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Abstract 

Background  Cycling has always been considered a sustainable and healthy mode of transport. With the increasing 
concerns of greenhouse gases and pollution, policy makers are intended to support cycling as commuter mode 
of transport. Moreover, during Covid-19 period, cycling was further appreciated by citizens as an individual 
opportunity of mobility. Unfortunately, bicyclist safety has become a challenge with growing number of bicyclists 
in the 21st century. When compared to the traditional road safety network screening, availability of suitable data for 
bicycle based crashes is more difficult. In such framework, new technologies based smart cities may require new 
opportunities of data collection and analysis.

Methods  This research presents bicycle data requirements and treatment to get suitable information by using 
GPS device. Mainly, this paper proposed a deep learning-based approach “BeST-DAD” to detect anomalies and spot 
dangerous points on map for bicyclist to avoid a critical safety event (CSE). BeST-DAD follows Convolutional Neural 
Network and Autoencoder (AE) for anomaly detection. Proposed model optimization is carried out by testing different 
data features and BeST-DAD parameter settings, while another comparison performance is carried out between BeST-
DAD and Principal Component Analysis (PCA).

Result  BeST-DAD over perform than traditional PCA statistical approaches for anomaly detection by achieving 77% 
of the F-score. When the trained model is tested with data from different users, 100% recall is recorded for individual 
user’s trained models.

Conclusion  The research results support the notion that proper GPS trajectory data and deep learning classification 
can be applied to identify anomalies in cycling behavior.
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1  Introduction
Cycling is a key component of any sustainable urban 
mobility in terms of environment and public health and 
as an alternative to driving a car [42]. The Netherlands 

is leading the ranking in Europe with 27% of trips done 
by bicycle with other countries (e.g. Denmark, Belgium, 
and Germany) already beyond the 10% threshold. Below 
5% we find countries like Norway (4, 3%), Italy (3, 3%), 
France (2, 7%) and Luxembourg (2%) [45]. Anyway, all of 
them report considerable increases in bicycle usage fur-
ther pushed due to the Corona crises in 2020 [26].

Unfortunately, as bicycle use increases, at the same 
time the rate of bicycles involved in road crashes has 
increased, as well. Due to the vulnerability of bicyclists to 
serious injuries, it has been estimated that riding a bike is 
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seven times more unsafe than travelling by car [21]. Data 
coming from European statistics shows that the rate of 
fatal accidents for cyclists in urban roads has increased 
from 2010 to 2018 by + 6% in contrast to the decrease of 
all the other modes of transport (Fig. 1) [18].

Moreover, the high risk of crashes when perceived by 
the users acts as strong barriers, dissuading people from 
using bicycles as a form of transport [46, 54]. A critical 
area for cycling safety research is the underreporting of 
cyclist crashes [29],Evelien [20] and lack of reliable data 
about cycling travelled distance. Even in highly cycling 
countries, 50% of bicycle involved traffic accidents are 
not reported in police statistics [22, 58]. Consequently, 
the crash statistics are biased in the magnitude and expo-
sure, and less feasible than for motorized vehicles [53].

Accordingly, Traffic Conflicts, near miss or Critical 
Safety Events (CSEs) are spreading as crash surrogate in 
safety studies [2]. CSE is defined as “A traffic event that 
requires a rapid evasive maneuver by the subject vehicle, 
or any other vehicle, pedestrian, cyclist, or animal to avoid 
a crash. A rapid, evasive maneuver can be steering, brak-
ing, accelerating, or combination of control inputs” [57]. 
Bivariate extreme value models showed that pairs of tem-
poral and speed-related indicators should be combined 
in order to properly predict severity of surrogate meas-
ures of safety [7].

Loss of control, turning, breaking and overtaking are 
recurrent maneuvers in CSE involving bicyclists [17, 51]. 
These “evasive maneuvers” are “anomalies” in the normal 
ride behavior whose identification is a complex task due 
to high dimensionality and heterogeneity trajectory data 
(e.g. speed, acceleration, direction) for which deep learn-
ing models for anomaly detection [61] may be more effi-
cient than traditional statistical methods [3].

In this framework, the main contribution of this study 
is the development of an experimental framework where 
convolutional neural network (CNN) deep learning is 
originally applied to integrate multiple GPS data streams 
of bicycle kinematics to detect anomalies in the cycling 

behavior which are associated to evasive maneuvers in 
the occurrence of CSEs. Validation of the results with real 
data and higher performance than traditional threshold 
based, and statistical techniques makes the proposed 
approach promising in order to identify location with 
potential hazard for cyclists by using mobility data that 
can be easily collected in smart cities and communities. 
A case study in the city of Catania, is presented as well.

