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Abstract
Even though mechanization has dramatically decreased labor requirements, vineyard man-
agement costs are still affected by selective operations such as winter pruning. Robotic 
solutions are becoming more common in agriculture, however, few studies have focused 
on grapevines. This work aims at fine-tuning and testing two different deep neural net-
works for: (i) detecting pruning regions (PRs), and (ii) performing organ segmentation of 
spur-pruned dormant grapevines. The Faster R-CNN network was fine-tuned using 1215 
RGB images collected in different vineyards and annotated through bounding boxes. The 
network was tested on 232 RGB images, PRs were categorized by wood type (W), orienta-
tion (Or) and visibility (V), and performance metrics were calculated. PR detection was 
dramatically affected by visibility. Highest detection was associated with visible intermedi-
ate complex spurs in Merlot (0.97), while most represented coplanar simple spurs allowed 
a 74% detection rate. The Mask R-CNN network was trained for grapevine organs (GOs) 
segmentation by using 119 RGB images annotated by distinguishing 5 classes (cordon, 
arm, spur, cane and node). The network was tested on 60 RGB images of light pruned (LP), 
shoot-thinned (ST) and unthinned control (C) grapevines. Nodes were the best segmented 
GOs (0.88) and general recall was higher for ST (0.85) compared to C (0.80) confirming 
the role of canopy management in improving performances of hi-tech solutions based on 
artificial intelligence. The two fine-tuned and tested networks are part of a larger control 
framework that is under development for autonomous winter pruning of grapevines.
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Introduction

Viticulture covers more than 7.3 million hectares around the world. Grapevines rep-
resent a major Mediterranean permanent crop especially for countries such as Spain, 
France and Italy, accounting for about 50% of total acreage; in parallel, the wine indus-
try is widely growing in the so-called New World wine-producing countries including 
China, USA, New Zealand and Australia (OIV, 2021). Due to unfavorable topographic 
conditions (i.e. steep slopes), in several wine districts mechanization is troublesome and 
vineyard management mostly relies on manual operations such as winter and summer 
pruning, bunch and shoot thinning, and harvesting (Poni et al., 2018). Regardless of the 
site characteristics, labor is the major cost in vineyard management with harvest and 
winter pruning representing the most expensive and time-consuming operations (Intrieri 
& Poni, 1995).

Moreover, job opportunities in other sectors of the economy are becoming more 
attractive for a large part of the workforce previously involved in agriculture, and sev-
eral world regions are experiencing an overall shortage of skilled workers (Charlton 
& Taylor, 2016; Eurostat, 2021). A condition that has recently been exacerbated by 
international restrictions to mobility related to the Covid-19 pandemic, with increased 
competition for the limited availability of skilled operators, and vineyard managers 
concerned to secure seasonal workers joining their vineyard crews (Rivera-Ferre et al., 
2021; Squire, 2020). Finally, the use of shears in repetitive gestures increases the risk of 
injuries for the operator (Fathallah, 2010).

To address the overall shortage of vineyard labor and to increase competitiveness of 
the wine industry, mechanical pruning has been investigated by several researchers (Cling-
eleffer, 2013; Dokoozlian, 2013; Intrieri, 2013; Poni et al., 2016; Shaulis et al., 1967). In 
particular, spur pruning can be partially mechanized by using cutting bars or rotating disks 
to remove the previous season’s growth as well as to cut dormant shoots into small frag-
ments that fall on the ground, with a significant decrease in labour requirements for per-
forming rough cuts and cane stripping. However, VSP-trained spurred cordons is not the 
only approach suitable for mechanical pruning, and other training systems have been spe-
cifically developed for a more intensive or full mechanization: such as single-wire cordon, 
Geneva Double Courtain and Lyra (Intrieri & Poni, 1995; Intrieri et al., 2011). As an exam-
ple, mechanical pruning of single-wire cordon trained Barbera grapevines was effective in 
reducing the labour demand from 60 h/ha to 25 and 17 h/ha depending on different inten-
sities of manual follow-up (Gatti et al., 2011), whilst minimal pruning was completed in 
less than 20 h/ha in Australian vineyards (Clingeleffer, 2013). However, the most advanced 
spur pruning technology is still represented by non–selective mechanical operations requir-
ing manual follow-up (Poni et al., 2016), and the use of heavy combustion-engine powered 
tractors in vineyards contributes to soil compaction and increases the overall carbon foot-
print (Longbottom & Petrie, 2015; Pessina et al., 2021).

Given the increasing competitiveness of the wine business on a global scale, new 
efficient solutions for vineyard management are therefore required to create integrated 
sustainability (Christ & Burritt, 2013; Rugani et al., 2013; Tardaguila et al., 2021). Over 
the past few decades, advances in technology have contributed to improving final qual-
ity and efficiency in several agricultural systems. Precision viticulture protocols have 
been developed since the ‘90 s (Bramley, 2010) and variable rate technologies can now 
assist cultural practices such as irrigation (Sanchez et  al., 2017), fertilization (Gatti 
et al., 2018) and harvest (Bramley et al, 2005).
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Automation in agriculture is a developing field covering different aspects such as auton-
omous guidance, including route and field layout planning, crop and environment sensing, 
and physical interaction with crops (Vougioukas, 2019). Unlike traditional mechanization, 
robotic solutions form a complement for the human workforce when performing autono-
mous highly selective operations. As a matter of fact, they may require the use of Artifi-
cial Intelligence (AI) and computer vision to detect target regions in the crop environment 
through application of object detection techniques that are becoming much more popular in 
agriculture (Kamilaris & Prenafeta-Boldú, 2018; Jha et al., 2019). AI-based systems have 
recently incorporated artificial neural networks, allowing reliable predictions in response to 
rigorous training, instead of programming that characterized traditional AI-based methods 
(Jha et  al., 2019). Convolutional Neural Networks (CNNs) are normally used for image 
classification. Among CNNs, Faster R-CNN (Ren et al., 2017) performs object detection 
featuring a “Region Proposal Network”, while Mask R-CNN (He et  al., 2020) evolved 
from Faster R-CNN, extending it with an additional feature pyramid network to predict the 
object mask at the same time as the object bounding box recognition.

