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Abstract

Pituitary adenomas (PAs) are common intracranial tumors. Despite their benign nature, PAs may cause a significant burden 
of disease, leading to either hormonal disturbances or local compression. A subset of PAs presents an aggressive behavior that 
remains difficult to predict, and in rare cases they metastasize. Therefore, early diagnosis and treatment are important. Advances 
in molecular pathology have improved the understanding of their pathogenesis and offer opportunities to identify and target novel 
pathways. Improved imaging and functional molecular techniques precisely detect even very small tumors and guide targeted 
treatment. Transsphenoidal surgery is the first-line treatment for the majority of PAs, and advances in the field of endoscopic 
neurosurgery offer excellent outcomes. Dopamine agonists (DAs) are traditionally the first-line treatment for prolactinomas. For 
patients with acromegaly, first- and second-generation somatostatin analogues (SSAs) are applied when surgery is not successful 
or not indicated. For Cushing’s disease (CD), drugs targeting adrenal steroidogenesis, somatostatin receptors in the pituitary, and 
glucocorticoid receptors are used to treat hypercortisolism in patients with persistent or recurrent CD, for those who are not good

 

surgical candidates, and as a bridge treatment for those who have undergone radiation treatment until cortisol levels are controlled. 
Temozolomide (TMZ) is the first-line chemotherapy for aggressive PAs, but new experimental therapies, like the anti-vascular 
endothelial growth factor (anti-VEGF) therapy, mechanistic target of rapamycin (mTOR) inhibitors, tyrosine kinase inhibitors, 
and cell cycle and checkpoint inhibitors, are now available. Radiotherapy is offered to patients with residual, recurrent, or 
progressive tumors. Modern techniques in radiotherapy planning and delivery are able to deliver high doses to the target tissue 
while sparing vital structures. As we familiarize ourselves with the biological behavior of PAs and our therapeutic armamentarium 
expands, the next goal is to tailor and personalize treatment to each individual patient so as to achieve the best outcome.
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Introduction
Pituitary adenomas (PAs) are the second most common brain 
tumors1, classified according to their functionality, size, and ana-
tomical extension. In the general population, epidemiologic data 
show an increasing incidence (3.9–7.4 cases per 100,000/year)  
and prevalence (76–116 cases per 100,000 population), likely 
related to increasing magnetic resonance imaging (MRI) usage2. 
Despite their benign nature, PAs can occasionally cause sig-
nificant morbidity and mortality, and 0.2% of PAs can present 
metastasis. According to European Society of Endocrinology  
(ESE) guidelines from 2018, aggressive pituitary tumors are  
large and invasive tumors that grow rapidly despite conven-
tional therapies, such as surgery, radiotherapy, or standard medi-
cal treatment, including TMZ3. Clinical presentation of PAs  
is related to hormone excess, hypopituitarism, or pressure  
effects. First-line therapy for the majority of PAs is trans-
sphenoidal surgery. Pharmacotherapy and radiotherapy have 
an additional role in cases of hormone secreting or invasive,  
unresectable adenomas, or adenomas that are too small to be 
detected. However, as recurrences are not uncommon even in 
cases of initial successful pituitary surgery, it is essential to  
comprehend in depth the genetic background of these tumors 

and identify potential “drivers of tumorigenesis”, to familiarize  
oneself with their biological characteristics in order to make 
an early diagnosis, an accurate prognosis, and a targeted and  
effective treatment plan. In this review, we describe recent 
advances in understanding the pathogenesis of PAs and novel 
insights into their diagnostic and therapeutic management.  
(The most important are provided in Table 1.)

Advances in understanding and managing pituitary 
adenomas
The introduction of multiomics, including next-generation 
sequencing genomics, methylomics, transcriptomics, pro-
teomics, and even glycomics, has revealed novel pathways in 
understanding PA pathogenesis, invasiveness, recurrence, and  
prognosis.

In 2017, the World Health Organization (WHO) introduced 
transcription factors for the diagnosis of PAs4. Transcrip-
tomic and methylomic analysis has clustered PAs into three 
groups based on the transcription factor they originate from. 
The first group, derived from NR5A1, includes clinically  
non‐functioning PA (CNFPA), gonadotrophinomas, and null 

Table 1. An overview of recent advances in pathophysiology and management of pituitary adenomas.

