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Abstract 

Background  Pancreatic ductal adenocarcinoma (PDAC) has a complex tumor immune microenvironment (TIME), 
the clinical value of which remains elusive. This study aimed to delineate the immune landscape of PDAC and deter-
mine the clinical value of immune features in TIME.

Methods  Univariable and multivariable Cox regression analyses were performed to evaluate the clinical value of 
immune features and establish a new prognostic model. We also conducted single-cell RNA sequencing (scRNA-seq) 
to further characterize the immune profiles of PDAC and explore cell-to-cell interactions.

Results  There was a significant difference in the immune profiles between PDAC and adjacent noncancerous tissues. 
Several novel immune features were captured by quantitative pathological analysis on multiplex immunohistochem-
istry (mIHC), some of which were significantly correlated with the prognosis of patients with PDAC. A risk score-based 
prognostic model was established based on these immune features. We also constructed a user-friendly nomogram 
plot to predict the overall survival (OS) of patients by combining the risk score and clinicopathological features. Both 
mIHC and scRNA-seq analysis revealed PD-L1 expression was low in PDAC. We found that PD1 + cells were distrib-
uted in different T cell subpopulations, and were not enriched in a specific subpopulation. In addition, there were 
other conserved receptor-ligand pairs (CCL5-SDC1/4) besides the PD1-PD-L1 interaction between PD1 + T cells and 
PD-L1 + tumor cells.

Conclusion  Our findings reveal the immune landscape of PDAC and highlight the significant value of the combined 
application of mIHC and scRNA-seq for uncovering TIME, which might provide new clues for developing immuno-
therapy combination strategies.
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Introduction
Pancreatic cancer is one of the most aggressive gastro-
intestinal cancers with an overall 5  year survival rate of 
11% [1]. Pancreatic ductal adenocarcinoma (PDAC) is 
the most common histological type of pancreatic can-
cer. Radical resection is the only potential curative treat-
ment for PDAC. However, approximately 50% of patients 
have advanced PDAC at the time of diagnosis and have 
lost the chance to undergo surgery. Even after radical 
resection, most patients relapse within 2 years [2]. Mul-
tidisciplinary management, positive genomic testing, 
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and integrated supportive care are recommended for all 
patients with PDAC [3]. Despite the continuous intro-
duction of new regimens, drugs available to significantly 
improve the prognosis of patients with PDAC remain 
absent. Recently, a growing body of evidence has dem-
onstrated that immune checkpoint inhibitors (ICIs) 
showed good treatment outcomes in non-small cell lung 
cancer, melanoma, and colorectal cancer [4–8], but not 
in PDAC. The common targets of ICIs include cytotoxic 
T lymphocyte protein 4 (CTLA-4), programmed death-1 
(PD1), and programmed death-ligand 1 (PD-L1). The 
mechanism by which ICIs exert their therapeutic effect is 
that the blockade of immune checkpoints releases brake 
signals to promote the endogenous anti-tumor immune 
response. However, the reason why ICIs fail in PDAC 
is largely unknown. A comprehensive delineation of 
immune profiles of PDAC is fundamental for improving 
ICIs insensitivity. Moreover, the clinical value of immune 
checkpoint molecules remains to investigated.

Pancreatic cancer is characterized with a complex 
tumor immune microenvironment (TIME). In compari-
son with conventional immunohistochemistry (IHC), 
multiplex IHC (mIHC) can detect the expression of mul-
tiple markers simultaneously in  situ, thereby identifying 
the phenotype of each cell and cell-to-cell spatial inter-
action in the tissue, and in combination with quantita-
tive pathology, highly reproducible statistical data can 
be obtained [9]. This method is well-suited for delineat-
ing the complicated TIME in PDAC. Recently, single-cell 
RNA sequencing (scRNA-seq) has demonstrated a wide 
range of applications that has been used to uncover the 
cell landscapes of various tumor tissues. The transcrip-
tional profile of each cell was obtained by scRNA-seq 
analysis, consisting of single cell capture, cDNA library 
preparation, RNA sequencing, and data mining [10]. 
Immune cell composition and receptor-ligand interac-
tions between different cell types can be easily identified 
using scRNA-seq. Currently, the immune profiles and 
cell-to-cell interactions between PD1 + tumor infiltrating 
T cells and PD-L1 + tumor cells in PDAC have not been 
studied at the single-cell levels.

Here, we applied mIHC and quantitative pathology to 
characterize the immune profiles of PDAC and capture 
novel immune features related to immune checkpoint 
molecules. The univariable Cox regression (UniCox) and 
multivariable Cox regression (MultiCox) analyses were 
performed to evaluate the clinical value of these immune 
features and develop a new risk score-based prognostic 
model. Furthermore, a user-friendly nomogram plot was 
drawn by combining the risk score and clinicopathologi-
cal features, which had a good performance in predicting 
the overall survival of patients with PDAC. ScRNA-seq 
was also conducted to verify the results of mIHC and 

identify new receptor-ligand pairs between PD1 + T cells 
and PD-L1 + tumor cells in PDAC. Thus, our findings 
highlight the significance of the combined application of 
mIHC and scRNA-seq for uncovering the immune land-
scape of PDAC.

Materials and methods
Human samples and study design
All H&E stained slides from eighty patients from Sep-
tember 2020 to January 2022 were reviewed for confirm-
ing PDAC diagnosis by a pathologist. The corresponding 
tumor and adjacent noncancerous areas were carefully 
marked. Duplicated 1.5  mm diameter tissue cores were 
selectively punched and transferred to recipient tissue 
array blocks. The tissue microarray (TMA) was set up 
according to the instruction reported in previous study 
[11]. For scRNA-seq analysis, a total of six PDAC and 
six adjacent noncancerous resection specimens were 
obtained from the Department of General Surgery at 
Peking University First Hospital. All patients with PDAC 
did not receive any treatments before collecting speci-
mens. This study was reviewed and approved by the 
Ethics Committee of Peking University First Hospital 
(Approval No. 2020–352). Written informed consent was 
signed prior to acquisition of tissue from all patients. All 
experiments were conducted in accordance with ethical 
guidelines of the Declaration of Helsinki.

