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Abstract

The pathophysiology of chronic kidney disease–mineral and bone disorder accounts for an inverse 

relationship between bone mineralization and vascular calcification in progressive nephropathy. 

Inverse associations between bone mineral density (BMD) and calcified atherosclerotic plaque are 

also observed in individuals of European and African ancestry without nephropathy, suggesting a 

mechanistic link between these processes that is independent of kidney disease. Despite lower 

dietary calcium intake and serum 25-hydroxyvitamin D (25(OH)D) concentrations, African 

Americans have higher BMD and develop osteoporosis less frequently than do European 

Americans. Moreover, despite having more risk factors for cardiovascular disease, African 

Americans have a lower incidence and severity of calcified atherosclerotic plaque formation than 

do European Americans. Strikingly, evidence is now revealing that serum 25(OH)D and/ or 1,25 

dihydroxyvitamin D levels associate positively with atherosclerosis but negatively with BMD 

in African Americans; by contrast, vitamin D levels associate negatively with atherosclerosis 

and positively with BMD in individuals of European ancestry. Biologic phenomena, therefore, 

seem to contribute to population-specific differences in vitamin D metabolism, bone and vascular 

health. Genetic and mechanistic approaches used to explore these differences should further our 

understanding of bone–blood vessel relationships and explain how African ancestry protects from 

osteoporosis and calcified atherosclerotic plaque, provided that access of African Americans to 

health care is equivalent to individuals of European ethnic origin. Ultimately, in our opinion, 

a new mechanistic understanding of the relationships between bone mineralization and vascular 

calcification will produce novel approaches for disease prevention in aging populations.
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Introduction

The association between metabolic bone disease and vascular calcification is widely 

reported in patients with advanced nephropathy. Emerging evidence supports relationships 

between susceptibility to osteoporosis and calcified atherosclerotic plaque in the absence 

of kidney disease. This Review summarizes the evidence indicating that maintenance of 

bone and vascular health is biologically linked and discusses the marked racial differences 

in susceptibility to low bone density and athero sclerosis. African Americans, despite 

lower dietary calcium ingestion and serum 25 hydroxyvitamin D (25(OH)D) levels, are 

less likely to develop osteo porosis than are European Americans. Similarly, African 

Americans develop lower levels of calcified atherosclerotic plaque than do European 

Americans, despite greater exposure to conventional cardiovascular disease risk factors 

(for example, hypertension and diabetes mellitus). Potential biologic mechanisms and 

genetic susceptibility to development of bone and vascular disease are also discussed here. 

Moreover, we describe the processes of calcium and vitamin D metabolism as well as 

novel risk factors that could mediate crosstalk between blood vessels and bone health in 

individuals with preserved kidney function.

CKD, bone and vascular calcium

Chronic kidney disease–mineral and bone disorder (CKD–MBD) provides a mechanistic 

explanation of the events that link progressive nephropathy with the development of low 

bone mineralization and vascular calcification.1 A central component of CKD–MBD is 

phosphate retention, which leads to an elevation of fibroblast growth factor 23 (FGF-23) 

levels, as early as chronic kidney disease (CKD) stage 2. Hyperphosphatemia may worsen 

if hypocalcemia leads to parathyroid hormone (PTH)-induced increases in bone resorption, 

which releases calcium from bone, but also liberates additional phosphate from the bone 

calcium–phosphate reservoir. This model, however, remains under debate.2 Although bone 

mineral density (BMD) and vascular calcification are tightly linked in patients with CKD, 

this process is best viewed as the response of bone and systemic vasculature to an 

overarching environmental insult—progressive kidney failure. Individual patients with CKD 

have their own inherent genetic susceptibility to osteoporosis and atherosclerosis; however, 

the environmental effects of CKD could be a more powerful risk factor than innate genetic 

risk. Ultimately, in CKD, hyperphosphatemia seems to drive osteoporosis and arterial 

calcification.