Pathophysiology Novel treatment (in vivo or in vitro)

Non-functioning pituitary 
adenomas (NFPAs), null cell 
adenomas 
and gonadotroph adenomas

Non-coding RNAs (LOC101927765, RP11-23N2.4, 
and RP4-533D7.4) have been associated with 
NFPA recurrence 
 
Upregulation of miR582, miR4774, and LINC01351

Cabergoline 
 
Cabergoline + everolimus 
 
Chimeric compound TBR-760

Prolactinοmas Oncogenic mutation SF3B1R625H 
 
Overexpression of miR377 and miR136 
 
Wnt/β-catenin pathway mutation 
Expression of specific ErbB receptors 
 
PI3K/Akt/mechanistic target of rapamycin (mTOR) 
pathway

Bromocriptine + fulvestrant 
 
Octreotide long-acting repeatable (LAR) 
+ cabergoline 
 
Pasireotide 
 
Metformin 
 
Anastrozole 
 
Temozolomide + capecitabine 
 
Lapatinib 
 
Ipilimumab + nivolumab 
 
Everolimus ± cabergoline 
 
Surgery 
 
G-knife radiosurgery

Somatotroph adenomas Germline mutations 
AIP, PRKAR1A, GPR101, GNAS, MEN1, CDKN1B, 
SDHx, and MAX 
 
Ectopic expression of GIP (glucose-dependent 
insulinotropic polypeptide) receptor 
 
Overexpression of miR377 and miR136

Pasireotide LAR monotherapy 
 
Oral octreotide capsules 
 
Pegvisomant 
 
Chimeric SST-DA molecules (TBR-065)
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cell; the second includes adrenocorticotropic hormone (ACTH)  
adenomas and silent corticotroph adenomas (SCAs) and 
is driven by TBX19; the third are the POU1F1‐originating  
thyroid-stimulating hormone (TSH), prolactin (PRL), and growth 
hormone (GH) adenomas. Different genes are upregulated in  
the three groups: in silent ACTH adenomas, gonadotrophinomas,  
and null cell adenomas (NCAs), genes such as CACNA2D4  
and EPHB6; in the clinically functioning ACTH adenomas, 
the genes AVPR1B, CRHR1, and EPHA4; and in the third  
cluster, SLIT1, PRLR, and SLC16A65. Moreover, the three groups 
differ in genes encoding kinases: TBX19-derived adenomas 
show upregulation of MERTK and STK17B and alterations in  
VEGFA-VEGFR, EGF-EGFR, and insulin signaling pathways;  
NR5A1-derived tumors show upregulation of ETNK2 and 
PIK3C2G and changes in MAPK, ErbB, and RAS signaling; 
and POU1F1-derived adenomas show upregulation of PIP5K1B  
and NEK10 and alterations in phosphatidylinositol, insulin, and 
phospholipase D signaling pathways. By contrast, the expression  
of genes that encode cyclins and CDK and CDK inhibitors 
among TBX19, NR5A1, and POU1F1 adenomas is not so dif-
ferent. CDK4 and CDK7 are upregulated in POU1F1 adenomas,  
but CDK9 and CDK18 are upregulated in NR5A1 adenomas6.

Modern methodology has been used to show that the epig-
enomic landscape differs between the distinct types of PAs7.  
Epigenetic alterations such as DNA methylation, histone modi-
fications, and non-coding RNAs, such as microRNA (miRNA),  
long non-coding RNAs (lncRNAs), and circular RNAs, are 
capable of changing the expression of tumor suppressors and  
oncogenes. These molecules are useful biomarkers and poten-
tial therapeutic targets, with the aim of either restoring the  
expression of tumor suppressor miRNAs or inhibiting the  
expression of onco-mRNAs8.

miRNAs are small protein non-coding RNAs that regulate gene 
expression post-transcriptionally, and their abnormal expres-
sion has been associated with progress of PAs9. Divergent  
lncRNAs have been found in invasive PAs10, and different  
miRNAs are overexpressed in the three PA clusters. The ACTH  
adenoma group overexpresses miR4501; CNFPA upregulates 
miR582, miR4774, and LINC01351; while the GH, TSH, and 
PRL adenoma cluster overexpresses miR377 and miR1365.  
Upregulation of spliceosome genes and spliceosome proteins, 
such as SRSF1, U2AF1, and RBM42, and changes in CDK18 
and THY1 mRNA have been detected in PAs11. In vitro experi-
ments of aggressive adenoma tissues unveiled the role of  
mRNA-146b-5p in suppressing the IRAK4/TRAF6/NF-κB  
signaling pathway, limiting PA cell progression, and in  
TMZ-induced chemoresistance in vitro12.

In 2020, a pangenomic analysis illustrated the DNA hypometh-
ylation in PIT1 lineage and chromosomal instability (except 
for GNAS-mutated somatotrophs) and classified corticotrophs 
into three classes: the USP8-mutated with apparent secre-
tion, the USP8-wild-type with increased invasiveness, and 
the large, silent tumors with gonadotroph transdifferentiation.  
Unexpectedly, expression of SF-1, which is a transcription fac-
tor for gonadotrophs, was also detected in GNAS-wild-type  
somatotrophs13.