As showed in Fig.  1, this study included three parts. 
First, mIHC was conducted and immune features were 
captured using quantitative pathology to characterize the 
immune landscape of PDAC. Second, Univariable and 
Multivariable Cox regression were performed to evaluate 
the clinical values of these immune features and develop 
a new prognostic model. Finally, we conducted scRNA-
seq analysis to further verify the results of mIHC. The 
malignant ductal cells were identified using the inferCNV 
analysis. In addition, we explored cell-to-cell communi-
cation between PD1 + T cells and PD-L1 + tumor cells.

Multiplex immunohistochemistry
To explore the expression and distribution of Pan-
CK, CD68, PD1, PD-L1, and CD8 in PDAC, TMA sec-
tions from PDAC and adjacent noncancerous tissues 
were subjected to multiplex immunohistochemistry 
(mIHC) using PANO Multiplex IHC kit (Panovue, Cat. 
No. 10234100100) according to manufacturer’s instruc-
tions. Briefly, TMA section was incubated in hot-air 
oven at 65  °C overnight, deparaffinized in fresh xylene 
for 10  min three times, rehydrated in graded ethanol 
(100–95–70%), then washed three times with PBS. The 
antigen retrieval was carried out with microwave heating 
method and cooled down for at least 15  min in the ice 
water bath. After blocking in blocking solution (Panovue, 
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Cat. No. 0018001120) for 15  min at room temperature, 
TMA section was incubated with primary antibody for 
30  min, secondary antibody for 10  min, and TSA Opal 
fluorophores for 10  min. Repeated antigen retrieval, 
blocking, primary and antibody incubation, TSA Opal 
fluorophores staining for each marker. Finally, TMA 
section was counterstained with DAPI (Sigma-Aldrich, 
Cat. No. D9542) for 5  min and mounted. Whole TMA 
section imaging was conducted using the panoVIEW 
VS200 (china). The following primary antibodies were 
used. Pan-CK (Abcam, Cat. no. ab7753, 1:200), CD68 
(Abcam, Cat. no. ab192847, 1:300), PD1 (Abcam, Cat. 
no. ab237728, 1:500), PD-L1 (Abcam, Cat. no. ab237726, 
1:400), and CD8 (CST, Cat. no. 85336, 1:100).

Quantitative pathology
The QuPath software (v.0.3.2) was downloaded (https://​
qupath.​github.​io/). The proportion and density of posi-
tive cells and spatial analysis were performed accord-
ing to a standard protocol, as described on the website 

above. In brief, a new project was created and scanning 
image of TMA was imported into QuPath. The image 
type of fluorescence was selected. Adjusted each fluores-
cence channel using the Brightness/Contrast command. 
TMA dearrayer was performed with TMA core diame-
ter of 1.7  mm and adjusted TMA grid manually. Tissue 
segmentation was conducted to classify each TMA core 
into tumor and stromal area according to the expres-
sion of PanCK using the pixel classification tool. Cell 
detection was completed by setting the optimal thresh-
old of DAPI. Next, CD8 + and PD1 + cells were detected 
by single measurement classifier. For CD68 + cells and 
PD-L1 + regions that were hard to be detected only by 
the threshold of fluorescence, we employed machine 
learning algorithm to complete automatic detection by 
training the object or pixel classifier based on annota-
tions. Created composite classifier to detect double/triple 
positive cells. Finally, the spatial analysis was conducted. 
We determined the density of immune cells 30/50  μm 
away from tumor region and PD1 + cells 30/50 μm away 

Fig. 1  Graphical scheme describing the workflow. A TMA was subjected to multiplex IHC (mIHC), and the immune features were generated using 
quantitative pathology to characterize the immune landscape of PDAC. B We compared the differences in immune features between PDAC and 
adjacent noncancerous TMA cores. The correlations between these immune features were observed. Then, the prognostic models were developed 
using Univariable and Multivariable Cox regression according to these immune features. C ScRNA-seq was conducted to further explore the 
immune landscape of PDAC and identify the receptor-ligand interactions between PD1 + T cells and PD-L1 + tumor cells

https://qupath.github.io/
https://qupath.github.io/
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from PD-L1 + region. Of note, all features in the tumor 
and stromal regions were calculated respectively. The 
abbreviations of all immune features used in this study 
were listed below: proportion of stromal cells (P_sc, 
%), proportion of stromal area (P_sa, %), density of 
CD8 + cells (D_cd8, cells/mm^2), density of PD1 + cells 
(D_pd1, cells/mm^2), density of CD68 + cells (D_cd68, 
cells/mm^2), proportion of total PD-L1 + cells (P_topdl1, 
%), proportion of tumor PD-L1 + cells (P_tupdl1, %), 
proportion of stromal PD-L1 + cells (P_spdl1, %), den-
sity of CD8 + PD1 + cells (D_cd8_pd1, cells/mm^2), dis-
tance_PDL1_PD1_30 μm /Total area (D_pdl1_30_pd1, 
n/mm^2), distance_Tumor_immune_30  μm /Total area 
(D_tu_30_im, n/mm^2), distance_Tumor_CD8A_30  μm 
/Total area (D_tu_30_cd8, n/mm^2), distance_Tumor_
CD68_30 μm /Total area (D_tu_30_cd68, n/mm^2), dis-
tance_PDL1_PD1_50  μm /Total area (D_pdl1_50_pd1, 
n/mm^2), distance_Tumor_immune_50  μm /Total area 
(D_tu_50_im, n/mm^2), distance_Tumor_CD8A_50  μm 
/Total area (D_tu_50_cd8, n/mm^2), distance_Tumor_
CD68_50 μm /Total area (D_tu_50_cd68, n/mm^2).

Construction of prognostic model
Immune features generated by mIHC and clinicopatho-
logic data were imported into R software (v4.0.3). Univar-
iable and Multivariable Cox regression were performed 
to evaluate the clinical values of these features using 
‘survival’ R package (v3.2.7). Risk score = h0 × e^∑i = 0

n 
exp (). Patients were classified into two groups (high vs. 
low risk) according to the median risk score. The KM and 
ROC curves were used to evaluate the value of prognos-
tic models using ‘survivalROC’ R package (v1.0.3). Then, 
a nomogram was developed to predict the overall sur-
vival of patients with PDAC by combining the immune 
and clinicopathologic features using ‘rms’ R package 
(v6.2.0). The calibration curve was also drawn to evaluate 
the accuracy of nomogram-predicted patients’ survival.