Atherosclerosis and bone health

Inverse relationships between skeletal and vascular calcification are clearly present in 

individuals with preserved kidney function. In 1964, Anderson et al.3 reported that 

atherosclerotic calcification of the aorta accompanied osteoporosis in individuals who were 

routinely assessed in bone clinics. This observation supported the hypothesis proposed by 

Elkeles in 1957 that a relationship existed between osteoporosis and vascular calcification, 

particularly in postmenopausal women.4 These sentinel reports were verified nearly 30 

years later in European, European American and African American populations.5–13 A 

major issue involved determining whether these phenomena were related or simply reflected 
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the simultaneous effects of aging on bone and blood vessels. Two longitudinal studies 

strongly indicated that bone metabolism and calcified atherosclerotic plaque formation are 

mechanistically related.6,11 Further support was provided by cross-sectional studies, as the 

observed inverse associations between BMD and calcified atherosclerotic plaque persisted 

after adjustment for age and conventional cardiovascular disease (CVD) risk factors such as 

BMI and LDL cholesterol.12,13

Animal models of osteoporosis also provided evidence that genetic mechanisms underlie 

the relationships between BMD and calcified atherosclerotic plaque. Indeed, mice in which 

genes that encode inhibitors of mineralization are not expressed have important vascular 

phenotypes.14 For example, mice that do not express matrix Gla protein (encoded by 

Mgp), osteo pontin (Spp1), fetuin A (also known as α-2-HS glyco protein; encoded 

by Ahsg), klotho (Kl), and osteoprotegerin (also known as TNFRSF11B; encoded by 

TnfrsfF11b) demonstrate not only bone, cartilage, and skeletal abnormalities, but also 

arterial calcification.15–19 These mice generally have normal kidney function, with the 

exception of the Ahsg deficient mouse, in which accelerated vascular calcification precedes 

development of CKD.17 Interestingly, circulating osteoprotegerin concentrations are elevated 

in humans with high levels of coronary and aortic calcified atherosclerotic plaque.20 This 

observation seems to contradict studies using the TnfrsfF11b knockout mouse, in which 

the mice had elevated vascular calcification. This relationship is suggestive of a U-shaped 

response curve, whereby an optimal level of local TnfrsfF11b expression has an inhibitory 

effect on the development of arterial calcification, but where calcification can occur below or 

above this level. Moreover, we predict that high levels of circulating osteoprotegerin could 

occur as a response to ectopic mineralization or be related to a bone metabolic problem. 

Nonetheless, these results strongly indicate the presence of biologic relationships between 

bone and blood vessel health in the absence of CKD (Figure 1).

Proposed mechanistic links

Although calcified atherosclerotic plaques have a morpho logic appearance similar to those 

observed in bone formation,21 the events that contribute to the initial calcium phosphate 

(CaPi) precipitation and hydroxyapatite formation in the artery are poorly understood. A 

number of models, from passive to active, have been proposed to explain these initial 

events, and are described below (Figure 2).22–25 The microenvironment of advanced 

atherosclerotic lesions resembles hyper trophic cartilage in the endochondral growth plate 

prior to mineralization during long bone development. Cell death, alkaline phosphatase, 

acidic CaPi complexes, and anoxia are all present in areas that will soon mineralize and form 

immature CaPi mineral complexes.26–31 Thus, atherosclerotic plaque calcification might be 

initiated locally in the arterial wall, perhaps independently from bone metabolism.