According to the 2022 update of the WHO classification, acido-
phil stem cell and mammosomatotroph tumors represent dis-
tinct PIT1-lineage pituitary neuroendocrine tumors (PitNETs).  
Two different PitNETs replace the PIT1-positive plurihormonal  
tumor category described in the 2017 WHO classification:  
the mature plurihormonal PIT1-lineage tumor and the immature 
PIT1-lineage tumor (previously named silent subtype 3 tumor). 

Pathophysiology Novel treatment (in vivo or in vitro)

Corticotroph tumors Overexpression of miR4501 
 
USP8-mutation 
 
ATRX mutation 
 
Silent corticotroph tumors

Osilodrostat 
 
Pasireotide 
 
Mifepristone 
 
Ipilimumab + nivolumab 
 
Pembrolizumab

Aggressive pituitary tumors 
and carcinomas

Increased expression of pDL2, CE80, and CD86 in 
pituitary tumor microenvironment 
 
Three immune clusters of pituitary adenomas

Temozolomide 
 
Anti-VEGF (anti-vascular endothelial 
growth factor) therapy 
 
mTOR inhibitors 
 
Tyrosine kinase inhibitors 
 
Peptide receptor radionuclide therapy 
(111In-pentreotide, 177Lu-DOTA, 90Y-DOTA, 
and 68Ga-DOTA) 
 
Immunotherapy
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The term “metastatic PitNET” replaces the term “pituitary  
carcinoma”14.

In 2017, the International Pituitary Pathology Club proposed  
a change in the term pituitary adenoma to pituitary neuroendo-
crine tumor PitNET, arguing that pituitary hormone-producing  
cells are neuroendocrine cells and, in rare cases, their tumors 
may develop an unusual aggressive behavior similar to that 
of extrapituitary NETs15. The Pituitary Society has disa-
greed, stating that PAs rarely exhibit a malignant behavior and 
that labeling them as “NET” generates excessive anxiety and  
confusion16.

In regard to aggressive PAs/carcinomas, TMZ, an oral alkylating  
chemotherapeutic agent, has been suggested by ESE guide-
lines as first-line chemotherapy3. Meta-analysis data showed 
that TMZ provokes a 41% radiological overall response and 
greater biochemical response in functioning adenomas (53%).  
The 2-year and 4-year survival rates were 79% and 61%,  
respectively, and survival was prolonged17. CAPTEM is a  
novel combination of capecitabine and TMZ. Capecitabine is  
an antimetabolite, which enhances the apoptotic effect of  
TMZ. This novel combination has been used mainly for  
aggressive corticotroph tumors18.

Novel data arise about the role of pituitary tumor microenviron-
ment in the biological behavior of the tumor19. This consists of 
infiltrating the tumor immune cells, cytokines, and chemokines.  
Differences in immunologic profile between PAs and normal 
pituitary have been identified. Aggressive PAs show increased 
expression of pDL2, CE80, and CD86 in comparison with 
normal human pituitary and higher CD80 and CD86 levels  
in comparison with non-aggressive tumors. This finding under-
lines the role of immune checkpoint pathways in PA tumori-
genesis and endorses immunotherapy as a novel treatment20.  
Transcriptomic analysis has identified three immune clusters  
based on tumor infiltration and immune checkpoint molecule 
expression. CTLA4/CD86 expression was increased in cluster  
1, and programmed cell death protein 1/programmed cell death 
1 ligand 2 (PD1/PD-L2) expression was enhanced in cluster  
2, defining these two groups as “hot” or more responsive  
to immunotherapy than cluster 3, denoted as “cold”21.

Developments in MRI protocols and functional molecular  
imaging aim to identify PAs and predict their response to  
treatment22. Functional imaging uses radiotracer targeting of 
either amino acid transport/uptake, such as 11C-methionine,  
or others targeting tumor metabolism, such as 18F-FDG,  
13N-ammonia, and 18F-choline. Met-positron emission tomog-
raphy (Met-PET)/MRI has successfully localized a residual 
adenoma in 25 out of 26 patients with persistent acromegaly 
after primary therapy and unclear MRI findings23. In a study 
of 20 patients with ACTH-dependent Cushing’s syndrome,  
Met-PET/MRI localized adenoma in 7 out of 10 patients with 
active Cushing’s disease (CD) and in 5 out of 8 with residual 
or recurrent hypercortisolemia24. In a study of 18 patients with 
intolerant or resistant prolactinomas, MRI and Met-PET/MRICR  

findings were in agreement in 14 patients and discrepant in 4, 
and Met-PET/MRI was false-negative in one patient with a  
cystic adenoma25. Corticotrophin-releasing hormone (CRH) 
receptor imaging with 68Ga-DOTA-CRH represents a novelty 
in the detection of corticotropinomas. 68Ga CRH PET-CT local-
ized a corticotropinoma in 24 cases of CD, including 10 cases 
with small adenomas smaller than 6 mm (four cases were nega-
tive on MRI)26. Finally, 18F-fallypride may identify dopamine 
2/3 receptor expression in prolactinomas and non-functioning  
PAs27.