The paper is organized in the following sections:
Section  2 includes an overview of observational stud-

ies about bicyclist safety and application of CNN to road 
mobility and safety. Section 3 the overall method is pre-
sented in its different conceptual and operative modules 
which includes Dataset preparation (GPS data collection 
(typology and frequency), signal smoothing and cycling 
parameters calculation, data labeling into normal and 
abnormal) and Neural Network Model Synthesis (training 
of the convolutional autoencoder by defining architecture 
and setting the model parameters to perform anomaly 
detection). Section 4 the detection performance method-
ology is validated with real SCEs; different model settings 
are compared, and superior performance is observed over 
traditional detection techniques is shown. Validation 
through Case study is also carried out in Sect. 4 to dem-
onstrate how results can be used in practical application. 
Section  5 is about proposed method, results and future 
recommendations are reported at the end of the paper.

2 � Related background
Section 2.1 we will provide an overview of observational 
studies in cyclist safety of, while in Sect. 2.2 we will focus 
on the research activities related to the use of deep learn-
ing and CNNs for road safety and bicyclist mobility.

2.1 � Observational studies
Literature is extensive about safety assessment using 
observational studies, but in comparison a limited num-
ber of studies are applied to bicyclists [2]. In the InDeV 
project [38], the Safe VRU app was developed for self-
reporting of accidents and near-accidents and has been 
used by more than 400 participants [37]. The target of 
the UDRIVE project [49] was to identify factors in CSEs 
involving a bicyclist; CSEs were identified manually and 
correlated to the features of the infrastructure [52]. In 
the project BIKEALYZE, data was collected by a mobile 
eye tracking, a GPS-based motion data acquisition com-
plemented with acceleration and steering direction data; 
CSEs (e.g. collision avoidance, way-giving violations, 
abrupt braking, abrupt turnout) have been identified by 
video-based analysis and elicitation interviews [13].

In several studies participants had an active role to 
indicate any CSE they experienced via a push-button 

Fig.1  Trends 2010–2018 of fatalities in crashes involving cyclists and 
other transport modes. Source: [18]



Page 3 of 15Yaqoob et al. European Transport Research Review            (2023) 15:9 	

on the vehicle [60] or in a smartphone app [37] or by 
online questionnaires [24]. A study in Sweden [16] col-
lected movement data of 20 bicyclists with an Iner-
tial Measurement Unit (IMU) and GPS installed on an 
instrumented bicycle and analyzed cycling kinematics. 
Longitudinal and lateral accelerations have been con-
sidered relevant for analyzing cycling behavior. Another 
study showed that GPS data must be collected at least 
with a 1 Hz frequency to provide suitable speed profiles 
and to detect hard breaking of cyclists [41], while verti-
cal accelerations acquired at least at 50  Hz by acceler-
ometer sensors are required to analyze cyclist comfort 
and safety due to pavement unevenness [8]. Overtaking 
behaviour of motorized vehicles by measuring the lateral 
distance between the bike and passing vehicle and a sta-
tistical model was developed to predict the probability 
of an unsafe critical maneuver [40] and cyclists’ safety 
perception [48]. In [10], authors developed an algorithm 
to detect a cyclist downfall by combining acceleration 
and rotation thresholds. Strauss & Miranda-Moreno 
[55] proposed a procedure to use cyclist GPS data taken 
by a smartphone to calculate decelerations and corre-
late thresholds with the number of injuries. Despite the 
promising results, they concluded that more granular 
data and validation work needs to be done to improve 
the reliability of the correlation. Perceived risk resulted 
consistently with frequency of CSEs in bicycle paths clas-
sified by a panel of experts analyzing video recording 
and speed and heading GPS data [9]. All these research 
mainly rely on the identification of safety–critical events 
via self-reporting, manual review of video footage pre-
selected thresholds and statistical methods to analyze 
data.

An extensive review [5] reported that the existing solu-
tions for trajectory outlier detection were “algorithm 
based” (e.g. distance-based; density-based; pattern min-
ing–based) with emerging machine learning–based 
schemes that learn the outlier detection from the training 
trajectories to identify anomalies in the newly inserted 
trajectories. Moreover, the research focused more on 
vehicle mobility [50, 59] and not to micro-mobility, such 
as bicycle, which also suffer of a “digital divide” when 
compared to the increasing opportunities for data col-
lection through connected and automated vehicles. More 
specifically, no studies are reported for cycling trajecto-
ries [5].

2.2 � Deep learning in road safety and bicyclist mobility
Recently, deep learning and Convolutional Neural Net-
works (CNN) have been applied in road safety studies 
[25, 30, 31, 39] and driving style analysis [6, 15]. The con-
volutional autoencoders (CAE) allowed the extraction of 

valuable information from large quantities of complex 
and heterogeneous data, showed fast convergence due 
to the convolutional layers, and provided better perfor-
mance with multi-dimensional data compression and 
feature learning making the procedure well suitable for 
managing the mobility data characterized by high vol-
ume, variability and velocity (i.e. big Data) [36].