Machine Learning (ML) algorithms and frameworks such as the ones mentioned above, 
are increasingly applied in agriculture. Image segmentation algorithms have been studied 
(Bargoti & Underwood, 2017) for fruit detection and counting in orchards. Numerous stud-
ies on different species have been reported: the number of grapevine berries was assessed 
by image analysis (Aquino et al., 2018), a computer vision system was developed for driv-
ing actions of a kiwifruit robotic harvester (Williams et al., 2020), and a Deep Learning 
(DL) model based on RGB (Red Green Blue) imagery was fine-tuned to detect and identify 
different cultivars in mango (Borianne et al., 2019). An on-the-go model aimed at provid-
ing an early automated crop-load estimation in vineyards has also been developed (Aquino 
et al., 2018). Working on Albariño and Barbera cultivars, other authors compared the per-
formances of different deep convolutional neural network architectures and feature spaces 
by working on images of grapevine clusters (Cecotti et al., 2020).

Grimm et  al. (2018) presented a proof of concept for detecting and quantifying plant 
organs for non destructive yield estimation. This approach is based on automated detection, 
localization, count and analysis of yield components such as young shoots, inflorescences, 
and berries. A CNN was created for the semantic segmentation and tested, along with 
object detection and localization on six different datasets that cover different growth stages 
of grapevines. Santos et  al. (2020) presented a public dataset for grape cluster detection 
and instance segmentation containing 300 images, bounding boxes, masks and an evalu-
ation of two state-of-the-art methods for object detection, object segmentation and a fruit 
counting methodology. In the evaluation of the methods the authors considered that Mask 
R-CNN presented superior results in relation to the YOLO network, but, at the same time 
they affirmed that the bounding box annotation used to train the YOLO networks is created 
faster.

Pruning automation is a topic of increasing interest in horticulture. New technologies 
and developments concerning pruning automation in apple trees have been reviewed (He & 
Schupp, 2018) and a general framework of an autonomous pruning system led to promising 
results (You et al., 2020). Recently, Zahid et al. (2021) reviewed the advancements in each 
core component of a robot for apple tree pruning and provided an exhaustive overview con-
cerning autonomous pruning and harvesting technologies in horticulture. The development of 
an autonomous pruning system relies upon strong perception systems, motion planning algo-
rithms, robotic arms and specific end-effectors. Computer vision allows plant segmentation, 
reconstruction and modelling (Tinoco et al., 2021) as well as pruning point detection (Karkee 
et  al., 2014). Scarce information is available for what concerns grapevine architecture over 
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dormancy. Early studies were performed by Mercurio et al. (1989) focusing on a vision-guided 
block-type robotic grapevine pruner and by McFarlane et al. (1997) working on image analysis 
algorithms to collect measurements relevant to long-cane winter pruning. A pioneering study 
developed an image analysis algorithm for spur pruning points identification using an artifi-
cial background and black and white images (Gao & Lu, 2006), while Botterill et al. (2017) 
reconstructed a 3D model of the vine using trinocular stereo cameras in a controlled setting 
and successively applied an AI algorithm to develop a long-cane pruning scheme. Moreover, 
a computer vision-based algorithm for grapevine bud detection was presented (Díaz et  al., 
2018). The approach to the target plant is generally performed using a robotic arm and colli-
sions with non-targeted canes need to be avoided. In this regard, the success of a pruning robot 
requires reliable and crop-specific motion planning algorithms. In that respect, Magalhães 
et al. (2019) benchmarked the motion planning algorithms for robotic manipulators in a simu-
lated vineyard. Another essential component of a pruning robot is the end effector, which can 
use various cutting systems such as pneumatic (Zahid et al., 2020), hydraulic (Vision-Robotics 
Corporation, 2015) or electric (Botterill et al., 2017). The computer vision system described 
by Botterill et al. (2017) was then integrated into an over-the-row mobile platform, and the 
engulfed vine was illuminated with artificial lights and a robotic arm with a collision-free tra-
jectory performed the AI-driven pruning. The major challenges of the prototype were the total 
execution time, and the limited suitability of the platform to steep slopes and narrow turns. To 
the best of the authors’ knowledge, a valid and commercially-efficient robotic system for short 
winter pruning in vineyards is still missing. Moreover, despite the above mentioned advances 
in sensing, control and manipulation technologies, performances of robotic platforms may be 
significantly improved in future by coupling technological progress to innovative vineyard 
management with the final aim to speed up the adoption of robotic solutions towards more 
efficient, safe and sustainable viticulture (Bloch et al., 2018; Verbiest et al., 2021).

This work aims at fine-tuning and testing (i) a DL-based algorithm for detecting prun-
ing regions (PRs) of spur-pruned grapevines, and (ii) a convolutional neural network allow-
ing plant organ segmentation of dormant grapevines. Moreover, the paper intends analyzing 
strengths and weaknesses of neural networks depending on different canopy management 
solutions towards a more effective plant organ segmentation supporting robotized pruning 
tasks. The study is part of the pipeline for the development of a complete algorithm for cut-
ting-point generation to be implemented on a robotic arm for automated spur-pruning in vine-
yards. For each plant, the pipeline will use the first network to identify the PRs and then the 
second network to perform grapevine organ segmentation of the identified PRs.

Material and methods

To test each step of the proposed pipeline, two experiments were performed: Experiment 1 is 
about the pruning regions detection with a first Deep Convolutional Neural Network (DCNN), 
and Experiment 2 is about the plant organ segmentation with a second DCNN.

Experiment 1, training and testing of the DCNN for PR detection

Image collection

During winter, a total of 1215 RGB images were acquired on Vitis vinifera L. spur-pruned 
grapevines from 2 different vineyards characterized by different plant and cordon age 
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(Table S1). In February 2018 and February 2019, 965 and 100 RGB images, respectively, 
were acquired from Vitis vinifera L. cv Merlot grapevines planted in 2014 in an experi-
mental vineyard located in Piacenza (45°02′N, 9°43′E), Italy. Mature vines presented seven 
2-node spurs and were planted along a NS-oriented row with 2.1 m × 1.2 m spacing (inter- 
and intra-row). The cordon was set at 0.9 m above the ground. Images were captured with 
a resolution size of 1280 × 720 pixels, moving from North to South along the row at a 
0.9 m operating distance. In December 2018, 150 RGB images were gathered on eight-
year-old Vitis vinifera L. cv. Ervi grapevines from a commercial vineyard located at Alseno 
(44°51′34.70″N, 9°56′E), Italy. Each vine was pruned to six 2-node spurs for a correspond-
ing bud load of 12 nodes/vine. The east-facing vineyard featured EW-oriented rows and a 
2.5 m × 0.9 m vine spacing (inter- and intra-row, respectively). Images were acquired West 
to East with the same depth camera settings as described above. During each acquisition 
campaign all the images were taken at solar noon under clear sky (Fig. 1a).