Passive models

Simple passive models of vessel-mediated calcification involve apoptosis and/or necrosis 

of cells in core regions of plaques, resulting in the development of an area rich in acidic 

phospholipids complexed with Ca2+, and/or simply an elevated local Ca*Pi ion product, 

perhaps from intracellular sarcoplasmic reticulum and mitochondrial Ca2+ stores in dead or 
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dying cells. Nucleated or spontaneous CaPi precipitation could then lead to the formation 

and growth of amorphous CaPi and, eventually, hydroxyapatite crystals in the blood vessel. 
22–25

Alternatively, or perhaps in conjunction with the above scenario, the loss of local inhibitors 

of mineralization, including γ-carboxyglutamic-acid-containing proteins (for example, 

matrix Gla protein), fetuin A, acidic proteoglycan aggregates (such as versican core protein, 

which act as calcium sequestrants) and pyrophosphate or other polyphosphates, which 

can act as crystal poisons, could remove the block to local crystal formation and growth 

and enable mineralization to progress. The presence of plaque mineral crystals could then 

cause local cells to dedifferentiate and/or become quiescent,31 or lead to the recruitment of 

pluripotent circulating cells (that is, osteoprogenitor or chondroprogenitor cells) to the site of 

calcification, resulting in a tissue phenotype with similarities to bone by the presence of cells 

with osteoblastic and/or osteoclastic appearances.

Active models

Active models of vascular calcification involve increased activity of local phosphatases 

which catalyze CaPi precipitation and crystal formation through increases in free 

inorganic phosphate generated through hydrolysis of organic phosphates such as nucleoside 

diphosphates and pyrophosphates, leading to a local elevation in the Ca*Pi ion product. 

Active programmed models in which resident vascular cells (including pericytes and 

vascular smooth muscle cells [VSMCs]) independently (in absence of pre-existing mineral) 

acquire a phenotype similar to that of mineralizing cells (that is, chondrocytes or osteoblasts) 

and initiate the initial precipitation of CaPi have also been suggested.32 This phenotypic 

change has been postulated to occur, in part, in response to oxidized lipids, hyperglycemia, 

or inflammation in the vessel wall—conditions that have been shown to promote mineral 

formation in vitro in cultured VSMCs.21,24,25,32

Postulated mechanisms that directly link bone loss with calcification in the artery include 

the release of Ca2+ and phosphate from bone, perhaps in the form of CaPi complexes, 

via increased osteoclast-mediated resorptive processes.32 The released mineral ions and/or 

complexes may then localize to vascular sites that are susceptible to atherosclerosis where 

they form a nidus for future mineralization or lead to locally elevated Ca2+ and/or phosphate 

levels, promoting spontaneous CaPi precipitation or growth of arterial CaPi precipitates. In 

the absence of inhibitors of vascular calcification (such as fetuin or matrix Gla protein), 

the growth of these precipitates is likely to occur regardless of the mechanism underlying 

the initial CaPi precipitate. Substantial evidence suggests that the elevation of phosphate 

levels is important in the initiation and propagation of plaque mineral.33 Clearly, the inverse 

relationships between bone mineralization and vascular calcification indicate that a net 

transfer of mineral ions from bone to mineralization-prone sites occurs in arteries. Sex 

hormones, calciotropic hormones, calcification inhibitors, cell differentiation machinery, and 

inflammatory factors have been suggested as being important in these models and may 

underlie, in part, the observed ethnic and sex differences in bone mineralization and vascular 

calcification.
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Ethnicity and serum vitamin D

Consistent inverse relationships are seen between bone mineralization and vascular health 

in diverse population groups of both African and European ethnic origin. Despite these 

common relationships, interesting and unique population-specific characteristics are also 

present, which require detailed investigation. Serum 25(OH)D concentrations are markedly 

lower in individuals of African ancestry than in those of European ancestry,34–36 which 

might be attributable to the association of darker skin pigmentation with a low efficiency 

of vitamin D activation.37 However, this hypothesis fails to account for a multitude of 

potentially related biologic observations. If individuals with African ancestry truly had 

higher frequencies of 25(OH)D deficiency, this effect should, theoretically, lead to a lower 

BMD and put them at higher risk of osteoporosis than individuals of European ancestry; 

data from epidemiologic and clinical studies conducted in the USA have, however, revealed 

the opposite trends.38,39 Indeed, despite lower 25(OH)D levels and generally lower dietary 

calcium ingestion, African Americans have greater bone mass, higher bone density and 

lower rates of osteoporosis than do European Americans.38,39 Therefore, the lower plasma 