Dong et  al. [15] made the first attempt of adopting a 
deep neural architecture, based on Convolutional Neural 
Network (CNN) and Recurrent Neural Network (RNN), 
to extract features on the driving style directly from GPS 
data. More recently, Bichicchi et al. [6] applied an unsu-
pervised Denoising Stacked Autoencoder (SDAE) to pro-
vide output layers from kinematic measures tracked with 
an in-vehicle 10  Hz GPS device. The RGB colors of the 
outcomes were associated with different path geometries 
encountered during the driving.

When applied to cyclist mobility, deep learning and 
CNN have been used in the bike-sharing prediction 
modeling, because the use of shared bicycles is suscep-
tible to time dependence and external factors [44], such 
as weather [4, 47], bike rebalancing and land use charac-
teristics. In [14], authors applied the Self Organizing Map 
artificial neural network to identify atypical trajectories 
from video sequences at fixed locations. More recently in 
[1], authors used video records from fixed cameras and 
trajectory data extracted by means of computer vision 
algorithms and Advanced Artificial-Intelligent (AI) tech-
niques to model cyclists’ behavior and their interactions 
with pedestrians in a shared space.

The limitations of the existing works for classification 
of abnormal cycling behavior are summarized as follows: 
observational studies applied on bicyclist safety mainly 
relay on traffic conflict techniques applied to video track-
ing from fixed positions. Few studies used trajectory data 
to identify SCE, but by self-reporting or handled classifi-
cations. In [33], authors uses text mining analytics and an 
Artificial Neural Network (ANN) to extract information 
from near-miss and collision event descriptions, acquired 
from BikeMaps.org, a global tool for mapping collision 
and near-miss events. Deep learning is becoming widely 
applied to transport and road safety studies, but appli-
cation to cycling are mainly focused on mobility choice. 
Results from previous studies about CNN for anomaly 
detections or modeling of motorized driver behavior, 
cannot directly be transferred to cycling because of its 
specific kinematic features and limited availability of 
advanced equipment for data collection as in standard 
naturalistic studies.

To the best of our knowledge, this is the first work 
extending the use of deep learning CNN to extract fea-
tures of the riding style of bicyclists from GPS data and to 
detect anomaly events in cycling behavior.
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3 � Methodology
The overall methodology consists of different tools that 
comprise data preparation and convolutional Neural 
Network training and testing as illustrated in Fig. 2.

3.1 � Dataset preparation
Dataset preparation includes both collection and treat-
ment of GPS data to extract features optimized to train 
the CNN model.

3.1.1 � Data acquisition
The data source is an instrumented bicycle with GPS 
(Global Positioning System) and HD video system (Video 
Vbox Lite). The Video Vbox Lite (VVL) records an 
extended GPS NMEA dataset not limited at only latitude, 
longitude, but including also speed and heading at 10 HZ 
frequency synchronized with a video recording of 2 HD 
cameras. Data accuracy and resolution are reported in 
Table  1. Worthily to mention that GPS in the standard 

Fig. 2  Flow diagram of method

Table 1  Accuracy and resolution of data

Data Accuracy Resolution

GPS Speed 0.1 km/h 0.01 km/h

GPS Heading 0.1° 0.01°

GPS 2 D position  + 3 m 95% CEP* (*) 95% CEP means 95% of the time the position 
readings will fall within a circle of the stated 
radius

GPS time 50 ns 1 ms

Camera 25 frame per second 720 × 576 pixels



Page 5 of 15Yaqoob et al. European Transport Research Review            (2023) 15:9 	

acquisition without augmentation has limited position 
accuracy, but good data quality in speed and heading 
derived from the Doppler method and Carrier Phase 
observations [63].

Data was collected from 10 cyclists, named from ID-1 
to ID-10, who participated in controlled test rides. The 
ten cyclists included eight males and two females. Par-
ticipants were between 27 and 65 years of age, whereas 
40% was over 40 years old. On average, the cycling expe-
rience of users was uniform with a weekly cycling use. 
Only ID-4 was a highly experienced commuter cyclist 
with daily use of bicycle. Participants were instructed 
to ride the instrumented bicycle following their normal 
behavior. The test was carried out in normal weather, 
daylight, and traffic hours. The ride path was long 
around 4  km, traveling different road infrastructures, 
to provide different traffic and road environment con-
ditions that include cycle track, bicycle/bus shared line, 
cycle track termini and one roundabout [41]. Dataset 
collected for each rider contains around 9000 samples 
at 10 Hz acquisition frequency. Regardless of the limited 
number of participants such dataset is appropriate for 
training purposes as we will discuss in the conclusions.