Tissue dissociation and cell purification
All fresh resection specimens were preserved in the tis-
sue storage solution (Miltenyi, Cat. No. 130-100-008) on 
ice and transported to the laboratory in CapitalBio Tech-
nology company within 1.5–2 h. To ensure the success of 
tissue dissociation, multiple resection specimens from 
the same patients were digested. All specimens were cut 
into around 1  mm pieces and incubated in an optimal 
digestive solution, including enzyme cocktail, consist-
ing of the Type VIII Collagenase (Sigma-Aldrich, Cat. 
No. C2139), DNase I (Sigma-Aldrich, Cat. no. D5025), 
trypsin inhibitor (Sigma-Aldrich, Cat. No. T6522), and 
Dispase II (neutral protease, grade II, Sigma-Aldrich, Cat. 
No. 4942078001). The single cell suspension was filtered 
with a 40  μm cell strainer (BD, Cat. No. 352340), then 

incubated with red blood cell lysis buffer (Roche, Cat. no. 
11814389001) at 4 °C for 10 min.

cDNA library preparation
The concentration of single cell suspension was deter-
mined using the Count Star instrument and adjusted to 
1000 cells/μl. The cell suspension was loaded onto the 
Chromium single cell controller (10 × Genomics) to gen-
erate single-cell gel beads in the emulsion using single 
cell 3’ Library and Gel Bead Kit v3.1 (10 × Genomics, Cat. 
No. 1000121) and Chromium Next GEM Chip G Sin-
gle Cell Kit (10 × Genomics, Cat. No. 1000120) accord-
ing to the manufacturer’s instructions. Briefly, cells were 
suspended in PBS containing 0.04% BSA. About 6,000 
cells were loaded to each channel, and the target cell 
will be captured about 3000 cells per channel. Captured 
cells were lysed and the released RNA were barcoded by 
reverse transcription in each GEM. Reverse transcription 
was completed in 200  μl tubes (NEST Biotechnology, 
Cat. No. 401001) on a S1000TM Touch Thermal Cycler 
(Bio Rad) at 53  °C for 45  min, then at 85  °C for 5  min, 
and hold at 4  °C. The cDNA libraries were generated, 
amplified, and quality assessed using the Agilent 4200. 
Finally, the cDNA libraries were sequenced using an Illu-
mina Novaseq6000 sequencer with a sequencing depth 
of at least 100,000 reads per cell with paired-end 150 bp 
(PE150) reading strategy.

ScRNA‑seq data mining and quality control
Raw data (BCL files) from Illumina Novaseq6000 plat-
form was converted to fastq files using Illumina-imple-
mented software bcl2fastq (v2.19.0.316). cDNA reads 
were aligned to human reference genome (GRCh38). 
Low-quality cells and genes filtering, barcode and UMI 
counting were performed with the cellranger software 
(v6.1.2) to obtain the filtered gene-cell matrixes. Next, 
gene-cell matrixes were imported into R software to fur-
ther filtered out low-quality cells (< 500 genes/cell, > 25% 
mitochondria genes, < 1000 transcripts/cell) and genes 
(< 10 cells/gene) using ‘Seurat’ R package (v3.2.3). Gene 
expression levels were normalized (LogNormalize) 
with “NormalizedData” function. A total of 2000 highly 
variable genes were selected and used to conduct PCA 
reduction dimension. The t-distributed stochastic neigh-
bor embedding (t-SNE) was performed. The ‘Soupx’ R 
package was applied to reduce the ambient mRNA con-
tamination. Doublets were identified using the ‘Doublet-
Finder’ R package (v2.0.3), assuming that it was around 
5% doublet formation rate to the loaded cells per speci-
men in a droplet channel. In addition, the ‘Harmony’ R 
package (https://​github.​com/​immun​ogeno​mics/​harmo​
ny) was used to integrate gene-cell matrixes derived from 
different specimens. We identified each cell cluster by 

https://github.com/immunogenomics/harmony
https://github.com/immunogenomics/harmony
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matching the cluster-specific genes with known signa-
tures of cell populations reported in previous studies and 
CellMarker database.

Single‑cell CNV inferring
Somatic large-scale chromosomal copy number variation 
(CNV) was inferred using ‘inferCNV’ R package (v1.6.0). 
In brief, a new gene-cell matrix of ductal cells, annotation 
data, and gene/chromosome position files were prepared. 
Both T cells and macrophages were taken as reference 
cells as they are considered to have no CNV. The CNV 
score of each cluster was calculated as quadratic sum of 
CNV region.

GO analysis
The differentially expressed genes (DEGs) were identi-
fied using the FindMarkers function in ‘Seurat’ R pack-
age. The online tool g: Profiler (https://​biit.​cs.​ut.​ee/​gprof​
iler/​gost) was applied to conduct GO analysis for top 80 
DEGs between the two groups.

Receptor‑ligand interaction
A new gene-cell matrix of PD1 + T cells and 
PD-L1 + macrophages and tumor cells was constructed 
and imported into R software. The receptor-ligand pairs 
were identified using R package ‘iTALK’ (v0.1.0) (https://​
github.​com/​Coolg​enome/​iTALK) with default param-
eters. Considering the test efficiency and computational 
burden, 200–500 cells of each cell cluster were randomly 
selected for cell-to-cell interaction analysis. The visu-
alization of receptor-ligand pairs was divided into four 
groups, including growth factors, cytokines, immune 
checkpoints, and others.

Statistical analysis
All statistical analyses were conducted using the SPSS 
(v22.0) and R software. Univariable and Multivariable 
Cox regression were performed to develop the prog-
nostic models. The KM method and the corresponding 
log-rank test were performed to evaluate the prognostic 
value of risk score-based prognostic models. The area 
under the ROC curve was calculated to assess the sen-
sitivity and specificity of the model. For continuous vari-
able, the independent-samples t test and Mann–Whitney 
U test was performed to compare means between two 
groups. For categorical variable, the chi-square test or 
rank sum test was performed. Coefficients of Spearman’s 
rank correlation or Pearson’s correlation were calculated 

to describe the correlation of two variables. Statisti-
cal significance was defined as ∗ P < 0.05, ∗  ∗ P < 0.01, 
and ∗  ∗  ∗ P < 0.001.

