual query to synthesize the dataset, as if it were 

from another site (target). Essentially, this amounts to the counterfactual question “what 

would the scans look like if they had been acquired from the same site”. We demonstrate 

results of such harmonization on regression (age prediction) and classification (predicting 

Alzheimer’s disease) tasks using several large-scale brain imaging datasets. We demonstrate 

substantial improvement over competitive baselines on these tasks.

2 Related Work

A wide variety of recent advances have been made to remove undesired confounders 

for imaging data, e.g., pertaining to sites or scanners [3,16,21,22,30,32]. Methods like 

ComBat [16,30], based on parametric empirical Bayes [20], produce site-removed image 

features by performing location (mean) and scale (variance) adjustments to the data. A 

linear model estimates location and scale differences in images features across sites while 

preserving confounders such as sex and age. In this approach, other unknown variations 

such as race and disease are removed together with the site variable, which might lead 

to inaccurate predictions for disease diagnosis. Generative deep learning models such as 

variational autoencoders (VAEs) [18] and generative adversarial networks (GANs) [12] 

have been used in many works [3,21,22,32]. These methods typically minimize the mutual 

information between the site variable and image embedding in the latent space, and 

learn a site-disentangled representation which can be used to reconstruct images from 

a different site. Unsupervised image-to-image translation has been used to map scans 

either between two sites [32] or to a reference domain [3] using models like CycleGAN 

[37]. Generative models are however challenging to use in practice: VAEs typically suffer 

from blurry reconstructions while GANs can suffer from mode collapse and convergence 
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issues. These issues are exacerbated for 3D images. In this paper, we focus on regions 

of interest (ROI) features. We extend the deep structural causal model of [26] which 

enables tractable counterfactual inference from single-site healthy MR images to multi-

center pathology-associated scans for data harmonization. Besides qualitative examination 

of the counterfactuals performed in [26], we provide extensive quantitative evaluations and 

compare it with state-of-the-art harmonization baselines.

3 Method

Our method builds upon the causal inference mechanism proposed by Judea Pearl [27] and 

method of Pawlowski et al. [26] that allows performing counterfactual queries upon causal 

models parameterized by deep networks. We first introduce preliminaries of our method, 

namely, structural causal models, counterfactual inference, and normalizing flows, and then 

describe the proposed harmonization algorithm.

3.1 Building Blocks

Structural Causal Models (SCMs).—are analogues of directed probabilistic graphical 

models for causal inference [29,33]. Parent-child relationships in an SCM denote the effect 

(child) of direct causes (parents) while they only denote conditional independencies in a 

graphical model. Consider a collection of random variables x = (x1, …, xm), an SCM 

given by M = (S, Pϵ) consists of a collection S = (f1, …, fm) of assignments xk = fk(ϵk; 

pak) where pak denotes the set of parents (direct causes) of xk and noise variables ϵk are 

unknown and unmodeled sources of variation for xk. Each variable xk is independent of its 

non-effects given its direct causes (known as the causal Markov condition), we can write 

the joint distribution of an SCM as PM(x) = ∏k = 1
m P xk ∣ pak ; each conditional distribution 

here is determined by the corresponding structural assignment fk and noise distribution [27]. 

Exogenous noise variables are assumed to have a joint distribution Pϵ = ∏k = 1
m P ϵi , this will 

be useful in the sequel.

Counterfactual Inference.—Given a SCM, a counterfactual query is formulated as a 

three-step process: abduction, action, and prediction [27–29]. First, we predict exogenous 

noise ϵ based on observations to get the posterior PM(ϵ ∣ x) = ∏k = 1
m PM ϵk ∣ xk, pak . Then 

comes intervention denoted by do xk , where we replace structural assignments of variable 

xk. Intervention makes the effect xk independent of both its causes pak and noise ϵk and 

this results in a modified SCM M = Mdo(x) ≡ S, PM(ϵ ∣ x) . Note that the noise distribution 

has also been modified, it is now the posterior PM(ϵ | x) obtained in the abduction step. 

The third step, namely prediction involves predicting counterfactuals by sampling from the 

distribution PM(x) entailed by the modified SCM.