CSEs occurred during the test were identified by the 
research team reviewing the videos together with the 
test rider who explained about the occurrence of an 

actual CSE. A total of 41 CSEs have been detected and 
classified over about 2.5 h of tests. As an example, Fig. 3 
shows a test path section with bicyclist GPS positions 
and time of NMEA data. The two blue dots mark the 
position of one CSE, while the blue boxes show the 
time interval of the CSE in the speed and heading 
profiles. Right corner of the map includes screenshot of 
recorded video.

3.1.2 � Data preprocessing and feature derivation
Once data was recorded, different Python routines were 
applied to (1) Improve the data quality, (2) Interpolate for 
smoothing, (3) Calculate derived parameters and (4) Cre-
ate the data set for training and testing the CNN. In the 
present application, speed (S) and heading (H) define the 
recorded time data in the NMEA string, while longitudinal 
acceleration (LA), traveled Distance (D), heading rate (HR), 
transversal acceleration (TA) and combined acceleration 
(CA) are derived by as shown in Eqs. (1–5).

(1)LA =
(Si+1 − Si)

�T

(2)HR =
(Hi+1 −Hi)

�T

Fig. 3  Map location along video screenshot and GPS features
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where ΔT = 0.1 s, S speed in m/s, H heading in radiant, 
HR in rad/s, LA, LT and CA in m/s2.

Speed and heading data from GPS have a good stand-
ard accuracy as reported in Table  1. Anyway, environ-
mental factors such as satellite view, signal blockage, 
atmospheric conditions can affect precision. Moreover, 
pedaling produces riding oscillation with frequencies 
around 2.5 Hz in the longitudinal speed and 1.2 Hz in the 
lateral direction [16] which can be considered as noise in 
the S and H signals, emphasized by the high frequency 
rate.

Therefore, we applied a Savitzky-Golay smoothing fil-
ter (SGF) to the speed and heading profiles, before cal-
culating their derivatives (i.e., LA, HR, TA, CA). SGF is a 
digital filter [11, 32], well applied in GPS trajectory data 
of urban bus [34, 35], that we adapted to our time series 
dataset of speed and heading to increase the data preci-
sion without deforming the actual signal frequencies and 
shape, reducing noise and determining a smoothed trend 
line for deriving the other parameters.

Figure 4 illustrates the original data parameters speed 
and direction (heading) and their derivate LA and HR 
before (black line) and after (red line) applying SGF. It 
is evident the improvement in the signal smoothness 
especially for the derivate of LA and HR.

3.2 � Neural network model synthesis
In this section, we propose a methodology that exploits a 
convolutional autoencoder for anomaly cycling detection 
in time series. Therefore, we will first provide CNN back-
ground and then, discussion on convolutional autoen-
coders (Sect.  3.2.1). Then, we will present the proposed 
methodology for anomaly detection in the application 
scenario (Sect. 3.2.2).

3.2.1 � Preliminaries: convolutional neural network (CNN)
Deep learning is a recent technology used in several sce-
narios including the identification of anomalous points 
[12, 28]. Convolutional Neural Networks (CNNs) are 
types of deep learning algorithms, introduced to pro-
cess images efficiently and are quite popular for anomaly 
detection as well [61, 62].

(3)D =
(Si + Si+1)

2
�T

(4)

TA =
[(Si + Si+1)/2]

2.HR

D
=

(Si + Si+1).(Hi+1 −Hi)

2.�T

(5)CA = LA2 + TA2
0.5

CNNs automatically extract features from the data 
that are used for classification purposes [34, 35]. The 
architecture of a CNN includes several layers that are 
classified in convolutional layers, pooling layers, and fully 
connected layers (Fig. 5). The convolutional layers are the 
first layers of a CNN, which contains filters in the form of 
weighted matrix (C1) and recognize patterns efficiently 
by reducing the variables dimension. Convolutional 
layers are followed by pooling layers (S) which can be 
repeated several times to summarize features. The last 
layer is the fully connected layer whose neurons (NN) 
take the extracted features as their input as shown in 
Fig. 5.

In our work we use Convolutional Autoencoders and 
thus, we will provide initial information of Autoencoder 
(AE). An AE is a type of artificial neural network and 
popular for anomaly detection, AE consists of two main 
modules: the encoder and the decoder (Fig.  6). The 
encoder maps the input data into a latent vector while 
the decoder tries to reconstruct the input from the latent 
vector.

The encoder is a neural network which is specified by 
a set of parameters which we call wE . As we already said 
the encoder takes as input a n-tuple X and gives as out-
put a m-tuple Z, which we call latent vector, with m ≪ n . 
Obviously, the latent vector Z is a function of the param-
eters wE and the input X as shown in Eq. (6).