Results
Clinical characteristics of PDAC patients in TMA
To explore the TIME and construct a prognostic model 
for PDAC, we conducted mIHC using TMA and quan-
titative pathology analysis. The general characteristics 
of patients with TMA were shown in Additional file 2: 
Table S1. A total of 160 TMA cores, including 80 tumor 
and paired 80 adjacent noncancerous pancreatic cores, 
were stained. After filtering out low-quality cores, 66 
pairs of cores were included in the subsequent analy-
sis. As summarized in Table 1, all patients (n = 66) had 
a confirmed diagnosis of PDAC. Twenty-eight (42.42%) 
patients were diagnosed with stage I PDAC, 16 (24.24%) 
with stage II, 10 (15.15%) with stage III, and 12 (18.18%) 
with stage IV. There were 44 (66.67%) patients had 
tumors in the head of the pancreas and 22 (33.33%) in 
the body/tail. None of the patients received any treat-
ment prior to sample acquisition; 10 (15.15%) had vas-
cular invasion, and 11 (16.67%) had distant metastases.

Differences in immune profiles between PDAC 
and adjacent noncancerous pancreas
The mIHC was used to examine specific cell mark-
ers, including PanCK, CD68, PD1, PD-L1, and CD8 
(Fig.  2A). The entire core was divided into tumor and 
stromal areas according to the expression of PanCK. 
The immune-related features of each core were cap-
tured using the Qupath software (Fig.  2B, Additional 
file  3: Table  S2). There were significantly higher pro-
portions of stromal area and cells in the PDAC cores 
than in the adjacent noncancerous pancreatic cores 
(Fig.  3A–B). No significant differences were detected 
in the densities of CD68 + and PD1 + cells between 
the two groups (Fig.  3C–D). Compared to the adja-
cent noncancerous pancreas, PDAC had a lower den-
sity of CD8 + and CD8 + PD1 + cells (Fig.  3E–F). In 
addition, we compared PD-L1 expression between the 
two groups. The results showed that there were no 
significant differences in the proportions of total and 
stromal PD-L1 + cells, while a higher proportion of 
tumor PD-L1 + cells was detected in the PDAC group 
(Fig. 3G–I).

A growing body of evidence supported the correlation 
between PD-L1 expression and other immune features 
[12–14]. In pancreatic tissue, there was a significant 
correlation between the proportion of stromal/tumor 
PD-L1 + cells and the density of CD68 + /PD1 + cells. 
Interestingly, the proportion of PD-L1 + cells in the 

https://biit.cs.ut.ee/gprofiler/gost
https://biit.cs.ut.ee/gprofiler/gost
https://github.com/Coolgenome/iTALK
https://github.com/Coolgenome/iTALK
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stromal area, rather than in the tumor area, correlated 
with the density of CD8 + cells (Fig. 3J–K).

Development of prognostic model based 
on immune‑related features
Intra-tumor cytotoxic T cell, macrophage populations, 
and PD-L1 expression have been proven to be power-
ful candidate biomarkers for predicting the prognosis 
and immune checkpoint treatment response [15–17]. In 
addition to counting the proportion and density of posi-
tive cells, we also performed a spatial analysis for PDAC 
cores. The distances from the selected cells to the tumor 
and PD-L1 annotations were calculated (Additional file 2: 
Table S2). UniCox analysis was performed and we found 
that P_sc, D_cd8, D_pd1, D_cd8_pd1, D_pdl1_30_pd1, 
D_tu_30_cd8, D_pdl1_50_pd1, and D_tu_50_cd8 were 

significantly associated with the OS (Table  2). Next, 
MultiCox analysis was employed to construct risk prog-
nostic models based on immune-related features. The 
risk score for each subject was calculated as follow: 
Model 1: Risk score (t) = h0 (t) × exp (P_sc × 2.121 + D_
tu_50_cd8 × 0.237); Model 2: Risk score (t) = h0 (t) × exp 
(P_sc ×  6.831—P_sa ×  8.088—D_pd1 ×  0.679—P_
topdl1 × 0.260 + D_pdl1_50_pd1 × 0.759 + D_tu_50_
cd8 × 0.245). All subjects were divided into low- and 
high-risk groups according to the median cutoff value of 
the risk scores. The demographic characteristics of the 
patients in the two groups were comparable (Table  1). 
Kaplan–Meier (KM) curves showed that the subjects 
in the low-risk groups had significantly longer OS than 
those in the high-risk groups (Model 1: p < 0.001; Model 
2: p < 0.001) (Fig. 4A, E). A time-dependent receiver oper-
ating characteristic curve (ROC) was used to evaluate 

Table 1  Clinical characteristics of patients in prognostic model

Total Model 1 High risk P_value Model 2 High risk P_value
Low risk Low risk

PDAC patients (n) 66 33 33 – 33 33 –

Sex (F [%]) 35 (53.03) 21 (63.64) 14 (21.21) 0.084 21 (63.64) 14 (21.21) 0.084

Age (years) 63.27 ± 10.21 63.73 ± 9.35 62.82 ± 11.14 0.721 65.30 ± 9.88 61.24 ± 10.28 0.107

Grade (n [%])

 1 9 (13.64) 6 (18.18) 3 (9.09) 0.609 6 (18.18) 3 (9.09) 0.233

 2 21 (31.82) 9 (27.27) 12 (36.36) 11 (33.33) 10 (30.30)

 3 36 (54.55) 18 (54.55) 18 (54.55) 16 (48.48) 20 (60.61)

TNM stage (n [%])

 I 28 (42.42) 17 (51.52) 11 (33.33) 0.177 17 (51.52) 11 (33.33) 0.359

 II 16 (24.24) 9 (27.27) 7 (21.21) 8 (24.24) 8 (24.24)

 III 10 (15.15) 4 (12.12) 6 (18.18) 3 (9.09) 7 (21.21)

 IV 12 (18.18) 3 (9.09) 9 (27.27) 5 (15.15) 7 (21.21)

Tumor site (n [%])

 Head 44 (66.67) 20 (60.61) 24 (72.73) 0.296 18 (54.55) 26 (78.79) 0.068

 Body/Tail 22 (33.33) 13 (39.39) 9 (27.27) 15 (45.45) 7 (21.21)

 CA 19–9 (U/ml) 197.15 (68.59–
884.13)

173.20 (44.80–
821.15)

199.30 (69.08–
1000.00)

0.657 212.20 (48.71–
821.15)

195.00 (68.58–
944.80)

0.944

 Vascular invasion 
(n [%])

10 (15.15) 6 (18.18) 4 (12.12) 0.492 5 (15.15) 5 (15.15) 1

 Intravascular 
cancer embolus 
(n [%])

21 (31.82) 9 (27.27) 12 (36.36) 0.428 8 (24.24) 13 (39.39) 0.186

 Perineural inva-
sion (n [%])