25(OH)D levels observed in African Americans might be physiologically normal. In our 

opinion, the normal range of 25(OH)D levels in individuals with African ancestry is likely to 

be lower than in individuals of European origin35,36 and, as such, the appropriate ‘normal’ 

range for 25(OH)D levels needs to be determined in different population groups.40–42 In 

addition, young adult African Americans have higher levels of active (intact PTH and 1,25 

dihydroxyvitamin D (1,25(OH)2D) and increased renal tubular calcium reabsorption than do 

European Americans.43–45 These factors are also likely to contribute to racial differences in 

susceptibility to bone disease.

In agreement with the recognized racial differences in the risk of developing calcified 

athero sclerotic plaque and osteoporosis, the association of serum vitamin D (1,25(OH)2D) 

and vitamin D precursor or metabolite levels with these disease processes differ in 

different populations (Box 1). BMD and calcified athero sclerotic plaque have negative 

relationships in both African Americans and European Americans; however, vitamin 

D and/or vitamin D precursor levels are positively associated with BMD in European 

Americans and negatively associated in African Americans.42,46 In addition, 25(OH)D levels 

were negatively associated with calcified atherosclerotic plaque in European Americans 

and positively associated in African Americans.42,46 These findings strongly indicate that 

biologic differences exist across population groups. We believe that osteoporosis favors the 

development of atheromatous intimal calcification, which is associated with an increased 

risk of CVD events and death in the presence of increasing coronary artery calcified 

atherosclerotic plaque.47,48 Medial calcification is commonly present in patients with CKD 

and/or diabetes; however, whether low BMD favors development of medial calcification 

remains unknown.

Current 25(OH)D target ranges are based largely on reference ranges set in populations 

of European origin. As mentioned above, this ‘normal’ range is likely to differ in 

African Americans. The African American–Diabetes Heart Study reported that higher 

ambient 25(OH)D serum levels were associated with higher levels of vascular calcified 

atherosclerotic plaque in a cross-sectional analysis; the opposite trend is observed in 
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populations of European ancestry.46 This observation may cause concern regarding 

the safety of providing vitamin D supplements for presumed low vitamin D levels 

observed in African Americans. Aloia et al.49 supplemented 25(OH)D in calcium-replete 

postmenopausal African American women with osteopenia and found no changes in BMD 

even after 2 years, suggesting that replacing 25(OH)D to the desired levels in European 

American women was ineffective in African Americans. Additional evidence for population 

specific ranges for optimal circulating vitamin D levels is provided by our paradoxical 

observation that higher vitamin D levels were associated with lower BMD in African 

Americans.46 This initially surprising finding is supported by observations of higher 

fracture rates with higher 25(OH)D levels in African American participants in the Women’s 

Health Initiative (WHI), an observation directly opposing that seen in European American 

WHI participants.50 In concert with the racially variable relationships between 25(OH)D, 

bone and vascular health, the 2011 Institute of Medicine Report recommends vitamin D 

supplements only for maintaining bone health; benefits on cardiovascular health and cancer 

risk remain unproven.42 We feel that the optimal 25(OH)D levels in African Americans are 

likely to be lower than those in European Americans.35 At present, supplemental 25(OH)D 

in African Americans with levels <30 ng/ml does not seem to be indicated in those without 

osteopenia or osteoporosis.42

Vitamin D has been associated with both inhibition and progression of vascular 

calcification.51 Levels of 1,25(OH)2D in African Americans are typically equal or higher 

than those in European Americans. These increased levels could be a protective factor 

against calcified atherosclerotic plaque and osteoporosis in African-derived populations, 

although no evidence for such a relationship was found in our studies. Some evidence 

exists to suggest that higher administered doses of active vitamin D may underlie improved 

survival rates in African Americans with end-stage renal disease (ESRD), relative to 

European Americans.52,53 Clearly, the mechanisms underlying racial differences in vitamin 

D handling and tissue-specific responses require additional study.