The decoder is a neural network, specified by the 
parameters wD which takes as input the latent vector Z 
and gives as output a n-tuple X̂ , i.e. Eq. (7). The AE train-
ing minimizes the difference between the input X and the 
model X̂ as shown in Eq. (8):

where 
∥∥∥X̂ ,X

∥∥∥ represents a measure of the difference 

between X̂ , and X as shown in Eq.  (9). Several ways of 
measuring such difference can be applied. Notable exam-
ples include the Mean Absolute Error (MAE), the Mean 
Squared Error (MSE), and the Root Mean Squared Error 
(RMSE). In our work we applied the MAE because it gave 
the best performance. This was expected; in fact, MSE 
and RMSE square errors before averaging, and therefore, 
they give higher weight to large errors. We opt MAE over 
Mean Square Error and Root Mean Square Error (RMSE) 
due to data distribution and error size suitability. 
Therefore,

(6)Z = fE(wE ,X)

(7)X̂ = fD(wD,Z) = fD
(
wD, fE(wE ,X)

)

(8)X̂ ∼= X ⇒ fD
(
wD, fE(wE ,X)

)
∼= X
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Fig. 4  Speed, Heading with derivate LA, HR before and after SGF (101–4)
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Note that convolutional autoencoders (CAE)s are capa-
ble of learning the most useful feature patterns in the 
input data [27] and anomaly detection [61].

3.2.2 � BeST‑DAD model: the proposed CNN application 
for anomaly detection

We call the complete scheme proposed for anomaly 
detection in the scenario of interest: ‘Bicycle Safety 
through Deep learning-based Anomaly Detection’ 

(9)MAE =

∥∥∥X̂ ,X
∥∥∥ =

1

n

n∑

i=1

∣∣∣X̂i − Xi

∣∣∣

(BeSt-DAD). Best-DAD employs a 1-D CAE as depicted 
in (Fig.  6). The input consists of a sequence of time-
data samples ,X1,X2, . . . ,X6 generated at a frequency 
of 10  Hz. The generic Xi is a 6-tuple of values, i.e.,  
Xi = [xi1, xi2, xi3, xi4, xi5, xi6] which represent the speed, 
heading, heading-rate, longitudinal acceleration, trans-
versal acceleration, combined acceleration, calculated as 
discussed in the previous Sect. 3.1. Thus, the input data 
is 2-dimensional matrix in nature, as shown in Fig. 6, that 
we flatten as a 1-dimensional input sequence of type as 
shown in Eq. (10).

The number of samples j composing the input sequence 
as window size. Experiments show that a good value for 
j is j = 40 . Therefore, the input size of the encoder is 
n = 40× 6 = 240.

Figure  6 shows the overall architecture of BeSt-DAD 
where encoder consists of 2 convolutional layers. We 
applied Stride as an advance convolutional parameter 
which is capable to replace max pooling with less com-
putation. Padding is used to maintain output dimension 

(10)
x11, x12, x13, x14, x15, x16, x21, x22, x23, x24, x25, x26, . . .

Fig. 5  Basic CNN Architecture

Fig. 6  BeST-DAD scheme
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as input while activation function is responsible for neu-
ron activation. In our case, each of convolutional layer 
reduces the input dimension of a factor equal to the 
stride, i.e., four. As a result, the output of the first con-
volutional layer has a dimension equal to 60, whereas the 
output of the second layer, that is, the latent vector Z, has 
dimension equal to m = 15.

The decoder consists of two de-convolutional layers 
and a dropout layer which avoids model over fitting. The 
output of the decoder will have dimension again equal to 
240 and compared to the input by calculating the mean 
absolute error (MAE). If this MAE is higher than a given 
threshold an anomaly warning is issued. Observe that the 
value of the such threshold is a critical parameter. We will 
discuss how to select it in the next section.

4 � Results
In the following Sect.  4, the proposed scheme will be 
validated by comparing the actual CSE detected as dis-
cussed in Sect. 3.1.1, which we call “real positives”, to the 
anomalies in cycling behavior detected by BeST-DAD, 
which we call “CNN positives” (Sect. 4.2). For compari-
son analogous validations have been carried out by using 
Principal Component Analysis as robust standard statis-
tical approach for feature reduction and anomaly detec-
tion, and the more widespread method based on setting 
a threshold in the longitudinal acceleration to identify 
hard breaking. Results are presented and analysis is done 
in Sects. 4.3 and 4.4, based on quantitative performance 
metrics presented in Sect. 4.1.