Lately, peptide receptor radionuclide therapy has entered the 
therapeutic armamentarium of aggressive PAs/carcinomas that do  
not respond to conventional treatments. The rationale is based 
on the expression of somatostatin receptors (SSTRs) on pituitary  
cells that are detected by functional imaging with octreotide,  
68Ga-DOTA-TOC or TATE PET and allows radiolabeled  
somatostatin analogues (SSAs) (111In-pentreotide, 177Lu-DOTA,  
90Y-DOTA, and 68Ga-DOTA) to be used as targeted therapy. 
Radiolabeled SSAs enter the cell through binding with the  
SSTR and release radioagent inside the cell, causing its death. 
The limited experience so far reports cases with either disease  
stabilization or partial tumor remission and others that did 
not respond at all. Two recent reviews have summarized the  
reported cases and analyzed their results28,29.

The development of artificial intelligence and machine learning  
models, which may process the upcoming amount of medical  
data, is promising to provide guidance in establishing  
diagnosis and predict response to treatment30–32.

Non-functioning pituitary adenomas
Non-functioning pituitary tumors lack clinically relevant hor-
monal excess and represent about 30% of all pituitary tumors33.  
In the 2017 WHO classification, they are divided by immuno-
histochemistry into NCAs without specific differentiation and 
clinically silent gonadotrophs, which are hormone-negative  
PAs and stain for SF-1. NCAs are independently associated with 
tumor recurrence34. Compared with gonadotroph adenomas,  
NCAs are more invasive at the time of presentation and have 
a more aggressive clinical course35. On the other hand, gona-
dotroph tumors are heterogeneous. A retrospective analysis of 
98 gonadotroph tumors segregated them in follicle-stimulating  
hormone–luteinizing hormone (FSH-LH), FSH, and LH sub-
types and identified male predominance and sex-related differ-
ences and association with SSTR (SST2) and estrogen receptor  
alpha (Erα) expression36.

Differences in histone modification and DNA methylation 
have been observed between NFPAs with and without post-
surgical progression37, and in comparison with somatotroph  
adenomas38. Three lncRNAs (LOC101927765, RP11-23N2.4,  
and RP4-533D7.4) have been associated with NFPA recurrence39.

Medical treatment of NFPAs is challenging. In an open-label 
clinical trial that compared cabergoline with non-intervention  
in patients with residual NFPA after transsphenoidal surgery 
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over 2 years, the progression-free survival rate was significantly  
higher (23.2 months) in the group of cabergoline in com-
parison with the control group (20.8 months), and dopamine 
2 receptor expression was not associated with cabergoline  
responsiveness40. However, a recent meta-analysis of five 
studies indicated that cabergoline was more effective in  
preventing tumor progression than reducing its size41.

Treatment with the chimeric compound TBR-760 for 8 weeks 
in a mouse model of aggressive NFPA resulted in nearly com-
plete inhibition of tumor growth, while treatment with equiva-
lent or higher doses of the individual somatostatin analogue or 
dopamine, either alone or in combination, had no significant 
effect42. The combination of mTOR inhibitor everolimus with 
cabergoline in vitro has overwhelmed the resistance in the 
anti-proliferative effects of everolimus on pituitary tumor  
cell growth through modification of AKT phosphorylation43.

Prolactinοmas
Prolactinomas account for about 40% of all pituitary 
tumors2. Recently, an oncogenic mutation, SF3B1R625H, 
was identified, leading to a gain-of-function activation of  
estrogen-related receptor gamma (ESRRG), stronger affinity  
for Pit-1, and an increase of production of prolactin44. Moreo-
ver, SF3B1R625H promoted cell migration and invasion  
through the PI3K/Akt pathway45.

Dopamine agonists (DAs) are the first-line treatment for  
prolactinomas, but a subset presents with medication intolerance 
or resistance. Interaction between the ER/ERα and PRL/PRLR  
pathways may contribute to bromocriptine resistance. The 
combination of bromocriptine with the ERα inhibitor fulves-
trant has increased sensitivity to bromocriptine and induced  
apoptosis in prolactinoma cells46.

The expression of SSTRs has been shown in lactotroph  
adenomas47. Octreotide long-acting repeatable (LAR) in addi-
tion to cabergoline has shown promising results in patients 
with resistant prolactinomas48,49 and pasireotide, a somatostatin 
multireceptor ligand, achieved good results in a small number  
of dopamine-resistant or aggressive prolactinomas50–52.