Data annotation

Pruning target regions of each image were hand-labelled and singularly contained in rec-
tangular bounding boxes by using the COCO Annotator tool (Brooks, 2019). Every anno-
tation included individual spurs avoiding overlapping with adjacent regions, and at least 
the first 2 basal nodes of each cane (Fig. 1b). The annotated dataset, with a total of 8361 
bounding boxes, as part of a fine-tuning process, was subsequently fed to the neural net-
work Faster R-CNN (Ren et al., 2017).

Training of the DCNN

The network was fine-tuned from a pre-trained model of Faster R-CNN (Lin et al., 2014), 
trained with the COCO2017 dataset. The fine-tuning hyperparameters were those related to 
the neural network structure by default adjusted for the following exceptions: the number 
of training iterations was changed to 50,000 from the original 270,000, the batch size was 
changed to 1 from an original value 16, and the decaying learning rate which was set to 
0.003 from the start, was changed to 0.0003 at 1000 steps and further decayed to 0.00003 
at 2000 steps.

Testing of the DCNN

The fine-tuned algorithm was tested in October 2021 on 2 different datasets referred to 
mature spur-pruned grapevines of diverse cordon age, cultivar and subjected to differ-
ent growing conditions (Table  S1). Accordingly, a batch of 202 frames was acquired 

Fig. 1   Description of the workflow required for fine-tuning a DCNN for PR identification: Original image 
(a), annotated image by experts for training the neural network by using red bounding boxes (b), and exam-
ple of PR detection through Faster R-CNN with green boxes indicating detected pruning regions(c)
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in February 2019 on a subset of 5 adjacent Merlot vines (hereafter referred to as Mer-
lot dataset) randomly chosen among those already used for training. The second test 
dataset, composed of 30 RGB images with a resolution of 4608 × 3456‬ pixels, was 
obtained in December 2020 in Piacenza with a Nikon Coolpix camera on a set of 15 
Vitis vinifera L. cv Sangiovese potted grapevines (hereinafter referred to as Sangiovese 
dataset). The vines were arranged in a single row, trained to a spur-pruned cordon since 
2017 with five 2-node spurs and a vine spacing of 0.9 m and a 35° NE-SW orientation. 
The permanent cordon was located at 0.9 m from the ground. Each plant was entirely 
photographed once from both sides at cordon height. The acquisition and annotation of 
both the test datasets considered the same equipment and settings already reported for 
training (Fig. 1a, b).

For each image, the DCNN predicted the Potential Pruning Regions (PPRs) through 
bounding boxes and confidence values (Fig. 1c); however, only the detections with con-
fidence > 70% were considered. Additionally, every PR was progressively numbered and 
described by: wood type (W), visibility (V), and orientation (Or). Wood type included 
the following categories: cane (cane arising from latent buds on the permanent cordon), 
simple spur (spur with ≤ 1 shoot/node), complex spur (spur with > 1 shoot/node), and 
other (PRs not falling in one of previous categories) (Fig.  2). For what concerns vis-
ibility, PRs were classified as visible or hidden if occluded by other grapevine organs 
and/or trellis components. Lastly, orientation provided three categories: coplanar (PR 
lying on the same plane of the row), perpendicular (PR lying on the vertical plane per-
pendicular to the row), and intermediate (PR lying on a plane in between coplanar and 
perpendicular conditions) (Fig. 2).

Fig. 2   Description of the pruning regions (PRs) of spur-pruned grapevines depending on wood type and 
orientation. PRs defined as “other” are not reported
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Experiment 2, training and testing of the DCNN for grapevine segmentation

Image collection

In March 2021, 148 RGB images were captured with a resolution size of 4608 × 3456 
pixels, on the Sangiovese grapevines already considered for experiment 1 (Table S1). To 
increase the variability among the pruning region complexity, in May 2020 shoot thin-
ning (ST) was performed on 8 out of the fifteen grapevines according to Bernizzoni et al. 
(2011). The remaining 7 plants acted as an unthinned control (C) (Fig. 3). The acquisition 
was performed at solar noon, when each PR was individually photographed from a dis-
tance of 0.3 m at cordon height; 2 passages per row were performed to consider both the 
East and West sides. An additional batch of 196 RGB images taken in December 2020 was 
also considered. Data was randomly captured on the same Sangiovese experimental row 
with a resolution size of 4608 × 3456 pixels considering different orientation.

Data annotation

The images were annotated using the COCO Annotator tool (Brooks, 2019) and five 
classes were used to describe the relevant grapevine organs (GO) for pruning purposes: 
cordon, arm, spur, cane, and node (Fig.  4a). Each grapevine element belonging to the 
above-mentioned classes was annotated with a polygon, except for nodes that were con-
sidered through bounding boxes (Fig. 4b). Polygonal annotation was carried out retracing 

a) b) c)

Fig. 3   Test set example images from each PR category considered as part of the segmentation network: 
Control (a), Shoot Thinning (b) and Light Pruning (c)

Fig. 4   Description of the workflow required for fine-tuning a DCNN for grapevine organ segmentation: 
Original acquisition with indication of the 5 relevant classes for winter pruning (a); annotated image by 
experts for training the neural network by using 5 different categories (b): cordon (purple), arm (green), 
spur (red), cane (brown), node (blue); and example of PR segmentation through Mask R-CNN (c)
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each element including the outer edge of every organ. To distinguish connected organs 
within a PR (i.e. arm vs. spur, spur vs. canes) from occlusions and close elements of the 
background, a few millimeters overlap between annotated areas was kept for contiguous 
grapevine organs.

Training of the DCNN

The network was trained on 119 images using COCO2017 pre-trained model weights 
for the Mask R-CNN. The default training hyperparameters related to the neural network 
structure were considered. To adapt the model to the relatively small dataset, the number 
of training iterations was limited to 50,000, from the original 270,000 and the batch size 
changed to 2, from the original value of 16.