Learning a Normalizing Flow-Based SCM.—Given the structure of the SCM, learning 

the model involves learning the structure assignments S from data. Following [26], we next 

do so using normalizing flows parameterized by deep networks. Normalizing flows model 

a complex probability density as the result of a transformation applied to some simple 

probability density [7,10,23,24]; these transformations are learned using samples from the 

target. Given observed variables x and base density ϵ ~ p(ϵ), this involves finding an 
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invertible and differentiable transformation x = f(ϵ). The density of x is given by p(x) = p(ϵ) 

|det∇f(ϵ)|−1 where ϵ = f−1(x) and ∇f(ϵ) is the Jacobian of the flow f : ϵ ↦ x. The density 

p(ϵ) is typically chosen to be a Gaussian. Given a dataset D = xi p(x) i = 1
n  with n samples, 

a θ-parameterized normalizing flow fθ can fitted using a maximum-likelihood objective to 

obtain

θ∗ = argmax1
n ∑

i = 1

n
log p ϵi − log det∇fθ ϵi .

Here ei = fθ
−1 xi . Parameterizing the normalizing flow using a deep network leads to 

powerful density estimation methods. This approach can be easily extended to conditional 

densities of the form p(xk | pak) in our SCM.

3.2 Harmonization Using Counterfactual Inference in a Flow-Based SCM

Given the structure of a SCM, we fit conditional flows fθk: ϵk xk that map exogenous noise 

to effect xk given parents pak for all nodes in the SCM. We will denote the combined flow 

for all nodes in the SCM as fθ which maps noise ϵi = ϵ1
i, …, ϵm

i  to observations xi = x1
i, …, xm

i

in the dataset; the corresponding SCM is denoted by Mθ. Focus on a particular datum xi 

in the dataset. The abduction step simply computes ϵi = fθ
−1 xi . Formally this corresponds 

to computing the posterior distribution PMθ ϵ ∣ xi . Intervention uses the fact that the flow 

models a conditional distribution and replaces (intervenes) the value of a particular variable, 

say xk
i xk

i ; this corresponds to the operation do xk . The variable xk is decoupled from its 

parents and exogenous noise which corresponds to a modified structural assignment fθk and 

results in a new SCM Mθ. We can now run the same flow fθ forwards using samples ϵi from 

the abduction step to get samples from PMθ(x) which are the counterfactuals. Figure 1 shows 

an example SCM for brain imaging data and shows we perform counterfactual queries to 

remove site effects.

4 Experimental Results

4.1 Setup

Datasets.—We use 6,921 3D T1-weighted brain magnetic resonance imaging (MRI) scans 

acquired from multiple scanners or sites in Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) [15] and the iSTAGING consortium [13] which consists of Baltimore Longitudinal 

Study of Aging (BLSA) [2,31], Study of Health in Pomerania (SHIP) [14] and the UK 

Biobank (UKBB) [34]. Detailed demographic information of the datasets is provided in 

the supplementary material. We first perform a sequence of preprocessing steps on these 

images, including bias-filed correction [35], brain tissue extraction via skull-stripping [8], 

and multi-atlas segmentation [9]. Each scan is then segmented into 145 anatomical regions 

of interests (ROIs) spanning the entire brain, and finally volumes of the ROIs are taken 

as the features. We first perform age prediction task using data from the iSTAGING 

consortium for participants between ages 21–93 years. We then demonstrate our method 

for classification of Alzheimer’s disease (AD) using the ADNI dataset where the diagnosis 
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groups are cognitive normal (CN) and AD; this is a more challenging problem than age 

prediction.

Implementation.—We implement flow-based SCM with three different flows (affine, 

linear and quadratic autoregressive splines [7,10]) using PyTorch [25] and Pyro [4]. We 

use a categorical distribution for sex and site, and real-valued normalizing flow for other 

structural assignments. A linear flow and a conditional flow (conditioned on activations 

of a fully-connected network that takes age, sex and scanner ID as input) are used as 

structural assignments for age and ROI features respectively. The density of exogenous noise 

is standard Gaussian. For training, we use Adam [17] with batch-size of 64, initial learning 

rate 3 × 10−4 and weight decay 10−4. We use a staircase learning rate schedule with decay 

milestones at 50% and 75% of the training duration. All models are trained for at least 

100 epochs. Implementation details for the SCM and the classifier, and the best validation 

log-likelihood for each model are shown in the supplementary material.