4.1 � Performance metrics
In a binary classification, ‘’Positive’’ and ‘’Negative’’ 
assignments refer to the classifier’s prediction, and the 
terms ‘’True’’ and ‘’False’’ refer to whether that prediction 
corresponds to the real observation. Given these defini-
tions, the confusion matrix (CM) describes the perfor-
mance of the classification model as shown in Table 2.

CM is useful for calculating two metrics of 
classification performance called Recall and Precision. 
Precision (P) measures the rate of true positive (TP) 
over the total predicted positive (TP + FP). The Recall 
(R) computes model’s ability to detect TP over the total 
number of real positives (TP + FN). For our classification 

with unbalanced data due to the small number of real 
Positive, the F-measure (Fβ) is an effective quantitative 
metric to select the model setting which minimizes the 
errors [23]. Fβ score, in Eq. (11), is the weighted harmonic 
mean of precision and recall, that ranges between 0 and 
1.

As commonly used to emphasize Precision against 
Recall, we applied a weight β = 2, because we are more 
interested in limiting FN (i.e., missing detection of CSEs) 
rather than FP.

4.2 � Criteria for classification of CNN‑positive
Our event detection criteria are illustrated in (Fig.  7) 
and defined as follows. Considering the observed time 
extension of a real CSE in the range of 0.8–3.1  s with 
an average of 1.4  s and the high time variability of the 
kinematic parameters in the cyclist riding, events with 
MAE > threshold of less than one second were not 
classified as “CNN positive” and detection sequences 
within 5 s have been classified as one CNN positives.

4.3 � Model testing
The model performance measured by R, P and F2 is 
affected by several factors related to the data and CNN 
setting and varies by changing the classification thresh-
old. Therefore, to evaluate the results, two major compar-
isons are carried out: first comparison case is carried out 
by using various model settings and features, while other 
comparison case is done between BeST-DAD and alter-
native detection approaches like Principal Component 
Analysis (PCA) and breaking acceleration threshold.

To maximize the performance of the model and to 
learn new insights about cycling behavior modeling, 

(11)Fβ =

(
1+ β2

)
× P × R(

β2 × P + R
)

Table 2  Confusion Matrix (CM)

Real positive Real negative

CNN positive TP FP

CNN negative FN TN
Fig. 7  Anomaly identification example. Orange bar: Real positive; red 
bar: CNN positive
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model setting and features relate to the following 
comparisons: CNN setting by changing (A) Training and 
testing, (B) Thresholds and (C) Size of the time windows; 
input dataset by varying (D) Use of SGF filter and (E) Use 
of only speed related variables: speed and longitudinal 
acceleration or (F) Use of only heading related variables: 
heading and Heading rate.

Furthermore, two scenarios have been selected for 
training and testing of the model:

(A1) Training and Testing CNN for each user, by 
using 80% of data for training and 20% of data for test-
ing. The average training time in scenario A1 is 30.142 s 
for each user.

(A2) Training with the data collected by consider-
ing the entire dataset related to only one user and 
testing with 100% of the data from all the other users. 
The average training time in scenario A2 is 26.642 s at 
all. Results and values of Recall, Precision and F2 are 
reported in Table 3.

For the first scenario (A1), where each user adopts its 
own model, we reached the absolute best performance 
with an average F2 = 0.77. In the second scenario (A2), 
the model is trained with the full dataset data of one-
by-one user and tested with 100% of data from the 
other users with an average F2 = 0.72. Anyway, training 
with ID-4 as reference user and testing with all other 
users gave the best F2 score of 0.77. While comparing 
the two different training approaches, we applied the 
best CNN settings in Table 3, with SGF, 40 TS-window, 
and all input parameters.

Results in Table 3 for scenario A1 show that training 
tailored CNN models for each user returned the best 
results. Anyway, in practical application, scenario A1 
means the need to train BeST-DAD model for each 
user sharing his/her cycling data. While in scenario A2, 
transferring the model trained on one user returned 
slightly worse performances, but an overall average F2 
comparable with the previous scenario, as well.

The previous result illustrates the reason of “ID-4” 
selection as 100% training dataset for the further com-
parisons, given the good performance and availability of 
a larger dataset for testing purposes (i.e., 100% of data for 
user ID-1, …, ID-9) by using the full set of 41 real-posi-
tives for testing.

Results for the other validation scenarios (B, C, D, E, 
F) are presented in Table 4. First, we tested CNN setting 
for different thresholds (T) and time window sizes (TW) 
(scenarios B, C). Results in Table 4 confirm the best per-
formance when T = 0.18 and TW = 40. Best values of 
TW and T also have meaning in explaining the cycling 
behavior. MAE = 0.18 is equal to the 88th percentile of the 
overall Loss values, while MAE = 0.21 is the 93rd percen-
tile, showing that anomaly cycling behaviors for evasive 
maneuvers are quite rare (12% of the cycling time), but 
not exceptional events in the riding path especially in 
shared lanes as will be highlighted in Sect. 5.