19 (28.79) 9 (27.27) 10 (30.30) 0.786 9 (27.27) 10 (30.30) 0.786

 Peripancreatic 
infiltarion (n [%])

48 (72.73) 21 (63.64) 27 (81.82) 0.097 22 (66.67) 26 (78.79) 0.269

 Distant metasta-
sis (n [%])

11 (16.67) 3 (9.09) 8 (24.24) 0.099 4 (12.12) 7 (21.21) 0.322

 Lymph node 
metastasis (n [%])

26 (39.39) 12 (36.36) 14 (42.42) 0.614 11 (33.33) 15 (45.45) 0.314

 Maximum diam-
eter (cm)

3.5 (3.0–4.5) 3.5 (3.0–4.25) 3.5 (2.25–4.5) 0.746 3.5 (3.0–4.5) 3.5 (2.25–4.25) 0.902
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Fig. 2  Immune landscape of PDAC. A Representative images of mIHC in PDAC and adjacent noncancerous TMA cores, which were exported 
from Qupath software. Cell markers, including PanCK, CD68, PD1, PD-L1, and CD8 were labeled with different colors. B Representative images 
of quantitative pathological analysis. Tumor and stromal regions were separated according to PanCK expression. The PD1 + /CD8 + cells were 
identified by single measurement classifier, while CD68 + /PD-L1 + cells were identified by training the object or pixel classifier
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Fig. 3  Differences in immune profile between PDAC and adjacent noncancerous tissues. A–B Proportion of stromal cells and area were compared 
between two groups. C–F Density of immune markers were compared. G–I The PD-L1 expression was compared between two groups. J–K 
Correlation analysis was performed between stromal/tumor PD-L1 expression and density of CD68 + /PD1 + /CD8 + cells
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the accuracy of predicting the 1.5 year, 2 year, and 3 year 
OSs. The area under curve (AUC) values were 0.818, 
0.819, and 0.865 in Model 1 and 0.820, 0.861, and 0.901 
in Model 2 (Fig. 4B, F). As the risk score increased, the 
prognoses of the subjects worsen (Fig. 4C, D, G–H).

Nomogram for predicting the prognosis of patients 
with PDAC
The clinicopathological features of the patients were 
collected, and UniCox and MultiCox analyses were 
performed. The UniCox result showed that risk score 

Table 2  Univariable and multivariable cox regression analysis of prognostic features

The bold P value means P < 0.05 with significantly statistical difference

UniCox, Univariable Cox regression, MultiCox, Multivariable Cox regression; HR, hazard ratio, CI confidence interval. Model 1: variables with P_value < 0.05 were used; 
Model 2: all variables were used

Features UniCox P_value MultiCox_model 1 P_value MultiCox_model 2 P_value

HR 95% CI HR 95% CI HR 95% CI

P_sc 5.466 1.302–22.938 0.02 8.340 1.771–39.281 0.007 9.257 10.435–82121.170 0.003
P_sa 7.823 0.682–89.723 0.098 3.073 1.804E-07–0.523 0.033
D_cd8 1.239 1.048–1.464 0.012
D_pd1 1.152 1.000–1.327 0.049 5.069 0.300–0.856 0.011
D_cd68 1.071 0.901–1.274 0.435

P_topdl1 1.015 0.828–1.245 0.883 7.710 0.565–1.053 0.102

P_tupdl1 0.992 0.850–1.158 0.92

P_spdl1 1.077 0.865–1.340 0.508

D_cd8_pd1 1.158 1.021–1.313 0.023
D_pdl1_30_pd1 1.152 1.004–1.322 0.044
D_tu_30_im 1.065 0.904–1.254 0.453

D_tu_30_cd8 1.182 1.003–1.393 0.046
D_tu_30_cd68 1.021 0.899–1.161 0.746

D_pdl1_50_pd1 1.163 1.010–1.339 0.035 2.136 1.216–3.753 0.008
D_tu_50_im 1.099 0.929–1.301 0.271

D_tu_50_cd8 1.217 1.034–1.432 0.018 1.268 1.072–1.49 0.006 1.278 1.028–1.587 0.027
D_tu_50_cd68 1.037 0.911–1.180 0.58

Fig. 4  Prognostic models of PDAC were developed according to the immune features. A–D Multivariable Cox regression was conducted to 
develop prognostic model 1. The KM plot showing different OSs between patients in the high and low risk score groups (A). The ROC curve was 
employed to evaluate the accuracy of prognostic model for 1.5 year, 2 year, and 3 year OSs (B). The distribution of risk score for each patient. High 
and low risk groups were separated by dashed, labeled with red and green colors, respectively (C). The scatter plot showing survival status of each 
patient (D). E–H The prognostic model 2 was showed
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[hazard ratio (HR): 2.522, 95% confidence interval 
(CI): 1.668–3.814, p < 0.001], grade [HR: 1.985, 95% CI 
1.366–2.883, p < 0.001], TNM stage [HR: 2.165, 95% CI 
1.634–2.868, p < 0.001], CA 19–9 [HR: 1.001, 95% CI 
1.000–1.002, p = 0.005], vascular invasion [HR: 4.294, 
95% CI 2.080–8.862, p < 0.001], peripancreatic infiltra-
tion [HR: 3.039, 95% CI 1.622–5.695, p < 0.001], distant 
metastasis [HR: 5.199, 95% CI 2.459–10.993, p < 0.001], 
lymph node metastasis [HR: 2.350, 95% CI 1.344–4.111, 
p = 0.003], and maximum diameter [HR: 1.143, 95% CI 
1.015–1.286, p = 0.027] were significantly correlated to 
the OS of patients (Fig.  5A). Furthermore, MultiCox 
analysis indicated that the risk score [HR: 2.031, 95% 
CI 1.284–3.213, p = 0.002], in addition to grade 3, TNM 
stage, and CA 19–9, was an independent prognos-
tic factor for PDAC (Fig. 5B). Therefore, the risk score 

calculated according to immune features using mIHC is 
a promising prognostic biomarker for PDAC.

An easy-to-use and clinically adaptable nomogram was 
constructed to predict the OS of patients by combining 
the variables of risk score, grade, TNM stage, and CA 
19–9. As depicted in Fig.  5C, patients with higher total 
points were predicted to have lower 1.5 year, 2 year, and 
3 year OS rates. The calibration curve showed good con-
sistency between the actual OSs and nomogram pre-
dicted OSs, suggesting the accuracy of this nomogram 
(Fig. 5D).