Testing of the DCNN

The original dataset was randomly split into a training dataset (80%) and a test dataset 
(20%). Accordingly, 29 images of the test dataset were integrated with 31 images collected 
in December 2020 as part of a preliminary iteration of the neural network (Fernandes et al., 
2021). Such a preliminary batch of images considered the highest morphological vari-
ability of grapevine pruning regions encompassing unthinned grapevines (C), spurs sub-
jected to early-season shoot thinning (ST), and light pruning (LP) that is generally unde-
sired because favoring acrotony due to the node-count per spur > 2 (Fig.  3). Therefore, 
in November 2021 the network was tested on a batch of 60 images representing several 
canopy management conditions hereafter described as treatment (T). The segmentation 
output (Fig.  4c) was composed of inferences provided with an ID, a class label and the 
corresponding confidence value, and Intersection over Union (IoU) to quantify the overlap 
between the annotated organ and the model inference.

Evaluation criteria

For each dataset of experiment 1, the network returned bounding boxes identifying the 
potential pruning regions (PPRs) of the selected images. Consequently, model predictions 
(PPRs) were compared with actual PRs and three possible outcomes were considered: 
true positive (TP) when the prediction correctly matched with the corresponding PR; false 
positive (FP) when the prediction did not correspond to a PR; false negative (FN) in case 
PRs were not predicted by the DCNN. In addition, FPs were divided into the following 
6 categories: arm (old wood growing from the cordon), cane (intermediate portion of a 
cane), cordon (portion of the permanent cordon of a target vine), next-row trunk (NRT) 
(intersection between the cordon in the foreground and a trunk in the background), old cuts 
(OC) (portion of the cordon where previous cuts were performed), post (component of the 
vineyard trellising). For each FP category the false discovery rate (FDR) was calculated as 
follows:

For each of the 5 classes measured within experiment 2, the output of the grapevine seg-
mentation network was compared to the annotated images. The correctness of a detected 
grapevine organ was assessed through the IoU overlap with the corresponding ground truth 

(1)FDR = FP/(TP + FP)
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labelling (Girshick et al., 2016; Zhang et al., 2018). The IoU overlap was defined according 
to the following equation:

where A stand for hand annotated area and B represents the corresponding inference area.
Within every class, a detected object was assumed as a true positive (TP) when its IoU 

was higher than 0.5 (Lin et al., 2020). The output was classified as a false negative (FN) 
when a detected organ did not reach the minimum IoU threshold. The output was classi-
fied as false positive (FP) in the case of no overlap with the corresponding ground truth 
annotation. For FPs, the misclassed grapevine organ or other element was described and 
considered for further analysis.

In both the experiments, the neural network performances were evaluated through 
recall, precision and F1 scores, that were calculated for the overall object population of the 
different datasets according to Kamilaris and Prenafeta-Boldú (2018):

As part of Experiment 1, the same indices were also calculated depending on PR Vis-
ibility. In the case of WxV, OrxV, and WxOrxV interactions, mean values of the Recall 
index were calculated and compared by standard error. In the case of Experiment 2, the 
performance metrics were calculated based on the grapevine organ (GO), treatment (T), 
and their interaction (GO × T).

Results

Experiment 1

The Merlot dataset included 40 pruning regions mostly featured by simple spurs (43%) and 
coplanar orientation. Simple spurs were also the most common wood type in Sangiovese 
(73%) where almost half of the PRs were coplanar (51%) with the row’s vertical axis. 
Moreover, most of the PRs were clearly visible in both the Merlot (68%) and Sangiovese 
(77%) datasets (Fig. 5).

In Merlot, the PR identification was characterized by lower recall (0.66) and higher pre-
cision (0.87) rates while in Sangiovese, the DCNN performances were represented by the 
following metrics: 0.59 recall, 0.96 precision and 0.73 F1 score (Table 1). Correct PR’s 
identification was higher in visible spurs with a dramatic recall decrease from 0.72 to 0.53 
and from 0.70 to 0.27 when considering occlusions in Merlot and Sangiovese, respectively 
(Table 2).

Because of the improvement of DCNN performance fostered by visible PRs, the detec-
tion model was then assessed as based on the “wood type x visibility” (WxV) and “orien-
tation x visibility” (OrxV) interactions (Fig. 6). The best detection for Merlot grapevines 
was reported for visible complex spurs with 0.85 recall followed by visible simple spurs 
and canes. Simple spurs were associated with the lowest standard error (SE = 0.07) as 

(2)IoU = (A ∪ B)/(A ∩ B)

(3)Recall = TP/(TP + FN)

(4)Precision = TP/(TP + FP)

(5)F1 score = 2* (TP * FP)/(TP + FP)
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compared to the other classes (Fig. 6a). Visible coplanar spurs showed the highest detec-
tion (0.75 recall) as compared to perpendicular and intermediate PRs (Fig. 6b). Similarly, 
visible complex spurs of Sangiovese grapevines were associated with the highest recall 
(0.85) and simple spurs were the second most detected wood type; moreover, consistency 
of detection performance was proved by relatively low standard errors (0.06 vs. 0.05). Con-
versely, the same metrics worsened for visible canes showing the lowest recall (0.25) and 
inconsistent detection (SE = 0.25) (Fig. 6c). Both intermediate and coplanar spurs showed 
the highest detection (recall = 0.74) as compared to perpendicular PRs (Fig. 6d). Notably, 

Fig. 5   Pruning regions (PRs) breakdown according to Wood Type (a, d), Orientation (b, e) and Visibility 
(c, f) against the Merlot (a–c) and Sangiovese (d–f) datasets. Merlot N = 40, Sangiovese N = 154

Table 1   Performance measures of the Faster-RCNN 2.0 vision approach for PR detection against the Merlot 
and Sangiovese datasets

FN false negative; FP false positive; TP true positive

Images #TP #FN #FP Recall Precision F1 score

Merlot 202 1007 523 149 0.66 0.87 0.75
Sangiovese 30 100 69 4 0.59 0.96 0.73

Table 2   Performance 
measures of the PR detection 
model against the Merlot and 
Sangiovese datasets depending 
on PR visibility

FN false negative; FP false positive; TP true positive

Dataset Visibility #TP #FN Recall Confidence

Merlot Visible 759 299 0.72 0.82 ± 0.01
Hidden 248 224 0.53 0.81 ± 0.01

Sangiovese Visible 89 39 0.70 0.82 ± 0.06
Hidden 11 30 0.27 0.82 ± 0.04
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the variability of the recall index calculated for several wood types and orientations for hid-
den pruning regions was generally higher as compared to visible PRs (Fig. 6).