Without the application of the SGF filter the high-
frequency time-variability of the cycling data returned 
many CNN-positive with high Recall, but also many 
FPs returning a very low Precision (P = 0.36). It is worth 
noting that merging speed and heading parameters had 

Table 3  F-Score based performance evaluation for proposed scenarios

The significance of bold is linked to the best result of the model

Scenario A1: Training = 80% of dataset, Testing = 20% of dataset, 
Preliminary Selection: Filtered data with TS_window size 40

Scenario A2: Training = 100% dataset of any one user, Testing = 100% 
dataset of all other users, Preliminary Selection: Filtered data with 
TS_window size 40

User T RP CNN Performance metrics User’s for training T RP CNN Performance metrics

Recall Precision F2 Recall Precision F2

ID-1 0.21 3 4 1 0.75 0.94 ID-1 0.18 33 47 0.76 0.53 0.70

ID-2 0.21 4 3 0.75 1 0.79 ID-2 0.18 37 39 0.70 0.67 0.69

ID-3 0.21 1 2 1 0.5 0.83 ID-3 0.18 38 47 0.76 0.62 0.73

ID-4 0.21 0 3 - - ID-4 0.18 41 43 0.78 0.74 0.77
ID-5 0.21 1 1 1 1 1.00 ID-5 0.18 38 46 0.74 0.61 0.71

ID-6 0.21 3 3 1 1 1.00 ID-6 0.18 35 47 0.77 0.57 0.72

ID-7 0.21 1 2 1 0.5 0.83 ID-7 0.18 39 49 0.80 0.65 0.76

ID-8 0.21 2 3 0.5 0.33 0.45 ID-8 0.18 34 41 0.76 0.63 0.73

ID-9 0.21 1 2 0 0 0.00 ID-9 0.18 37 45 0.73 0.60 0.70

ID-10 0.21 2 2 1 1 1.00 ID-10 0.18 37 41 0.65 0.59 0.64

Weighted 
Average

0.21 18 26 0.83 0.60 0.77 Weighted Average 0.75 0.62 0.72
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the most important impact in improving the model 
performance. Results showed that without including 
heading derived parameters (i.e., HR, TA, CA), the 
model performance decreases significantly by missing 
several detections with more FNs and FPs (low R and P 
in Table 4). That is expected for cyclists, rather than other 
road users, because they apply both braking and swerving 
as evasive maneuver. Analyzing results, when Precision 
and Recall are compared it is noteworthy that Recall is 
always higher than Precision. This is significant because, 
in our application scenario missing CSE (FN) is of higher 

concern than False Positive. Moreover, FP may not be 
wrong detection of cycling anomalies, but often have 
been identified as changes of cycling behavior related to 
other events not classified as CSE (e.g., hard braking at 
traffic lights, avoiding pavement bumps, potholes etc.).

Finally, to further evaluate the effectiveness of deep 
learning in detecting CSEs, the performance metrics 
have been calculated also by applying a robust PCA 
statistic and the traditional empirical approach based on 
breaking acceleration threshold [56]. Results in Table  4 

Table 4  Comparison results for different model settings and existing approach

Validation Threshold Performance metrics

Recall Precision F2

B1) Threshold = 0.15 0.15 0.80 0.54 0.73

B2) Threshold = 0.21 0.21 0.46 0.68 0.49

C1) TS_window_size = 64 0.18 0.68 0.59 0.66

C2) TS_window_size = 80 0.18 0.56 0.59 0.57

D) No SGF Filter + speed and Heading parameters 0.18 0.95 0.36 0.72

E) SGF + Only Speed parameters 0.18 0.61 0.57 0.60

F) SGF + Only Heading parameters 0.18 0.54 0.67 0.56

A1) Training each user (80/20) TS_window_size = 40, SGH + Speed param-
eters + Heading parameters

0.21 0.83 0.60 0.77

A2) Weighted Average of A2 0.75 0.62 0.72

PCA—training each user (80/20), TS_window_size = 40 0.17 0.66 0.34 0.45

PCA—ID-4 training (100%), TS_window_size = 40, SGH + Speed param-
eters + Heading parameters

0.17 0.49 0.44 0.47

Breaking Threshold—ID-4 training (100%), only Speed parameters variable  < 0.30  < 0.30  < 0.30

Fig. 8  Map of BeST-DAD anomaly detections
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confirm the higher performance of deep learning for 
event classification.