Biguanides exert anti-proliferative and anti-secretory effects 
in pituitary cells53. Metformin reduced prolactin levels and 
tumor volume in two patients resistant to bromocriptine54. On 
the other hand, in a prospective study of 10 adult patients with  
resistant prolactinomas (under cabergoline), the addition of  
metformin failed to show significant results after 6 months, and  
only two patients showed partial biochemical response55.

Alternative therapies with ER modulators, tamoxifen and 
raloxifen, have shown inconsistent results56,57 and their use has  
not been justified. Aromatase cytochrome P450 enzyme, which 
aromatizes testosterone to estrogen, is present in normal pitui-
tary tissues and is highly expressed in prolactinoma tissue.  
It has been related with aggressive behavior and invasiveness 
of adenomas in both men and post-menopausal women58,59.  

Anastrozole, an aromatase inhibitor, has been added in the thera-
peutic regimen of four male patients with cabergoline-resistant  
prolactinomas and prolactin levels decreased (in one case it 
normalized) while the tumor size decreased by approximately  
47% (mean reduction) without serious adverse events60.

Dopamine-resistant prolactinomas undergo a β-catenin relo-
calization in relation to normal pituitaries, and TMZ has down-
regulated β-catenin and cyclin D1 and markedly reduced 
prolactin and increased prolactinoma cell apoptosis in mice 
bearing xenografted prolactinomas, supporting the role of the  
Wnt/β-catenin pathway61. The effect of CAPTEM was assessed  
in an ex vivo culture from two patients with refractory  
prolactinomas. CAPTEM reduced prolactin levels moderately  
(9070→4046 ng/mL) in one patient and significantly  
(17,500→210 ng/mL) in another, while it suppressed the tumor 
growth in both cases62.

Prolactinoma expression of specific ErbB receptors (epider-
mal growth factor receptors, or EGFRs) is associated with 
tumor invasion and response to DAs63. Lapatinib, a human  
EGFR2 tyrosine kinase inhibitor, was added on cabergoline 
therapy of four patients with aggressive prolactinomas. Three 
out of four patients who had not previously received radio-
therapy stabilized their tumor. However, prolactin levels did  
not normalize, and disease progression occurred64.

Combination therapy of ipilimumab plus nivolumab was  
applied in a case of aggressive prolactinoma, but a further 
increase of prolactin necessitated a change of therapy to beva-
cizumab (vascular endothelial growth factor inhibitor), which 
resulted in stable disease65. Pembrolizumab was tried unsuccess-
fully in a case of metastatic macroprolactinoma, which failed to  
respond previously to DA therapy and to TMZ and CAPTEM66.

The PI3K/Akt/mTOR pathway is an intracellular signaling 
system which is activated in a significant proportion of prol-
actinomas. Certain variants of the prolactin receptor, like the  
Asn492Ile one, are associated with increasing activity of 
this pathway and cellular proliferation. Everolimus antago-
nizes these effects in vitro and could be a therapeutic option for 
some aggressive prolactinomas unresponsive to conventional  
treatments67. An off-label trial of everolimus plus cabergoline  
in a patient with refractory prolactinoma led to significant  
biochemical response and regression of tumor, which stabilized  
for 12 months despite a subsequent rise of prolactin levels68.

Surgery or radiation are reserved for cases with DA resist-
ance or intolerance, but whether either can be used as first-line  
treatment has recently been revisited. A meta-analysis demon-
strated that 38% of patients who underwent surgery following  
DA failure achieved remission without the need for further  
treatment, 62% achieved remission with multimodal treatment, 
and 16% of cases demonstrated recurrence after an average  
of 27 ± 9 months69. A meta-analysis that compared surgery  
with medical therapy showed that surgery may achieve  
long-term remission in the majority of patients (67% vs. 34%), 
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especially in patients with microprolactinoma (87% vs. 36%)70. 
Surgery as a first-line treatment was evaluated by Baussart  
et al. in a well-selected series with non-invasive micro-
prolactinomas and a median follow-up of 18.2 months71.  
Disease-free survival rates at 1 year and 5 years were 90.9% 
and 81%, respectively, demonstrating that for well-selected  
microprolactinoma patients, pituitary surgery performed by an 
expert neurosurgical team is a reasonable option71.