Ethnicity and calcium metabolism

The existing literature provides evidence that systemic calcium, vascular, and bone 

metabolism are differentially regulated between populations of African and European 

origin (Table 1). Observations of racial differences in susceptibility to osteoporosis and 

vascular calcification date back to 1968.54 In addition to markedly lower 25(OH)D levels, 

African Americans also ingest less dietary calcium than European Americans,55 perhaps 

in part, owing to lactase deficiency resulting in reduced ingestion of dairy products.56 

Lactase deficiency in African Americans often relates to variation in genes regulating 

lactose metabolism.57 Despite this reduced calcium intake, however, African Americans 

have lower rates of osteoporosis than do European Americans and show skeletal resistance 

to the effects of PTH, potentially contributing to lower rates of bone resorption.58 Lower 

rates of calcium-containing kidney stone formation are also seen in African Americans 

when compared with European Americans.59 In a small study of healthy individuals and 

patients with CKD, postprandial phosphorus and calcium excretion were lower in African 

Americans than in European Americans with and without CKD, whereas FGF-23 and 

PTH levels were similar in both populations.60 Polymorphisms in VDR, the gene that 
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encodes the vitamin D3 receptor, affect PTH levels in patients with nephropathy;61 genetic 

variation in VDR could therefore be responsible for the observed differences between 

African Americans and European Americans.45 As discussed above, ethnic differences are 

present in the circulating levels of factors and/or hormones regulating bone and blood vessel 

mineralization. Moreover, differences in the tissue response to such factors and hormones 

might also exist. Indeed, Shao et al.62 revealed that the bone and vascular tissue in mice 

with diabetes and deficient in the LDL receptor responded differently to exogenous PTH 

administration—PTH reduced vascular calcification but enhanced bone mineralization in 

these knockout mice. Thus, bone tissue and blood vessels could also respond differently 

to regulatory factors in African Americans and European Americans; relationships between 

PTH and BMD or calcified atherosclerotic plaque, however, were not observed in our prior 

report.13

Numerous unique metabolic characteristics related to calcium and phosphate handling 

distinguish African Americans from European Americans; these characteristics may have 

a genetic basis. A genome-wide association study performed in Icelandic and Dutch 

Europeans revealed that variants in CLDN14, which encodes Claudin-14, were associated 

with susceptibility to calcium nephrolithiasis and increased urinary calcium excretion (with 

lower serum bicarbonate concentrations), as well as lower BMD in the hip and spine. These 

observations thereby link genes that encode proteins involved in renal calcium metabolism 

and those involved in bone health.63

The variable risk of developing calcified atherosclerotic plaque between African Americans 

and European Americans is considered to be one of the most striking biologic effects related 

to differences in calcium metabolism between populations.64–68 It is widely reported that 

African Americans in the general population are at higher risk of myocardial infarction 

and CVD events than are European Americans.69 This increased risk likely reflects higher 

rates of conventional CVD risk factors in African Americans, including higher rates 

of hypertension and diabetes (with associated poorer regulation of blood pressure and 

diabetes), higher rates of albuminuria and subclinical nephropathy, and generally more 

restricted access to health care and lower socioeconomic status.