Some categories such as coplanar complex spurs, intermediate and perpendicular canes, 
and examples belonging to the category “other” were never observed within the Merlot 
PRs (Table  3). Visible complex spurs with intermediate orientation were detected with 
0.97 recall and a standard error of 0.03. Similarly, recall values were higher than 0.9 for 
visible perpendicular simple spurs while the detection performance for the same PR with 
coplanar orientation did not reach 0.75. Irrespective of their orientation, the percentage of 
TPs associated with hidden simple spurs ranged between 41 and 43% in intermediate and 
coplanar spurs, respectively (Table 3). Simple and complex spurs were mostly considered 
in Sangiovese grapevines. When clearly visible, both coplanar and intermediate complex 
spurs were associated with the highest recall scores (0.85) followed by coplanar simple 
spurs (0.74). Detection performance for perpendicular and intermediate simple spurs was 
close to 0.7. Moreover, in both the datasets, the recall index was mostly lower than 50% 
when PRs were hidden.

In Merlot, the false positives were mainly represented by arms and next-row trunks 
(NRT) with a false discovery rate (FDR) of 6.14% and 4.5, respectively (Table 4). Old cuts 
(OC), canes and cordons were associated with the following FDR: 1.73, 0.43 and 0.09%, 
respectively. Only 4 FPs were categorized in Sangiovese grapevines out of the 154 PRs 
with a negligible impact on the detection performance.

Experiment 2

The general performances of the segmentation network were described by a recall of 0.81 
and a precision of 0.97 with an F1 score of 0.88 (Table 5).

Fig. 6   Variation over Wood type (a,c) and Orientation (b,d) of the Recall index as a function of PR’s Vis-
ibility in the Merlot (top) and Sangiovese (bottom) datasets. Visible and hidden PRs are reported in white 
and grey, respectively. Bars represent the mean value ± SE
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The most recurrent GO in the testing dataset was node followed by cane, spur, arm 
and cordon (Table 6). False positives related to each class were generally low. The high-
est recall value was scored by nodes (0.88), followed by cordon and arms (0.81), while 

Table 3   Detection rate of the 
interactions between Wood Type, 
Orientation and Visibility in the 
Merlot (top) and Sangiovese 
(bottom) datasets

Wood Type Orientation Visibility

Visible Hidden

Merlot Simple Spur Coplanar 0.74 ± 0.11 0.43 ± 0.15
Perpendicular 0.91 –
Intermediate 0.51 ± 0.06 0.41

Complex Spur Coplanar – –
Perpendicular 0.73 0.27
Intermediate 0.97 0.03

Cane Coplanar 0.76 ± 0.12 0.43
Perpendicular – –
Intermediate – –

Other Coplanar – 0.97 ± 0.13
Perpendicular – –
Intermediate 0.63 ± 0.14 0.29 ± 0.08

Sangiovese Simple Spur Coplanar 0.74 ± 0.06 0.38 ± 0.18
Perpendicular 0.69 ± 0.13 –
Intermediate 0.67 ± 0.10 0.40 ± 0.16

Complex Spur Coplanar 0.85 ± 0.11 0.50 ± 0.50
Perpendicular 1 1
Intermediate 0.85 ± 0.09 0.13 ± 0.13

Cane Coplanar 0.33 –
Perpendicular – –
Intermediate – –

Table 4   Description of the FPs 
detected during the DNN testing

FP false positive; FDR false discovery rate; NRT next row trunk; OC 
old cuts

Class #FP Average confidence FDR (%)

Merlot Arm 71 0.79 ± 0.16 6.14
Cane 5 0.77 ± 0.04 0.43
Cordon 1 0.71 0.09
NRT 52 0.74 ± 0.23 4.50
OC 20 0.79 ± 0.04 1.73

Sangiovese Arm 2 0.74 2.00
OC 2 0.83 ± 0.04 2.00

Table 5   Overall performance of 
the neural network for grapevine 
segmentation with an IoU of 0.5

Count #TP #FN #FP Recall Precision F1 score

1359 1069 258 32 0.81 0.97 0.88
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spur and cane classes revealed a recall of 0.72 and 0.68, respectively. The precision values 
ranged from 0.96 (node) to 1 (cordon) with arm and spur segmentations showing interme-
diate performances.

For canopy management, the most represented category was control (C) followed by 
shoot thinning (ST) and light pruning (LP) (Table 7). TPs were 493 in C, 487 in ST, and 89 
in LP with the highest recall values calculated for grapevine organs subjected to ST (0.85), 
and relatively lower performances described in C (0.80); moreover the segmentation of 
the grapevines subjected to light pruning led to the lowest recall. With only 5 wrong infer-
ences, precision was highest in C (0.99), with similar responses described for ST organs 
despite the higher number of false positives (15). Conversely, although the FPs in LP (12) 
were relatively similar to ST, the precision was much lower (0.88).

To investigate if and how vineyard management influences dormant canopy segmenta-
tion, the model was tested against each T × GO combination (Table 8). In control vines 
(C) the cordons were detected with a recall of 0.80. Arm segmentation was described 
with higher recall (0.87), while the model resulted in poorer performance to identify spurs 
and canes. No FPs were counted in these grapevine organs, giving a precision of 1. The 
node class had the highest recall (0.89) having 296 TPs and 37 FNs. The model returned 5 
wrong classifications (FPs), lowering precision to 0.98.

As expected, shoot thinning (ST) showed a lower count than C for annotated canes and 
nodes, and a similar number of the annotated elements for cordons, arms, and spurs. When 
compared to C, in ST grapevines the recall values increased for cordon (0.91), spur (0.77) 
and cane (0.76) with no or minor changes for nodes (0.89) and arms (0.85), respectively. 
Although correct inferences in ST proportionally increased as compared to C, the model 
errors also increased affecting the precision for most of the classes such as arm, cane and 
node, showing the following values: 0.97, 0.94, and 0.97, respectively (Table 8).