Gamma knife radiosurgery (GKRS) normalized prolactin levels  
in 66.7% of patients in a small cohort (24 patients), 10 
patients (41.7%) achieved normal prolactin levels after  
discontinuation of DAs, six patients (25%) had normal prolactin  
levels while taking DAs, and all of the patients had tumor  
control72. Similar results arose from a series of 28 patients who 
had GKRS: normoprolactinemia was achieved in 23 patients  
(82.1%), normoprolactinemia after discontinuation of DAs 
was achieved in 13 patients (46.4%), and normoprolactinemia 
while taking DAs was achieved in 10 patients (35.7%). In all  
cases, GKRS arrested adenoma growth or decreased adenoma 
size. In one patient, prolactinoma cystic transformation with 
expansive behavior, manifested by bilateral hemianopsia, was  
observed73. A meta-analysis of studies on stereotactic radiosur-
gery of prolactinomas reported tumor control rates of 86% to  
100%, new neurological or visual deficit rates of 0% to 5%, 
endocrine remission rates of 6% to 81%, and new or worsened  
hypopituitarism in 0% to 62% of patients74.

Somatotroph tumors
Germline mutations (AIP, PRKAR1A, GPR101, GNAS, MEN1,  
CDKN1B, SDHx, and MAX) and somatic mutations in 
GNAS are involved in somatotroph tumorigenesis. Moreover,  
whole-exome sequencing has identified several somatic variants  
in sporadic GH-secreting PAs without GNAS variants75.

AIP participates in the RET-apoptotic pathway in  
PIT-1-expressing cells. Lack of AIP or pathogenic mutations  
inhibits this pathway in AIP knockout mice and results in  
upregulation of somatotroph adenomas76. In somatotropino-
mas with AIP mutations, an overexpression of miR-34a was  
detected with a subsequent increase of cAMP concentration,  
cell growth, and reduction of response to octreotide77.

Forty percent of somatotroph tumors harbor recurrent activat-
ing GNAS mutations (the gsp oncogene). Multiomics analysis  
has identified a significant difference between gsp-negative  
and gsp-positive tumors in the methylation index. Forty-three 
percent of gsp-negative tumors show GNAS imprinting relaxa-
tion, which is associated with lower GNAS, SSTR2, and AIP  
expression, indicating lower sensitivity to somatostatin ana-
logues and potentially aggressive behavior78. GNAS mutations 
are associated with higher preoperative insulin-like growth  
factor-1 (IGF-1) levels and surgical remission rates and lower  
nadir GH levels postoperatively79.

On the other hand, somatotroph adenomas that show a para-
doxical GH increase during the oral glucose tolerance test 
demonstrate ectopic expression of GIP receptor (GIPR).  

GIPR-expressing adenomas are negative for activating GNAS 
mutations, display particular features, and respond better to soma-
tostatin analogues80–82. In the future, targeting pituitary GIPR  
antagonist could be a medical alternative for these adenomas.

Recent epidemiological data show a higher incidence and  
mortality among females with acromegaly in comparison with  
males83,84. It is now believed that, in biochemically controlled  
acromegalic patients, mortality is similar to the general  
population and the risk of comorbidities is lower, although  
structural deformities are unlikely to reverse. Recent series have 
shown reduced severity of cardiovascular disease in patients 
with acromegaly and reallocate cancer as the main cause of 
death; this is possibly due to better control of the disease  
and longer life expectancy84.

Predictors of response to medical treatment have been identified.  
A meta-analysis reported that clinical predictors of response  
to first-generation somatostatin analogues for treatment-naïve 
patients are female gender, older age, and lower baseline IGF-1  
as well as GH less than 1.2 μg/L and IGF-1 less than 110% of 
the upper limit of normal (ULN) at 12 weeks after initiation  
of first-generation SSAs. This response relates to biochemical  
control at 12 months85. Hypointense adenomas on T2 MRI  
signals respond better with greater IGF-1 reduction and tumor 
shrinkage after lanreotide86. Extension of dosing intervals 
with lanreotide autogel 120 mg (6- or 8-weekly dosing) has 
been effective in patients previously biochemically controlled  
with octreotide LAR 10 or 20  mg/4 weeks87.

For cases in which lanreotide or octreotide LAR fail to control 
the disease, switching to pasireotide LAR monotherapy is an  
option, but worsening of glycemia should be taken into  
consideration, especially for those with impaired fasting blood  
glucose at baseline88. Recently, the first oral SSTR ligand 
was approved by the US Food and Drug Administration for 
acromegaly. Oral octreotide capsules (OOCs) are considered  
an effective treatment for patients with acromegaly who 
have previously responded well to injectable somatostatin  
analogues89,90. In the OPTIMAL trial, a phase 3 randomized 
controlled trial, the primary endpoint of IGF-1 of not more  
than 1×ULN was achieved in 58% of the OOC cohort versus 
19% in the placebo cohort89. As recommended in the Pituitary  
Society Update for the management of acromegaly, dose  
initiation of OOC is 40 mg/day given twice a day as a  
capsule of 20 mg at fasting state or 2 hours postprandial.  
Uptitration is followed by 20 mg every 2 to 4 weeks according  
to IGF-1 levels and clinical evaluation84.