Baselines.—We compare with a number of state-of-the-art algorithms: invariant risk 

minimization (IRM) [1], ComBat [16,30], ComBat++ [36], and CovBat [5] on age 

regression and Alzheimer’s disease classification. IRM learns an invariant representation 

that the optimal predictor using this representation is simultaneously optimal in all 

environments. We implement IRM and ComBat algorithms with publicly available code 

from the original authors. We also show results obtained by training directly on the target 

data which acts as upper-bound on the accuracy of our harmonization.

4.2 Evaluation of the Learned Flow-Based SCM

We explore three normalizing flow models: affine, linear autoregressive spline [7], and 

quadratic autoregressive spline [10]. Implementation details and their log-likelihood are in 

the supplementary material. For both iSTAGING and ADNI datasets, the log-likelihood 

improves consistently with the model’s expressive power. Spline-based autoregressive flow 

models (17.22 log-likelihood for linear-spline and 17.24 for quadratic-spline) are better for 

density estimation than an affine flow model (1.88 log-likelihood). A quadratic spline-based 

model obtains slightly higher log-likelihood than the linear-spline model on the iSTAGING 

dataset.

We next show the feature (hippocampus volume) distributions of raw data, ComBat [16,30] 

transformed data and the data generated from the flow-based SCM in Fig. 2. We find that 

the feature distributions of ComBat are not consistent with those of raw data; ComBat 

transformed feature distributions show similar means (all shifted to an average value across 

sites) which arises from removing site-dependent location and scale effects. The third 

panel shows data generated from counterfactual queries with the flow-based SCM fitted 

on BLSA-3T. Feature distributions for the SCM-data are similar to those of the raw data. 

This can be attributed to the fact that our method preserves the unknown confounders 

(subject-specific information due to biological variability, such as race, gene, and pathology 

AD/CN) by capturing them as exogenous noise in the SCM.
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4.3 Age Prediction

In Table 1, we compare the mean average error (MAE) of age prediction for a regression 

trained on raw data, site-removed data generated by ComBat [16,30] and its variants [5,36], 

IRM [1] and counterfactuals generated by our flow-based SCM. All models are trained on 

BLSA-3T (source site) and then tested on BLSA-1.5T, UKBB, and SHIP separately. We 

find that model (SrcOnly) trained on the source site with raw data cannot generalize to data 

from the target site. Models trained with site-removed data generated by ComBat generalize 

much better compared ones trained on raw data (SrcOnly), whereas IRM shows marginal 

improvement compared to SrcOnly. All variants (affine, linear-spline, quadratic-spline) of 

flow-based SCM show substantially smaller MAE; quadratic-spline SCM outperforms the 

other methods on all target sites.

4.4 Classification of Alzheimer’s Disease

In Table 2, we show the accuracy of a classifier trained on raw data, Combat-harmonized 

data and SCM-generated counterfactuals for the ADNI dataset; this is a binary classification 

task with classes being CN (cognitive normal) and AD. All classifiers are trained on 

source sites (ADNI-1 or ADNI-2) and evaluated on target sites (ADNI-2 or ADNI-1 

respectively). The classifier works poorly on the target site without any harmonization 

(SrcOnly). ComBat-based methods show a smaller gap between the accuracy on the source 

and target site; IRM improves upon this gap considerably. Harmonization using our flow-

based SCM, in particular the Q-Spline variant, typically achieves higher accuracies on the 

target site compared to these methods.

5 Conclusion

This paper tackles harmonization of data from different sources using a method inspired 

from the literature on causal inference [26]. The main idea is to explicitly model the causal 

relationship of known confounders such as sex, age, and site, and ROI features in a SCM 

that uses normalizing flows to model probability distributions. Counterfactual inference 

can be performed upon such a model to sample harmonized data by intervening upon 

these variables. We demonstrated experimental results on two tasks, age regression and 

Alzheimer’s Disease classification, on a wide range of real-world datasets. We showed that 

our method compares favorably to state-of-the-art algorithms such as IRM and ComBat. 

Future directions for this work include causal graph identification and causal mediation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Causal graph of the structural causal model for brain imaging. Data consists of brain ROIs 

(x), sex (s), age (a), imaging site (t), and their respective exogenous variables (ϵx, ϵs, ϵa, 

and ϵt). Bidirectional arrows indicate invertible normalizing flow models and the black dot 

shows that the flow model associated with x is conditioned on the direct causes (parents) 

s, a, and t; this follows the notation introduced in [26]. We are interested in answering 

counterfactual questions of the form “what would the scans look like if they had been 

acquired from the same site”. We first train the flow-based SCM Mθ on the observed data. 