The light pruning (LP) presented a lower number of annotated GO (Table 8). In most 
cases, FNs were similar to, or higher than TPs. This condition was mirrored by the per-
formance metrics such as recall and F1 score revealing the lowest values within the 

Table 6   Performance measures 
of the neural network for 
grapevine segmentation 
depending on 5 different 
grapevine organs with an IoU 
of 0.5

Organ Count #TP #FN #FP Recall Precision F1 score

Cordon 75 61 14 0 0.81 1.00 0.90
Arm 89 71 17 1 0.81 0.99 0.89
Spur 108 77 30 1 0.72 0.99 0.83
Cane 343 229 107 7 0.68 0.97 0.80
Node 744 631 90 23 0.88 0.96 0.92
Total 1359 1069 258 32

Table 7   Performance measures 
of the neural network for 
grapevine segmentation 
depending on canopy 
management with an IoU of 0.5

C control, ST shoot thinning, LP light pruning

Treatment Count #TP #FN #FP Recall Precision F1 score

C 619 493 121 5 0.80 0.99 0.89
ST 590 487 88 15 0.85 0.97 0.90
LP 150 89 49 12 0.64 0.88 0.74
Total 1359 1069 258 32
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experiment. Both the recall and F1 score identified poor segmentation performances for 
arms and spurs (0.33 and 0.38 recall, respectively), and higher sensitivity for node detec-
tion (0.76 recall). Precision was mostly affected by count varying between 0.75 (spur) and 
1 in the case of cordons and arms where no FPs were detected.

Several elements belonging to the grapevine or to the surrounding environment were 
associated with wrong predictions such as arms, spurs, canes and nodes (Table 9). Nodes 
were the most wrongly attributed class since 3.6% of the inferences were FPs. The second 

Table 8   Performance measures of the neural network for grapevine segmentation depending on canopy 
management and grapevine organs with an IoU of 0.5

C Control, ST shoot thinning, LP  light pruning

Treatment Organ Count #TP #FN #FP Recall Precision F1 score

C Cordon 30 24 6 0 0.80 1.00 0.89
Arm 39 34 5 0 0.87 1.00 0.93
Spur 43 31 12 0 0.72 1.00 0.84
Cane 169 108 61 0 0.64 1.00 0.78
Node 338 296 37 5 0.89 0.98 0.93

ST Cordon 34 31 3 0 0.91 1.00 0.95
Arm 41 34 6 1 0.85 0.97 0.91
Spur 56 43 13 0 0.77 1.00 0.87
Cane 141 103 32 6 0.76 0.94 0.84
Node 318 276 34 8 0.89 0.97 0.93

LP Cordon 11 6 5 0 0.55 1.00 0.71
Arm 9 3 6 0 0.33 1.00 0.50
Spur 9 3 5 1 0.38 0.75 0.50
Cane 33 18 14 1 0.56 0.95 0.71
Node 88 59 19 10 0.76 0.86 0.80

Total 1359 1069 258 32

Table 9   Description of the FPs 
detected during the testing of 
the neural network for grapevine 
segmentation with an IoU of 0.5

FDR false discovery rate

Detected class True class Count Confi-
dence 
(Mean)

FDR (%)

Arm Cane 1 0.91 1.39
Cane Other object 3 0.89 1.29
Cane Arm 2 0.95 0.87
Cane Other grapevine organ 2 0.96 0.87
Node Other object 11 0.97 1.71
Node Arm 2 0.99 0.32
Node Other node 7 0.98 1.10
Node Other grapevine organ 3 0.99 0.47
Spur Other grapevine organ 1 0.99 1.28
Total 32
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most frequent incorrect class attribution concerned canes (3.03%), while wrong segmenta-
tion of arm and spurs was limited to 1.39 and 1.28%, respectively.

Discussion

Experiment 1, training and testing of the DCNN for PR detection

The fine-tuned network for PR detection of spur-pruned grapevines was tested on 2 datasets 
representative of different cordon age, cultivar and growing conditions. The overall recall 
values were relatively similar between the 2 datasets with slightly higher detection rates 
in Merlot (recall = 0.66) as compared to the younger Sangiovese grapevines (recall = 0.59) 
(Table 1). Indeed, it must be considered that despite being collected in different years, both 
training and test datasets for the Merlot included grapevines belonging to the same vine-
yard, suggesting a higher similarity among the PRs. Conversely, even if referring to whole 
cordon RGB images, taken from a greater distance from the plant with respect to the train-
ing setup, the Sangiovese dataset was totally new as part of the life cycle of the model, 
proving its consistency. Looking at absolute recall values (Table 1), the system is less pow-
erful than a branch detection model developed in an apple orchard (Zhang et  al., 2018) 
at 70% confidence threshold, where using pseudo-color images, and pseudo-color and 
depth images led to 0.84 and 0.89 average recall, respectively. Similarly, Sa et al. (2016) 
described high performances of a sweet pepper detection model based on the combination 
of RGB and NIR information leading to an F1 score of 0.84. The experiences mentioned 
in the two citations above, suggest that the PR detection system here presented could be 
improved by considering a different perception setup, such as the implementation of depth 
data. Interestingly, the dataset with the lowest recall value was associated with the high-
est precision (0.96 in Sangiovese) in spite of the negligible detection of wrong elements. 
Such a condition depends on the relatively high confidence threshold adopted for the study 
(70%) that limited the TP count and suggests that lowering the confidence would lead to 
an increased detection rate of the pruning regions. For this reason, a lower confidence rate 
might be considered for future applications. Moreover, PR’s visibility affected the detec-
tion process in both the datasets (Table 2). The significant difference between the detection 
rates of visible and hidden PRs is due to occlusions, a well-known problem in computer 
vision and in agricultural applications that are frequently performed in unstructured envi-
ronments (Yang et al., 2020; Zhang et al., 2020). Getting recall scores higher than 0.7 in 
visible PRs of both the Merlot and Sangiovese testing datasets is an additional confirma-
tion of the detection model consistency. In addition, the occlusion problem mainly depend-
ing on PR-to-PR, cordon-to-PR, and trellis elements-to-PR interactions could be tackled by 
having both sides of the canopy scanned by the vision system, emerging as relatively easy 
solution for spur-pruned grapevines where spurs are mainly localized on the upper side of 
the permanent cordon (Fig. 1a).

