Skip to main content
. 2023 Mar 23;15(1):9. doi: 10.1186/s12544-023-00583-4

Table 3.

F-Score based performance evaluation for proposed scenarios

Scenario A1: Training = 80% of dataset, Testing = 20% of dataset, Preliminary Selection: Filtered data with TS_window size 40 Scenario A2: Training = 100% dataset of any one user, Testing = 100% dataset of all other users, Preliminary Selection: Filtered data with TS_window size 40
User T RP CNN Performance metrics User’s for training T RP CNN Performance metrics
Recall Precision F2 Recall Precision F2
ID-1 0.21 3 4 1 0.75 0.94 ID-1 0.18 33 47 0.76 0.53 0.70
ID-2 0.21 4 3 0.75 1 0.79 ID-2 0.18 37 39 0.70 0.67 0.69
ID-3 0.21 1 2 1 0.5 0.83 ID-3 0.18 38 47 0.76 0.62 0.73
ID-4 0.21 0 3 - - ID-4 0.18 41 43 0.78 0.74 0.77
ID-5 0.21 1 1 1 1 1.00 ID-5 0.18 38 46 0.74 0.61 0.71
ID-6 0.21 3 3 1 1 1.00 ID-6 0.18 35 47 0.77 0.57 0.72
ID-7 0.21 1 2 1 0.5 0.83 ID-7 0.18 39 49 0.80 0.65 0.76
ID-8 0.21 2 3 0.5 0.33 0.45 ID-8 0.18 34 41 0.76 0.63 0.73
ID-9 0.21 1 2 0 0 0.00 ID-9 0.18 37 45 0.73 0.60 0.70
ID-10 0.21 2 2 1 1 1.00 ID-10 0.18 37 41 0.65 0.59 0.64
Weighted Average 0.21 18 26 0.83 0.60 0.77 Weighted Average 0.75 0.62 0.72

The significance of bold is linked to the best result of the model