A different clinical pattern emerged when access of African Americans and European 

Americans to health care was equalized: African Americans with diabetes had 

approximately 50% lower rates of myocardial infarction compared with European 

Americans with diabetes in the Veteran’s Administration and Kaiser Permanente Healthcare 

Systems.70,71 These landmark studies recruited nearly 500,000 patients with diabetes 

and the results were consistent between reports. Although significantly higher rates of 

subclinical nephropathy were detected in African Americans in both of these healthcare 

system reports, CVD rates were significantly lower in African Americans. These results 

parallel those in patients receiving Medicare-supported renal replacement therapy.72 African 

Americans undergoing dialysis (who tend to receive equivalent access to medical care 

as European Americans) have markedly lower rates of myocardial infarction and longer 

survival rates than do European Americans.72–74 However, one report found poorer survival 

of young African American men (aged 18–30 years) than of European men at this age.75 
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Racial differences in susceptibility to CVD are likely to contribute to the lower mortality 

rates observed in African Americans with ESRD.76

Shared risk of CVD and low BMD

Equivalent access to health care might enable detection of biologic differences favoring 

lower rates of athero sclerosis (improved vascular health) in African Americans. Nearly 

all published reports reveal that African Americans have substantially lower rates of 

calcified atherosclerotic plaque than do European Americans. This phenomenon is not 

unique to patients with diabetes; populations with and without diabetes mellitus clearly 

reveal this effect.64–68 Even the large population-based Dallas Heart Study, one of the 

few reports that failed to observe lower levels of calcified atherosclerotic plaque in 

African Americans relative to European Americans, reported similar levels of calcified 

atherosclerotic plaque in African and European Americans despite excessive frequencies 

of conventional CVD risk factors in African Americans.77 Conventional CVD risk factors 

including hypertension, diabetes mellitus, smoking, and LDL-cholesterol levels fail to 

explain racially variable patterns of calcified atherosclerotic plaque.78 Novel CVD risk 

factors, including genetic polymorphisms, albuminuria, and pericardial adipose tissue, 

however, do seem to have a role.79–81 A landmark report by the Multi-Ethnic Study of 

Atherosclerosis (MESA) investigators demonstrated that African Americans with higher 

levels of calcified atherosclerotic plaque had significantly higher degrees of European 

ancestry than those with lower levels of calcified atherosclerotic plaque.79 These findings 

reverse the long-held belief that African Americans face a higher biologic risk of calcified 

atherosclerosis than do European Americans; these individuals are actually at lower biologic 

(inherited) risk, although the effect may be overcome by adverse environmental exposures. 

Similar results have been observed in the African American-Diabetes Heart Study (B. I. 

Freedman, unpublished work).

Two studies have provided proof-of-concept that circulating 25(OH)D, as well as 

susceptibility to calcified atherosclerotic plaque, may have a genetic basis. A genome-wide 

association study of serum 25(OH)D levels identified polymorphisms in the enzyme 1,25-

dihydroxy vitamin D3 24-hydroxylase (encoded by the mitochondrial gene CYP24A1 on 

chromosome 20) as being significantly associated with 25(OH)D deficiency.82 CYP24A1 
is involved in the degradation of 1,25-dihydroxyvitamin D3. In the same year, variation in 

CYP24A1 was associated with levels of coronary artery calcified atherosclerotic plaque.83 

Hence, genes regulating vitamin D metabolism are associated with calcified atherosclerotic 

plaque. We investigated the potential role of three genes involved in bone formation in BMD 

and calcified atherosclerotic plaque. Several polymorphisms in the bone morphogenetic 

protein 7 gene (BMP7), but not in BMP2 or BMP4, were associated with an inverse 

relationship between BMD and calcified atherosclerotic plaque in European Americans with 

type 2 diabetes.84 Together, these studies suggest that an inverse association between BMD 

and calcified atherosclerotic plaque is biologically mediated and is not solely attributable to 

the effects of aging or shared environmental exposures.
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Admixture mapping

African Americans are an admixed population group— their genomes are composed of 

approximately 80% African and 20% European ancestry. When continental isolation ended 

with forced migration during the slave trade, mixing of the African genome with European, 

Caribbean and other genomes ensued. This phenomenon led to the currently observed 

admixture in African Americans. The novel genetic mapping methodology admixture 

mapping (also called Mapping by Admixture Linkage Disequilibrium, MALD) can be useful 

in the setting of an admixed population group with differential disease risk in parental 

populations.85,86 MALD employs carefully selected genetic markers with markedly different 

frequencies between ancestral populations. The frequencies of these ancestry informative 

markers are compared across the genome in admixed cases with disease versus admixed 

controls without disease. Case-only studies can also be performed. Frequency differences in 

markers are compared between cases and controls to detect regions with excess (or reduced) 

frequencies of ancestral markers in given chromosomal regions. Associated disease genes 

likely reside under MALD peaks.