When analyzing the DCNN sensitivity as a function of different factors such as wood 
type, orientation and visibility, recall rates were massively improved for some specific cat-
egories, with visible intermediate complex spurs showing the highest values in both the 
datasets, followed by visible coplanar simple spurs (Table 3). However, complex spurs rep-
resented just a minor part of the actual PRs as well as only 13–14% of the annotations 
in both the datasets had intermediate orientation, while a larger proportion of actual PRs 
fell in other categories such as simple spurs and coplanar orientation (Fig. 5). In addition, 
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regardless of the dataset, the consistency of the detection performances for visible simple 
spurs is confirmed by the lower standard error associated with the higher count. The poorer 
cane detection might be due to their scarce representation in the training dataset that was 
created by including all the PRs belonging to a given number of grapevines irrespective of 
their different morphology (Fig. 2). Another interpretation of PR detection results depend-
ing on wood type should consider their complexity. In fact, considering individual canes 
as a major element of a pruning region, the model resulted in better detection of the PRs 
featured by higher cane numbers suggesting that the DCNN successfully learned how to 
identify a pruning region based on such a distinctive trait. On the other hand, the same 
trend would be defined if the model would have just more easily detected bigger pruning 
regions in terms of encumbrance and area. Similarly, because of the camera orientation 
considered during the acquisition campaigns, the OrxV interactions resulted in the highest 
recall values for coplanar PRs, and lower values were obtained for intermediate and per-
pendicular PRs. In fact, due to their cane orientation, coplanar PRs cover a higher image 
area compared to intermediate and perpendicular PRs with higher overlapping leading 
to a higher proportion of occluded pixels (Fig. 2). Merlot WxOrxV interactions revealed 
detection performances of specific PRs (Table 3). Although they produce the best detection 
results (recall = 0.97), visible intermediate complex spurs are not discussed here because 
they are represented by only 2 elements in the dataset. Considering the most frequent cat-
egories with a count higher than 4 (Fig. 5), with a recall of 0.74, visible coplanar simple 
spurs were the best-detected pruning regions. In this regard, DCNN consistency was con-
firmed by similar performances described for the Sangiovese dataset. Indeed, even though 
visible coplanar and intermediate complex spurs were associated with the highest recall 
(0.85), the most represented visible coplanar spurs had the second-highest recall (0.74). 
In fact, there were 55 visible coplanar simple spurs while only 10 visible perpendicular 
complex spurs and 13 intermediate complex spurs were considered in the testing data-
set. The above mentioned results suggest that the DCNN performance could be improved 
by either engineering or agronomic adjustments. First, more training data might result in 
better performance of the deep learning model (Shorten & Khoshgoftaar, 2019); second, 
improved canopy management in summer can condition the canopy architecture leading to 
a higher proportion of coplanar simple spurs. As a matter of fact, in 2018 canopy manage-
ment of the Merlot grapevines was limited to vertical shoot positioning (VSP) and trim-
ming, excluding any selective operation such as shoot thinning. This specific management 
led to PRs with variable and unpredictable shapes and growth directions increasing the rate 
of complex spurs and other PRs (Fig. 5). Conversely, shoot selection performed on about 
50% of the Sangiovese test vines resulted in a higher proportion of simple spurs increas-
ing, in turn, the frequency of one of the best detected categories (Table 3). Because the 
VSP system requires two pairs of catch wires placed 40 and 80 cm above the cordon, in 
both the test datasets only 13–14% of the PRs had a perpendicular orientation, highlight-
ing the role of early shoot positioning and proper catch wire height in promoting coplanar 
instead of intermediate and perpendicular PRs. In addition, regardless of the best match 
between detection performance and PR’s morphology, the system showed high reliability 
in identifying coplanar simple spurs that are supposed to be the best agronomical condi-
tion, maximizing canopy efficiency in VSP trained spur pruned grapevines (Smart, 1985; 
Keller, 2015; Poni et al., 2018).

The main wrong detection was represented by arms (Table  4), the permanent rami-
fications growing from the cordon whose number and length might increase over years 
because of wrong pruning strategies. As part of the overall project pipeline, this misclas-
sification could be considered as a correct identification since the PR detection algorithm 
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is expected to be followed by the segmentation network for analyzing the whole region and 
recognizing 5 different grapevine organs including arms. However, the arm detection was 
considered as a FP because the annotation acting as true data required the inclusion of the 
whole PR (Fig. 1). Due to the overlap between the permanent cordon in the foreground 
with the trunks in the background, NRTs were detected by the model as actual pruning 
regions representing the second most frequent FP category. The incorrect detection of NRT 
might be decreased by using depth data to filter the image following the study of Fu et al. 
(2020), where a 1.2 m threshold was used to separate apple tree canopies from the back-
ground to improve apple detection. Considering the project pipeline, a higher precision 
might be pursued; however, PR detection will be followed by PR segmentation and the 
exclusion of wrong detections.

Experiment 2, training and testing of the DCNN for grapevine segmentation.