ScRNA‑seq delineates cellular landscape of PDAC 
and adjacent noncancerous pancreatic tissues
To further characterize the immune profiles and PD1/
PD-L1 expression in PDAC at single-cell resolution, the 
six PDAC and six adjacent noncancerous tissues were 

Fig. 5  Nomogram to predict the survival outcome of patients with PDAC. A–B Univariable and Multivariable Cox regression were conducted to 
find prognostic factors of OS in PDAC, red boxes represent P < 0.05 in the forest plots. The clinicopathological features and risk score were analyzed. 
C The nomogram was drawn to predict 1.5 year, 2 year, and 3 year Oss for PDAC. The higher total point was, the lower survival rates patients will 
have. D Calibration curve was used to show agreement between actual and nomogram-predicted OSs, the gray diagonal line represented reference 
line
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Fig. 6  ScRNA-seq delineates the cellular landscape of PDAC and adjacent noncancerous tissues. A–C t-SNE plot showing original cell clusters (A), 
renamed cell types (B), specimens derived information in PDAC (C). Each dot represented one cell, and cell types were coded with different colors. 
D–F t-SNE plot showing the cellular landscape of adjacent noncancerous tissues. G–H Dot plots showing top 5 cell types-specific genes. Size of 
dots indicated the proportion of cells expressing the selected genes, and intensity of color (from white to purple) indicated the average expression 
level. I The box plots showing the proportion of cell types in PDAC and the counterpart tissues. For pie charts, the proportion of stromal cells (green) 
was showed. J The differences in the proportion of positive cells expressing immune marker between PDAC and adjacent noncancerous tissues
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obtained following pancreatectomy to conduct scRNA-
seq. A large gene-cell matrix, consisting of 58,076 cells 
[32849 cells from the PDAC tissues and 25,227 cells 
from the adjacent noncancerous tissues (ADJ)] and 
24,148 genes, was generated after stringent quality con-
trol using the CellRanger and Seurat tools. The t-dis-
tributed stochastic neighbor embedding (t-SNE) was 
used and cells were segregated into various clusters in 
two dimensions according to their transcriptional pro-
files. A total of 16 original clusters were identified in the 
PDAC group, whereas 22 original clusters were identi-
fied in the ADJ group (Fig. 6A, D). By cross-referencing 
the cluster-specific genes with known signatures of cell 
populations reported in previous studies [18, 19], these 
clusters were annotated as known cell types, including 
fibroblasts (LUM), T cells (CD3D), ductal cells (KRT19), 
macrophages (CD68), B cells (MS4A1), neutrophils 
(S100A8), stellate cells (RGS5), endothelial cells (CDH5), 
plasma cells (MZB1), mast cells (TPASB1), schwann cells 
(S100B), acinar cells (PRSS1), natural killer (NK) cells 
(FGFBP2), endocrine cells (CHGA) (Fig. 6B, E and Addi-
tional file  1: Fig. S1A–B). No specimen-specific cluster 
was found, indicating no significant specimen-derived 
batch effect (Fig.  6C, F). The top five cell-specific genes 
for each cell type were shown in Fig. 6G, H.

The cellular compositions of PDAC and ADJ tissues 
were calculated. We found that cellular compositions 
varied among these specimens, indicating inter-patient 
heterogeneity (Fig.  6I). A higher proportion of fibro-
blasts was found in PDAC specimens. In addition, there 
were more abundant stromal cells in the PDAC speci-
mens compared to ADJ specimens (82.45 vs. 66.17, 
p < 0.0001), which was consistent with the result of the 
mIHC (Figs. 3B, 6I). Subsequently, we explored the previ-
ously studied-immune related features using scRNA-seq 
analysis. Consistent with previous findings, PDAC speci-
mens had a lower proportion of CD8 + (CD8A) cells and 
CD8 + PD1 + (PDCD1) cells than ADJ specimens. How-
ever, no significant differences were detected in the pro-
portion of CD68 + cells and PD1 + cells between the two 
groups (Fig. 6J). For PD-L1 (CD274) expression, we also 
did not find a statistical difference in total PD-L1 + cells, 
PD-L1 + macrophages, and PD-L1 + ductal cells (Fig. 6J).

To further investigate the distribution of PD1/PD-L1 in 
the PDAC and ADJ tissues at single cell transcriptomic 
level, the expression levels of selected genes in each cell 
were mapped to the t-SNE plots (Additional file  1: Fig. 
S2A–B). For both PDAC and ADJ specimens, CD68 and 
CD8A expression were restricted to the correspond-
ing macrophages and T cells. The PDCD1 was mainly 
enriched in T cells. However, CD274 was expressed in a 
variety of cell types, including macrophages, ductal cells, 
and other immune cells. The proportion of CD274 + cells 
was relatively low, responding to the fact that PDAC is a 
cold tumor.

The expression of PD1 and PD‑L1 in T cell and macrophage 
subpopulations
To better understand the expression of PD1 and PD-L1 in 
the tumor microenvironment of PDAC, we isolated gene-
cell matrixes of T cells and macrophages and conducted 
separate clustering analyses. The t-SNE plots showed that 
T cells were further grouped into seven and seven major 
unsupervised clusters in the PDAC and ADJ specimens, 
respectively (Fig.  7A, C), including naïve T (Tn), effec-
tor memory T (Tem), resident memory T (Trm), regula-
tory T (Treg), and NK-like T (Tnk). Remarkably, a new T 
cell type, which was characterized with expressing mul-
tiple heat shock protein (HSP) family members, such as 
HSPA1A, HSPA1B, and HSP90AA1 was identified, and 
therefore was named HSP T (Thsp). This T cell subpop-
ulation was only observed in PDAC but not in the ADJ 
specimens (Fig. 7A, C). No specimen-specific T cell sub-
population was found (Fig.  7B, D). The identity of each 
T cell subpopulation was verified according to known 
cell markers (Fig.  7E–F). Next, we explored whether 
PD1 + cells were restricted to a particular T cell sub-
population. The expression level of PDCD1 was mapped 
to the t-SNE plot (Fig.  7G–H). The results showed that 
PDCD1 + cells spread across different T cell subpopu-
lations, suggesting that anti-PD1 immunotherapy may 
affect all T cell subpopulations. We speculated that tar-
geting the whole T cell population, rather than a spe-
cific T cell subpopulation (Treg), might contribute to the 
insensitivity of PDAC patients to anti-PD1 treatment.

