Skip to main content
. 2023 Mar 23;15(1):9. doi: 10.1186/s12544-023-00583-4

Table 4.

Comparison results for different model settings and existing approach

Validation Threshold Performance metrics
Recall Precision F2
B1) Threshold = 0.15 0.15 0.80 0.54 0.73
B2) Threshold = 0.21 0.21 0.46 0.68 0.49
C1) TS_window_size = 64 0.18 0.68 0.59 0.66
C2) TS_window_size = 80 0.18 0.56 0.59 0.57
D) No SGF Filter + speed and Heading parameters 0.18 0.95 0.36 0.72
E) SGF + Only Speed parameters 0.18 0.61 0.57 0.60
F) SGF + Only Heading parameters 0.18 0.54 0.67 0.56
A1) Training each user (80/20) TS_window_size = 40, SGH + Speed parameters + Heading parameters 0.21 0.83 0.60 0.77
A2) Weighted Average of A2 0.75 0.62 0.72
PCA—training each user (80/20), TS_window_size = 40 0.17 0.66 0.34 0.45
PCA—ID-4 training (100%), TS_window_size = 40, SGH + Speed parameters + Heading parameters 0.17 0.49 0.44 0.47
Breaking Threshold—ID-4 training (100%), only Speed parameters variable  < 0.30  < 0.30  < 0.30