The current study allowed the fine-tuning and testing of a novel DCNN for grapevine organ 
identification at 0.5 IoU and 0.7 confidence resulting in the following performance metrics: 
recall of 0.81 and a precision of 0.97 (Table 5). As already mentioned about PR detection, 
the current results suggest that assuming a lower confidence would increase the network 
sensitivity towards the grapevine organs’ identification; as a matter of fact, the general 
improvement of the detection process would lead to an increased recall at the expense of 
precision because of the higher number of inferences (TP and FP) regardless of their cor-
rectness (Table 5). Recently, Sozzi et  al. (2022) used F1 score-confidence threshold and 
precision–recall curves to identify the best confidence thresholds maximizing automatic 
bunch detection in white grape varieties using deep learning algorithms. Because the cur-
rent segmentation network is expected to support grapevine organ identification in a winter 
pruning perspective, the development of highly performant systems is required to limit the 
risk of missing pruning regions and cutting points. Indeed, this is well known as spur-prun-
ing over dormancy requires specific cuts (i.e. renewal cuts, cane shortening) to be applied 
to all the pruning regions along the cordon as well as automated pruning system should 
exclude any manual follow up of unpruned PRs randomly spread through the vineyard. 
When considering its sensitivity in detecting the 5 organ classes featuring the grapevine 
canopy over winter, the DCNN resulted in different performances as reported in Table 6. 
With a recall of 0.88 (i.e. 88% of the specific annotations identified), nodes were the best 
detected class showing an important improvement on previous results reported by Dìaz 
et  al. (2018) that processing RGB images through computer vision and machine learn-
ing algorithms identified grapevine buds with a maximum recall of 0.45. Because of the 
grapevine structure, nodes were the most represented class in the test dataset (Table  6). 
The higher number of nodes in each training image can explain why they are the best-
segmented class. Consequently, further improvement of the current DCNN version work 
will consist in providing more training examples of the under-represented classes such as 
cordons, arms, and spurs to have a more balanced dataset and consistent results among 
the 5 classes. In addition to the different abundance of training data the heterogeneous 
performances describing our segmentation process can be explained by the different GO 
size (i.e. thickness and width) characterizing a grapevine canopy over dormancy. Indeed, 
when segmenting indoor images with dense clutter, Badrinarayanan et al. (2017) observed 
a general lower segmentation accuracy for classes occupying a small part of the image. 
Data reported in Table  6 describe a higher segmentation rate for bigger organs such as 
cordons and arms (recall = 0.81) while spurs were less detected (recall = 0.72) because 
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of their thinner structure. The importance in size of target organs is also confirmed when 
comparing segmentation performances described for arms and spurs; indeed, because a 
spur might be considered as the natural continuation of an arm, and the ratio between their 
count approaches 1 in both training and test datasets, the higher detection described for 
the arms might depend on the more complex structure characterizing a permanent organ 
older than 2  years as compared to a 2  year old spur (Tassie & Freeman, 1992). Canes, 
despite being the worst detected organ, by the present algorithm (recall = 0.68) were asso-
ciated with a higher recall value compared to the results reported by Botterill et al. (2017) 
with the 2D cane detector (0.49). The generally worse segmentation results obtained for 
spurs and canes can be linked to the higher probability of getting occlusions. Bigger and 
isolated organs such as cordons and arms are much less subject to occlusion than spurs, 
relatively thin and short elements surrounded by canes, and canes which are often crossing 
each other or self-occluding (Botterill et al., 2017). Precision values in experiment 2 are 
significantly high because of the low number of false positives for each of the five classes. 
Results are comparable to segmentation results obtained for other fruit trees. Indeed, when 
segmenting RGB images of apple trees on trellis wires, Majeed et al. (2020) measured a 
generally lower F1-score ranging from 0.89 (branch) to 0.95 of the background.

Canopy management greatly affected the segmentation results showing the best detec-
tion performances in ST grapevines where only one shoot per node was kept (Table  7). 
Consequently, a ST canopy has fewer elements to be detected, fewer potential occlusions, 
and a more standardized canopy that leads to better results when applying computer vision 
algorithms. However, the three treatments revealed different results in terms of GO seg-
mentation (Table  8). Despite slightly improving the overall performances, C followed 
the same ranking already described in Table  6 with recall values decreasing in the fol-
lowing order: node > arm > cordon > spur > cane. Segmentation of ST canopies revealed 
the highest recall values; specifically, cordons (0.91) were followed by nodes (0.89) and 
arms (0.85). Node segmentation is described by the same recall value. The reason recall 
does not decrease in C treatment is probably due to a lower frequency of occlusion since 
nodes could only be masked by very thin organs such as canes. In parallel, nodes were 
successfully segmented also in LP because their morphology did not differ among treat-
ments, while segmentation performances dramatically decreased for the other organs in 
response to altered growth patterns and PR’s morphology induced by highly variable spur 
length. Shoot thinning is a summer pruning technique reducing disease pressure, improv-
ing canopy microclimate, vine balance and grape quality to increase sustainability of viti-
culture (Poni et al., 2018). Moreover, this practice allows more efficient shoot positioning 
in VSP-trained vines due to the reduced shoot number, making the management of their 
growth direction and orientation easier and, in turn, facilitating winter pruning operation. 
ST becomes a quite promising practice in vineyards that will be subjected to automated 
robotic pruning because of the following reasons: (i) better performances of perception 
modules such as PR detection and GO segmentation due to the increased proportion of 
simple spurs and limited frequency of occlusions; (ii) better performances of the manipu-
lation module, by facilitating the motion planning to reach cutting points as well as the 
end-effector operability; (iii) a significant decrease in cut number per meter of row impact-
ing on robot capacity. On the other hand, such a key role assumed by canopy management 
supports the idea that, to reach their maximum efficiency, robotic solutions in agriculture 
need to be coupled with a “robot-ready” orchard (Bloch et al., 2018; Verbiest et al., 2021).

The segmentation network detected few FPs as compared to correct inferences (Table 9). 
The most recurring error consisted of labeling as a node the Other objects such as a vari-
ety of small, round and point-like objects of the image background. The segmentation of 
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“other nodes” as “nodes” mainly included blind buds at the base of longer spurs retained in 
LP treatment (Fig. 3c). Due to acrotony, distal shoots of an upward spur show preferential 
growth during the season, inhibiting bud breaking of the lower nodes that lose the possibil-
ity to develop new shoots in the next season even if keeping a relatively similar morphol-
ogy (Keller, 2015). The risk associated with this segmentation is that if the old nodes were 
counted as real, a pruning algorithm could schedule a wrong cut, targeting a spur instead 
of a cane.

Conclusions

In this work, two novel Deep Learning-based models for pruning region detection and 
canopy segmentation of dormant spur-pruned grapevines were fine-tuned and tested in a 
real environment. Best detection rates (97%) were obtained for visible intermediate com-
plex spurs, whilst the most frequent visible coplanar simple spurs were detected with 0.74 
recall, meaning that the algorithm can get outstanding results, especially on either young 
vines having a simplified cordon and spur structure, and older vines if subjected to effec-
tive canopy management. Conversely, PR’s visibility was the main limiting factor influ-
encing the model, suggesting the occlusion problem might be tackled by scanning PRs 
from multiple perspectives. Improvements of the proposed network have been discussed 
as related to training set expansion by including images of spur-pruned grapevines of dif-
ferent age and variety, implementation of depth images, and optimization of the confidence 
threshold to achieve optimal recall-precision balance for autonomous pruning purposes. 
Reliable canopy segmentation of dormant spur-pruned grapevines was achieved through a 
Mask R-CNN network specifically trained for identifying five different grapevine organs: 
cordons, arms, spurs, canes and nodes. Nodes, arms and cordons were the best detected 
grapevine organs with more than 80% of correct inferences. The overall network’s per-
formance massively improved when tested on shoot-thinned grapevines, highlighting the 
important role of canopy management in facilitating the introduction of robotic solutions in 
agriculture. With the final aim of developing an autonomous, versatile, and commercially 
viable robot for grapevine winter pruning, future studies will address cutting-point genera-
tion and motion planning within each pruning region.
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