(See figure on next page.)
Fig. 7  Immune profiles of PDAC and adjacent noncancerous tissues. A–B t-SNE plot showing renamed T cell subpopulations (A), specimens 
derived information in PDAC (B). Each dot represented one cell, and cell types were coded with different colors. C–D t-SNE plot showing the T cell 
subclustering analysis of adjacent noncancerous tissues. E–F Violin plots showing the normalized expression levels of known signature genes of 
distinct T cell subpopulations. G–H The distribution of PDCD1 + (PD1 +) T cells in PDAC and adjacent noncancerous tissues. The intensity of color 
(from white to yellow) indicated the average expression level of PDCD1. I–J t-SNE plot showing original cell cluster of macrophages (I), specimens 
derived information in PDAC (J). Each dot represented one cell, and cell types were coded with different colors. K–L t-SNE plot showing the 
macrophage subclustering analysis of adjacent noncancerous tissues. (M–N) The distribution of CD2741 + (PD-L1 +) macrophages in PDAC and 
adjacent noncancerous tissues. The intensity of color (from white to red) indicated the average expression level of CD274
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Fig. 7  (See legend on previous page.)
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A total of 7 and 10 major unsupervised macrophage 
subpopulations were identified in the PDAC and ADJ 
specimens, respectively (Fig.  7I, L). Each macrophage 
subpopulation was composed of cells from multiple 
specimens (Fig. 7J, M). The t-SNE plots showed that sub-
cluster 6 in the PDAC group and subclusters 1 and 5 had 
enriched expression of CD274 (Fig.  7K, N). Therefore, 
the anti-PD-L1 drugs might mainly target specific mac-
rophage subpopulations, while their roles in the tumor 
microenvironment and immunotherapy remain to be 
investigated.

The identification of PD‑L1 + malignant ductal cells
Next, ductal cells were isolated to construct a new gene-
cell matrix, and subclustering analysis was conducted. 
A total of 14 original ductal clusters were identified 
(Fig. 8A). To further isolate malignant ductal cells, large-
scale chromosomal copy number variation (CNV) analy-
sis was performed, and the CNV score of each cell was 
calculated. Both T cells and macrophages were taken as 
reference cells because they are considered to have no 
CNV. There were significantly higher CNV scores in the 
subcluster 0/1/2/3/4/5/6/7/8/9/13 than in the reference 
cells, therefore were defined as tumor clusters, while sub-
cluster 10/11/12 had no obvious CNV, and were therefore 
defined as normal ductal clusters (Fig. 8B, D–E). Interest-
ingly, cells from different PDAC specimens clustered sep-
arately, indicating inter-patient heterogeneity (Fig.  8C). 
Moreover, tumor clusters had higher expression levels 
of tumor makers, including LAMC2, MSLN, TFF2, and 
CEACAM5, compared with ductal clusters, which fur-
ther verified their tumor identity (Fig. 8F). We compared 
PD-L1 + and PD-L1—tumor cells and found 417 differ-
entially expressed genes (DEGs), which were enriched in 
the regulation of biosynthetic process, development pro-
cess, and transcription regulator activity by GO analyses 
(Additional file 1: Fig.S3).

Crosstalk between PD1 + T cells and PD‑L1 + tumor cells
To gain insight into the cell-to-cell interactions between 
targeted cells of ICIs in PDAC, a new gene-cell matrix 
of PD1 + T cells and PD-L1 + tumor cells/macrophages 

was constructed, and the receptor-ligand interactions 
between them were inferred using the iTALK method. 
Strong connections were observed between these cells 
(Fig.  8G). The PD1 (PDCD1)-PD-L1 (CD274) receptor-
ligand pairs were identified between PD1 + T cells and 
PD-L1 + tumor cells. Remarkably, we found that the 
chemokine CCL5 secreted by PD1 + T cells could com-
bine with SDC1/4 on the surface of all PD-L1 + tumor 
clusters (Tumor1-6). In addition, there was an SPP1-
ITGB1/CD44 receptor-ligand connection between 
PD-L1 + macrophages and tumor clusters (Fig.  8G). 
Therefore, the tumor microenvironment contains a com-
plex cell-to-cell communication that might be a prom-
ising drug target for improving the efficacy of ICIs in 
PDAC.

Discussion
PDAC is characterized by a complex tumor microen-
vironment, mainly consisting of tumor cells, endothe-
lial cells, fibroblasts, and many different types of tumor 
infiltrating immune cells [20, 21]. There are sophisti-
cated cell-to-cell communications between immune 
cells and tumor cells, which are involved in every step 
of tumor progression in PDAC [22, 23]. Tumor immune 
infiltration varied a lot among patients with PDAC, 
which was closely correlated to prognosis and response 
to immunotherapy [24]. Recently, the clinical signifi-
cance of the immune checkpoint molecular PD1/PD-L1 
has attracted widespread attention. Nevertheless, it 
remains challenging to reach a consensus regarding the 
cut-off value for determining whether a tumor is PD1/
PD-L1 positive, and the prognostic value of PD-L1 was 
inconsistent in previous studies [25–27]. In this study, 
we captured new immune features using mIHC that 
were different from the traditional anatomical features 
for the TNM staging system. The expression levels of 
PD1/PD-L1 were determined by conducting quantita-
tive pathological analysis. Compared to previous con-
ventional IHC and RT-qPCR methods, this method was 
more objective and reproducible. Moreover, the tumor 
and stromal segmentations were performed so that 
we could further determine these features in different 

Fig. 8  Receptor-ligand interaction between PD1 + T cells and PD-L1 + macrophages and tumor cells. (A–C) t-SNE plot showing original ductal 
cell clusters A renamed ductal cell subpopulations (B), specimens derived information in PDAC (C). Each dot represented one cell, and cell types 
were coded with different colors. D Heatmap showing large-scale CNV profile of each ducal cell cluster. Blue and red colors represented low 
and high CNV levels, separately. Both macrophages and T cells were used as reference cells. E Box plots were used to compare the CNV scores 
of distinct ductal cell clusters. White box represented reference cell clusters. F Violin plots showing the normalized expression levels of tumor 
marker genes among these ductal cell clusters. The expression of KRT19 was the common marker of ductal cells. G Chord diagram showing the 
receptor-ligand pairs among PD1 + T cells and PD-L1 + macrophages and tumor cells, which were classified into four categories, including growth 
factors, cytokines, immune checkpoints, and others. Connection graph in the left panel showing the intensity of interactions between two main cell 
clusters in colored circles. Total counts of ligand-receptor pairs are counted

(See figure on next page.)
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regions. The spatial features of PD1-PD-L1 interac-
tion were also obtained. UniCox and MultiCox analy-
ses were employed to develop a novel risk score-based 
prognostic model using immune features generated by 

mIHC and quantitative pathology. Finally, a nomogram 
plot was constructed by combining the risk score and 
vital clinicopathological characteristics, with important 

Fig. 8  (See legend on previous page.)
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clinical significance for predicting the prognosis of 
patients with PDAC.