According to the ACROSTUDY, pegvisomant, the GH receptor  
antagonist, can biochemically control almost 73% of patients, 
and only 3.2% of patients have abnormal transaminases, and 
6.8% show a tumor size increase on MRI91. Pegvisomant  
improves glucose metabolism independently of IGF-1 control92.

For patients uncontrolled after maximum dose of SSAs ther-
apy, combination of low-dose octreotide LAR or lanreotide  
plus weekly pegvisomant is a cost-effective treatment that may 
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achieve biochemical control in almost 95%93. In the PAPE  
study, the combination of pasireotide plus pegvisomant 
achieved high control rates even above 70%, but the frequency  
of diabetes doubled94.

Compared with individual SST or DA analogs (alone or  
combined), chimeric SST-DA compounds (dopastatins) are more 
potent in inhibiting GH secretion. Compared with currently  
available therapies, TBR-065 has significantly improved efficacy  
in suppressing GH secretion95.

Corticotroph tumors
Corticotroph cells give rise to ACTH-secreting adenomas result-
ing in CD, clinically silent ACTH adenomas (SCAs), Crooke 
cell adenomas (CCAs), and ACTH-producing carcinomas  
(CAs). SCAs lack clinical and biochemical features of hyper-
cortisolemia but show a high recurrence rate and do not respond 
well to common treatment96. A study that compared SCAs  
with silent gonadotroph adenomas showed that the two groups 
had comparable size and recurrence/progression rates but SCAs  
were more invasive and had cystic changes97. Different expres-
sion of miRNAs has been identified in clinically function-
ing adenomas and SCAs. High expression of hsa-miR-124-3p  
in adenomas causing CD may be involved in the regulation  
of feedback by corticosteroids at the glucocorticoid (GC)  
receptor level98.

A genomic study of 27 corticotroph tumors classified them 
in a USP8-mutated group, genome-stable with little somatic 
copy number variation (sCNV) and a USP8-wild type group,  
genome-disrupted, with TP53 mutations and extensive somatic 
copy number variation (sCNV). USP8-mutated tumors exhib-
ited nonaggressive behavior as four out of five tumors were 
microadenomas and only one USP8-mutated tumor developed 
metastasis, which responded well to therapy99. Whole-exome  
sequencing of one patient with an ACTH-producing CA, one 
CCA, one corticotrophinoma occurring in a CD patient who  
developed Nelson syndrome after adrenalectomy, three SCAs, 
and four ACTH-secreting PAs causing CD showed that the  
neoplasm with the highest number of genomic abnormalities  
was the ACTH-CA, followed by the CCA and the CD tissues.  
The ACTH-CA and the four clinically functioning ACTH  
adenomas showed more copy-number variation (CNV) gains and 
single-nucleotide variations (SNVs) than the non-functioning  
tumors and shared the amplification of 10q11.22. Neverthe-
less, all of the tumors shared some genomic abnormalities, 
which is an indication of a common biological spectrum100.  
Mutations in the alpha thalassemia/mental retardation syndrome 
X-linked (ATRX) gene, which regulates chromatin remodeling 
and telomere maintenance, have been detected in aggressive  
corticotroph tumors101.

As far as it concerns clinical issues, the recent consensus on 
diagnosis and management of CD has updated recommendations  
and presented relevant algorithms102. It highlighted that no  
single diagnostic test is adequate for diagnosis and that  
diagnostic testing should be individualized on the basis of  
clinical criteria. Testing includes the assessment of (i) circadian  

rhythm by late night salivary cortisol (LNSC) or midnight 
serum cortisol, (ii) cortisol feedback by the dexamethasone  
suppression test, and (iii) 24-hour bioavailable cortisol by  
urinary free cortisol (UFC).

It was recommended that for differential diagnosis from  
ectopic ACTH Cushing syndrome, patients with pituitary lesions 
of less than 6 mm should proceed to inferior petrosal sinus  
sample (IPSS), for tumors 6 to 9 mm most experts suggested  
that IPSS is performed, but for lesions of at least 10 mm 
this is not necessary. Comorbidities (hypercoagulability,  
cardiovascular disease, bone disease, and infections) should 
be managed adequately even before the specific treatment of  
hypercortisolemia. Transsphenoidal surgery is the first-line 
treatment and may achieve high remission rates (defined as  
postoperative cortisol of less than 2 μg/dl) when performed in 
specialized Pituitary Tumor Centers of Excellence (PTCOE)  
by an experienced pituitary neurosurgeon. Lifelong monitoring  
for recurrence of CD is mandatory as recurrence rate may  
reach 35%. Assessment of recurrence follows the same tests  
as in diagnosis. LNSC is the most sensitive and should be  
repeated on an annual basis after the recovery of hypotha-
lamic–pituitary–adrenal (HPA) axis. Postoperative dynamic 
desmopressin testing with ΔCort of less than 7.4 μg/dl has a  
sensitivity of 97% to detect remission but its value applies only  
in patients with a documented preoperative positive test103. 
It is based on the fact that tumorous corticotrophs aberrantly  
express V2 receptors but that normal corticotrophs do not.  
Persistence of the response postoperatively indicates residual  
tumor.