4.4 � Validation through case study and risk assessment
In order to show the practical results of BeST-DAD for 
risk assessment and ranking, the procedure was applied 
to the trajectory data and anomaly detections located 
with the GPS coordinates in the different roadway 
sections composing a mixed cycling path (i.e. cycle track, 
roundabout, cycle track termini and bicycle/bus shared 
lane) (Fig. 8.).

The exposure to the occurrence of a conflict rises with 
the time the bicyclist spends in the road section and 
therefore cycling time was considered as an exposure 
metric to rate the number of anomalies among different 
roadway components to make the results comparable.

Risk Rate = N. of anomalies/cycling time.
The mean cycling time is reported in Fig.  9 which 

also shows the total number of BeST-DAD anomaly 
detections in the different road sections travelled during 
the test and the comparison between observed and CNN 
risk rates in a normalized scale (0–1).

Figure  9 shows cycle track termini at the highest risk 
rank followed by the roundabout. The normalized Risk 
Rate are also calculated to allow for comparisons with 
the observed risk rate reported in previous study [9]. 
It should be noted that in Fig. 9, the very good consist-
ency between the two-risk ratings for cycling track and 
shared lane. Also consistent are the higher rating for 
lane termini and roundabout, even if BeST-DAD has 
classified a higher risk at the Cycle track termini than 
the one observed by actual CSE. The cycle termini end 
with a sharp curve before the lane crossing (Fig. 9) where 
cyclists were required to steer and often stop showing as 
anomalies in riding behavior (e.g. hard braking and steer-
ing) that have been correctly detected by BeST-DAD 

although not specifically related to traffic conflicts and 
therefore classified as FPs.

5 � Conclusion
Cyclists are vulnerable road users, and their safety is a 
serious issue to be addressed with increasing number of 
fatalities among cyclists. Due to the lack of reliable data 
for crash analysis and the opportunities to collect new 
data in the smart cities and bicyclist communities, inno-
vative observational studies can offer new approaches 
for a network-wide safety assessment of VRUs consistent 
with the EU directive [19].

Auto-encoders are mainly utilized for dimensionality 
reduction, feature extraction, image denoising, anomaly 
detection and image compression [6]. In the authors- 
knowledge that is the first attempt to use both speed 
and direction GPS data with customized Convolutional 
Autoencoder to automatically detect anomalies in cycling 
behavior that can be associated to critical safety events 
(CSE) and plotted on map as risky points.

Performance of the classification was very good consid-
ering the low rate of FN with Recall of 100% in 6 out of 9 
tests after individual training of the model (Table 3). Fur-
thermore, in scenario A2 (Sect. 5), we have seen that also 
a model trained using the dataset for one selected rider 
can be effectively transferred to the other riders with 
R = 0.78 and F2 = 0.77. This result is interesting because, 
in large scale applications, the use of a pre-trained model 
results in the reduction of communication and energy 
resources and more suitable to protect the user privacy.

Performance evaluation of BeST-DAD for different 
model settings (Table  4) demonstrates that adding 
direction information (heading, heading rate, transversal 
acceleration) to the more traditional only speed 
parameters (speed and longitudinal acceleration), 

Fig. 9  Travel Time and risk rate in various road typologies
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improved remarkably the capability of the model to 
detect anomalies in cycling. Data filtering by using SGF 
played a positive role in reducing the FPs, although 
CNN showed good capability to handle noise and 
extract features from raw input data as we observed 
weighted average of scenario A2 of Table  3. The 
advantageous application of CNN was also proven by 
the best performance of proposed BeST-DAD over other 
traditional statistical techniques like PCA or heuristic 
threshold-based method applied to the cyclist braking 
rate. A case study showed the practical application and 
consistency of risk assessment and ranking.

5.1 � Lessons learned and future needs
Despite the good performance of the CNN trained on 
the reference cyclist, we can expect larger deviance 
increasing the number of users. Because the CNN model 
depends on both the user and the specific road environ-
ment, transfer learning and cooperative learning [43] can 
be applied in real time to the model trained and transfer 
its knowledge to the specific user and road environment. 
To model the cycling behavior, our study used extended 
GPS NMEA contents (i.e. Speed, Heading) at high 10 Hz 
acquisition frequency which are not common in pre-
sent smartphone and data mobility-data providers (e.g. 
Strava) following mainly the targets of profiling users’ 
destinations and flows or fitting activity which need low 
frequency data acquisition (e.g. positions at 0.2  Hz). 
Therefore, frequencies up to 1  Hz are not yet available 
in standard smartphones whose development is mov-
ing mainly in the direction of improving the localization 
accuracy while already appropriate are speed and head-
ing accuracy. To achieve the suitable higher frequency, an 
alternative to be evaluated is the capability of using SGF 
also for sub-sampling the GNSS signals at higher fre-
quencies than the actual sampling rate [41].
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