The most impressive discovery of a disease-associated gene using MALD was identification 

of the association between the genes that encode myosin-9 (MYH9) and apolipoprotein 

L1 (APOL1) with nondiabetic forms of nephropathy in African Americans.87–89 African 

Americans have higher rates of nondiabetic nephropathy including focal segmental 

glomerulosclerosis (FSGS), HIV-associated collapsing glomerulopathy, and hypertension-

attributed nephropathy than do European Americans.90 Socioeconomic factors, conventional 

risk factors for renal disease (including prevalence and severity of hypertension and HIV 

infection) failed to account for this higher frequency of nephropathy in African Americans. 

Marked familial aggregation of nondiabetic ESRD is observed in African Americans.91,92 

As such, MALD identified a region on chromosome 22q with a significant 10% excess 

frequency of African ancestry among African American cases with FSGS compared with 

African American non-nephropathy controls. Fine mapping under this peak subsequently 

identified the major APOL1 association with nondiabetic ESRD in African Americans, with 

odds ratios of 7.3, 17, and 29, for hypertension-attributed ESRD, idiopathic FSGS, and 

HIV-associated nephropathy; these genetic associations are among the most powerful in 

complex human disease.89,93

These findings provide a strong rationale for using this genetic methodology to detect genes 

simultaneously regulating bone and vascular health in African Americans. Candidate gene 

approaches are limited by the need to test several hundred genes that are potentially involved 

in disease progression, as well as by our limited understanding of the pathophysiology of 

these syndromes.94 Not only could genes such as MGP, SPP1, AHSG, KL and TNFRSF11B 
have a role in human disease as they do in animal models, but their receptors and signaling 

pathways could also be involved. It is far more appropriate to perform unbiased genome-

wide mapping for these disorders. We believe that applying MALD mapping to the complex 

and related phenotypes of BMD and calcified atherosclerotic plaque in the admixed African 

American population has great potential in this regard.
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As African Americans have biologically lower rates of calcified atherosclerotic plaque 

and osteoporosis than do European Americans, both of these related disorders seem to 

originate from European ancestry.79 As such, we expect MALD to detect higher frequencies 

of European ancestry markers in chromosomal regions harboring disease-associated genes 

in African Americans who have low BMD or high levels of calcified atherosclerotic 

plaque. Indeed, MESA identified an excess frequency of European ancestry in African 

Americans with high levels of calcified atherosclerotic plaque.79 Based on the results of 

animal and human studies, it seems likely that polymorphisms in genes that regulate bone 

mineralization, calcium, phosphate, and vitamin D metabolism are involved in susceptibility 

to both calcified atherosclerotic plaque and osteoporosis in individuals without advanced 

nephropathy.

Conclusions

Recognition of population-specific differences in susceptibility to osteoporosis and calcified 

atherosclerotic plaque among individuals without advanced nephropathy is an important 

first step towards designing studies that will enable identification of mechanisms linking 

bone mineralization and vascular calcification, particularly in African Americans. This 

research provides insights into potential pathways, which may be targeted to improve 

health outcomes in many ethnic groups. This work is particularly important with respect 

to our increasingly aging populations who are at high risk of developing these debilitating 