In prior studies, only a single marker was detected 
to evaluate its prognostic value. Here, we simultane-
ously measured multiple markers in the same section 
to characterize the immune landscape of PDAC. The 
co-expression and correlation of multiple markers were 
also determined. In addition, scRNA-seq analysis was 
conducted to further verify the results of the mIHC and 
quantitative pathological analyses. Overall, we demon-
strated that PD-L1 expression at the RNA and protein 
levels was relatively scarce in PDAC, consisting with pre-
vious reports despite different methods were employed 
[28]. The lacking of PD-L1 might contribute to the inef-
fectiveness of ICIs. The mechanism of PD-L1 downreg-
ulation in the PDAC microenvironment remains to be 
clarified, which is vital for improving the effectiveness of 
anti-PD-L1 treatments.

Tumor cells escape immune surveillance and are 
insensitive to immunotherapy, mainly attributed to 
the activation of immune checkpoint molecules and 
the interactions between tumor cells and suppressive 
immune cells. Thus, ICIs, such as anti-PD1 drugs, might 
have a tumor-killing effect. However, a single agent has 
not yet yielded significant improvements in the progno-
sis of patients with PDAC [29]. It is now believed that 
exploring combination regimens is a promising direction. 
In this study, we found that PD1 + cells were distributed 
in different T cell subpopulations (Fig.  7G–H). There-
fore, anti-PD1 treatments target not only Tregs, which 
play a negative regulatory role in the tumor microenvi-
ronment, but also other T cell subpopulations. Extensive 
inhibitory effects on T cell subpopulations might cause 
treatment failure. The MultiCox result showed that the 
proximity relationship between PD1 + CD8 + T cells and 
the PD-L1 + region was an independent prognostic fac-
tor in PDAC (Table 2), indicating the important clinical 
value of spatial information in the tumor microenviron-
ment. However, the specific types of PD1 + T cell sub-
populations close to the PD-L1 + region need to be 
further explored. Both mIHC and scRNA-seq analyses 
showed that PD-L1 (CD274) expression was low, while 
the proportion of stromal cells was relatively high, which 
explained why PD1/PD-L1 treatment failed in PDAC 
patients. Furthermore, we performed iTALK analysis and 
observed that there were other conserved receptor-ligand 
pairs (CCL5-SDC1/4) besides the PD1-PD-L1 interac-
tion between PD1 + T cells and PD-L1 + tumor cells. It 
was reported that the combined blockade of PD-L1 and 
CCL5 synergistically suppressed tumor growth in xeno-
graft and orthotopic PDAC mouse models [30]

The minority of patients with malignant tumors have a 
better response to ICIs, especially those with mismatch 

repair deficiency and high mutation burden. There is still 
no good way to screen for patients who will benefit from 
immune checkpoint treatments. Both mIHC and scRNA-
seq could reveal immune profiles very well and identified 
novel features at unprecedented resolution. In this study, 
a risk score-prognostic model based on immune features 
generated by mIHC was developed, which showed a good 
performance in predicting overall survival of patients. In 
the future, new prediction system based on these meth-
ods might well compensate for deficiencies of mismatch 
repair deficiency and mutation burden in predicting 
immune checkpoint treatment response.

This study has several limitations. First, the limited 
sample size was used to conduct mIHC on TMA, and 
there was no external validation for the risk score-based 
prognostic model using immune features. Second, TMA 
had an inevitable deficiency in that a small TMA core 
area tended to lead to sampling bias. However, TMA 
cores from different patients were stained with multiple 
markers simultaneously, which reduced the batch effect 
caused by multiple staining of traditional IHC using 
serial sections. Third, it is necessary to stain for more 
markers to further characterize the immune profiles of 
PDAC. Here, we focus only on the important immune 
checkpoint molecules PD1/PD-L1. Finally, there was a 
preference for the preparation of single cell suspensions 
during tissue dissociation, which might cause errors in 
cell composition analysis to some extent. In addition, 
scRNA-seq was less friendly to some molecules with low 
expression, thus it might underestimate the expression of 
PD-L1 (CD274) in PDAC.

Conclusions
Overall, our work reveals the immune landscape of 
PDAC by combining mIHC and scRNA-seq analyses. A 
novel risk score-based prognostic model using immune 
features generated by quantitative pathology was devel-
oped. We found other conserved receptor-ligand pairs 
between PD1 + T cells and PD-L1 + tumor cells, which 
might provide new clues for detecting targets in com-
bination with ICIs. Further studies will be required to 
reveal the immune landscape, tumor microenvironment 
heterogeneity, and underlying molecular mechanism, 
which will facilitate developing new immunotherapy 
combination strategies for PDAC.
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Additional file 1: Figure S1. Identification of cell types. A–B Violin plots 
showing the normalized expression levels of known signature genes of 
distinct cell populations in PDAC (A) and adjacent noncancerous tissues 
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(B). Figure S2. Expression and distribution of immune markers. A–B The 
distribution of CD68+, PDCD1+ (PD1+), CD2741+ (PD-L1+), CD8A+ 
(CD8+) cells in PDAC (A) and adjacent noncancerous tissues (B). The 
intensity of colors (from white to specific colors) indicated the aver-
age expression level of immune markers. Figure S3. Gene annotation 
analysis of differentially expressed genes (DEGs) between PD-L1+ and 
PD-L1- tumor cells. Biological process (A), and Molecular function (B). Top 
GO terms were shown. Bar plots are colored according to their − log10P-
values. Heatmaps showing the expression levels of top 80 DEGs.

Additional file 2: Table S1. Clinical characteristics of PDAC patients.

Additional file 3: Table S2. Features of TMA cores generated by Qupath.
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