Medical therapy for CD targets adrenal steroidogenesis (keto-
conazole, metyrapone, mitotane, etomidate, and osilodrostat),  
somatostatin and dopamine receptors in the pituitary, and 
GC receptors. Usually, adrenal steroidogenesis inhibitors are  
introduced first and in severe cases combinations can be  
used.

Osilodrostat is a new, potent oral inhibitor of 11β-hydroxylase 
(CYP11B1) approved in Europe for the treatment of endog-
enous Cushing’s syndrome and in the US for CD. In LINC 3,  
a phase III study, patients with confirmed persistent or recur-
rent CD complete response (mean 24-hour UFC concentration  
of not more than ULN) with osilodrostat at week 34 was  
achieved in 86% versus 29% (placebo). Hypocortisolism 
occurred in 51% of patients, and adverse events related to adre-
nal hormone precursors occurred in 42% of patients104. In the  
LINC 4 study, significantly more patients on osilodrostat (77%) 
achieved mean UFC (mUFC) of not more than ULN than  
placebo (8%) patients at week 12, and response was main-
tained at week 36, when 81% of all patients achieved mUFC 
of not more than ULN. Notably, patients with diabetes 
improved their glycemia status during osilodrostat treatment.  
Moreover, clinical features were improved.

In cases of severe hypercortisolemia where rapid normalization  
of cortisol is wanted, etomidate, an anesthetic agent, can be  
used in the intensive care unit.
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Pasireotide is the first medical therapy officially approved 
for adult patients with CD. In a phase 3 study, long-acting 
pasireotide normalized mUFC concentration in about 40% 
of patients with CD at month 7 and had a safety profile similar  
to that of twice-daily subcutaneous pasireotide105.

The GC receptor blocker mifepristone is effective in control-
ling some effects of hypercortisolism, regardless of the cause. 
The Study of the Efficacy and Safety of Mifepristone in the  
Treatment of Endogenous Cushing Syndrome (SEISMIC)  
phase 3 study showed improvement in glycaemia in about 
60% of patients and a decrease of diastolic blood pressure in 
38%. As cortisol concentrations remain high during treatment  
with mifepristone, monitoring is based on clinical signs106.

In rare cases, corticotroph tumors may become aggressive. A 
patient with an aggressive, sparsely granulated corticotroph  
adenoma and malignant transformation did not respond to TMZ 
despite loss of expression of MLH1 and PMS2 in the tumor 
cells. Next-generation sequencing using the MSK-IMPACT  
platform identified somatic mutations in MLH1 Y548lfs*9 and 
TP53 R337C. Immunotherapy using ipilimumab/nivolumab  
was initiated, and no residual tumor was seen in MRI 34 months 
postoperatively107. Another patient with a treatment-refractory  
aggressive ACTH-secreting pituitary carcinoma responded  
to ipilimumab and nivolumab108. Majd et al. described the 
effects of pembrolizumab in two patients with functioning  

corticotroph pituitary carcinomas (refractory to surgery, radio-
therapy, and chemotherapy) who had partial radiographic (60%  
and 32% per Immune-Related Response Evaluation Criteria  
in Solid Tumors, respectively) and hormonal responses66.  
They had previously received TMZ. Patient 1’s response  
continued 42 months after initiation of pembrolizumab and his 
tumor tissue, which was obtained after treatment with TMZ,  
demonstrated a hypermutator phenotype with MSH2 and 
MSH6 gene mutations. A third patient with a silent corticotroph  
tumor (patient 3) unresponsive to TMZ stabilized disease  
for 4 months after immunotherapy66.

Conclusions
In this review, we summarized the recent major advances in the 
field of understanding and managing PAs. There is currently  
a need to obtain knowledge of the molecular biology of PAs 
as this will open new perspectives in understanding their  
pathogenesis, predicting their recurrence, and managing these 
tumors effectively. PAs are the second most common intracra-
nial neoplasm and are associated with significant morbidities  
and mortality, especially in the rare case of aggressive tumors. 
Multiomic technology in the field of molecular biology, radi-
ology, and pathology creates an innovative, promising field  
for their diagnostic and therapeutic management. Understanding  
the different activated molecular pathways in comparison with 
normal pituitary is an important step toward the development  
of targeted therapies and their effective management.
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