We then infer the posterior of exogenous variables ϵx and ϵa with the invertible structural 

assignments (abduction step). We can now intervene upon the site by replacing site variable 
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t with a specific value τ, this is denoted by do(t = τ). We sample from the modified 

flow-based SCM Mdo(t=τ) to obtain counterfactual queries.
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Fig. 2. 
Comparison of normalized feature (hippocampus volume) distributions for various sites in 

the iSTAGING consortium data before (raw) and after harmonization using ComBat-Linear 

and our SCM-QSpline. We observe that ComBat aligns inter-site feature distributions by 

preserving sex and age effects and removes all other unknown confounders by treating them 

as site effects. In contrast, the distribution of hippocampus volume is unchanged in our 

proposed method which takes both known confounders (sex, age, and site) and unknown 

confounders (exogenous noises) into consideration for harmonization. ComBat removing 

these useful confounders is detrimental to accuracy (see Table 2).
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Table 1.

Mean average error of age prediction for data from the iSTAGING consortium.

Study TarOnly SrcOnly IRM ComBat Flow-based SCM (ours)

Linear GAM ComBat+
+

CovBat Affine L-
Spline

Q-
Spline

Source BLSA-3T – 11.74 
(0.35)

11.76 
(0.35)

11.72 
(0.62)

11.74 
(0.61)

11.73 
(0.62)

11.74 
(0.62)

11.74 
(0.61)

11.74 11.65 
(0.62)

Target BLSA-1.5T 6.77 
(0.82)

7.21 
(0.91)

7.16 
(0.87)

7.14 
(0.99)

7.01 
(0.99)

7.00 (1.04) 7.03 
(1.08)

7.01 
(1.01)

7.00 
(1.04)

6.92 
(1.09)

Target UKBB 6.14 
(0.16)

7.27 
(0.70)

7.18 
(0.58)

6.62 
(0.46)

6.70 
(0.46)

6.71 (0.47) 6.75 
(0.49)

6.72 
(0.46)

6.75 
(0.47)

6.44 
(0.28)

Target SHIP 11.36 
(0.31)

17.14 
(0.62)

17.05 
(0.46)

15.95 
(0.61)

16.17 
(0.59)

16.21 
(0.47)

16.22 
(0.65)

16.20 16.25 
(0.63)

15.68 
(0.80)

All experiments were repeated 5 times in cross-validation fashion, and the average performance is reported with the standard errors in the brackets. 
TarOnly indicates validation MAEs directly trained on each target sites. The hypothesis that our proposed methods achieve a better accuracy than 
the baselines can be accepted with p-values between 0.06–0.41. This task can be interpreted as a sanity check for our method.

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2023 March 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 13

Table 2.

AD classification accuracy (%) comparison on the ADNI dataset and standard deviation (in brackets) across 5-

fold cross-validation.

Study TarOnly SrcOnly IRM ComBat Flow-based SCM (ours)

Linear GAM ComBat+
+

CovBat Affine L-
Spline

Q-Spline

Source ADNI-1 – 76.1 
(1.54)

76.2 
(2.46)

75.1 
(1.37)

75.1 
(1.23)

65.1 
(6.29)

74.4 
(2.29)

76.1 (1.92) 75.3 
(1.76)

75.4 (2.45)

Target ADNI-2 75.8 
(3.46)

71.9 
(4.88)

73.0 
(4.85)

71.4 
(4.30)

72.1 
(2.83)

56.2 
(9.29)

67.4 
(5.06)

73.4 (3.52) 72.6 
(3.48)

73.7 (4.13)

Source ADNI-2 – 75.8 
(3.46)

76.3 
(2.35)

77.5 
(2.30)

77.0 
(2.74)

67.8 
(9.42)

77.9 
(2.47)

78.7(1.32) 78.2 
(2.80)

77.5(1.76)

Target ADNI-1 76.1 
(1.54)

70.4 
(8.80)

72.0 
(2.16)

71.1 
(4.07)

70.1 
(5.67)

58.0 
(6.28)

69.1 
(5.82)

71.4 (2.41) 71.8 
(5.76)

73.3 (3.04)

TarOnly indicates validation accuracies for training directly on each target site. The hypothesis that our proposed method (Q-Spline) achieves a 

better accuracy than baselines can be accepted with p-values less than 10−5.
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