conditions.
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Key points

• Inverse relationships exist between bone mineral density (BMD) and calcified 

atherosclerotic plaque in individuals of European and African ancestry 

without nephropathy

• African Americans have higher BMD and develop osteoporosis less often 

than do European Americans, despite lower serum 25-hydroxyvitamin D 

levels and dietary calcium intake

• European Americans have higher incidence rates and severity of calcified 

atherosclerotic plaque relative to African Americans despite fewer 

cardiovascular disease risk factors

• Inherited phenomena are likely to contribute to population-specific 

differences in vitamin D metabolism, vascular calcification, and bone 

mineralization

• Molecular genetic approaches will enhance our understanding of bone and 

vascular health
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Box 1 |

Relationship between vitamin D, BMD and atherosclerosis by ethnicity

BMD and calcified atherosclerotic plaque are inversely related in patients without 

nephropathy

• Serum vitamin D levels are positively associated with calcified atherosclerotic 

plaque in African Americans and negatively associated in European 

Americans

• Serum vitamin D levels are negatively associated with BMD in African 

Americans and positively associated in European Americans

Abbreviation: BMD, bone mineral density.
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Figure 1 |. 
Relationships between bone and vascular calcium and phosphate deposition and dependence 

upon the environment, ethnicity, sex, and genetic factors. Abbreviations: BMD, bone 

mineral density; CVD, cardiovascular disease.
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Figure 2 |. 
Proposed mechanistic links between metabolic bone disease, atherosclerosis, and vascular 

calcification. Passive, vessel-mediated calcification in an advanced atherosclerotic lesion 

may involve apoptosis and/or necrosis of cells in core regions of plaques, which results in 

the development of an area rich in acidic phospholipids complexed with Ca2+, and/or an 

elevated local CaPi ion product. CaPi precipitation could then lead to the formation and 

growth of amorphous CaPi and eventually to hydroxyapatite crystals in the vessel. The 

loss of local inhibitors of mineralization could remove the block to local crystal formation 
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and growth and allow mineralization to progress. The presence of plaque mineral crystals 

could then facilitate a process whereby local cells dedifferentiate and/or become quiescent 

and assume a phenotype consistent with the bone remodeling process (that is, osteoblasts 

and/or osteoclasts), or lead to recruitment of pluripotent circulating cells (osteoprogenitor 

or chondroprogenitor cells) to the site. More active models of vascular calcification 

involve increased activity of local enzymes (phosphatases), which catalyze amorphous 

CaPi precipitation and crystal formation through increases in free inorganic phosphate 

generated through hydrolysis of organic phosphates. Active programmed models in which 

resident vascular cells independently assume a phenotype consistent with mineralizing cells 

(chondrocytes or osteoblasts) and initiate the initial precipitation of CaPi have also been 

suggested. This phenotypic change might occur, in part, in response to oxidized lipids, 

hyperglycemia, or inflammation in the vessel wall. Postulated mechanisms linking bone loss 

directly to mineralization in the artery include the release of Ca2+ and Pi from bone, perhaps 

in the form of CaPi complexes, which then localize to atherosclerosis-prone vascular sites 

where they form a nidus for future mineralization or lead to locally elevated Ca2+ and/or Pi 

levels. These increased levels would then promote spontaneous CaPi precipitation or growth 

of arterial CaPi precipitates or hydroxyapatite. Abbreviations: CaPi, calcium phosphate; 

MGP, matrix Gla protein; PPi, pyrophosphate; VSMC, vascular smooth muscle cell.
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Table 1 |

Factors that potentially affect racial variation in bone and vascular disease

Parameter African Americans European Americans

Calcified atherosclerotic plaque ↓ ↑

Osteoporosis ↓ ↑

Serum 25 hydroxyvitamin D ↓ ↑

Serum 1,25 dihydroxyvitamin D ↑ ↓

Serum intact parathyroid hormone ↑ ↓

Dietary calcium ingestion ↓ ↑

Renal tubular calcium reabsorption ↑ ↓

Calcium containing kidney stones ↓ ↑

Abbreviations: ↑, increased risk of the specified parameter; ↓, decreased risk of the specified parameter.
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