
CLINICAL RESEARCH ARTICLE OPEN

Pharmacogenetic profiling via genome sequencing in children
with medical complexity
Amy Pan1, Sierra Scodellaro2,3, Tayyaba Khan1, Inna Ushcatz1, Wendy Wu1, Meredith Curtis1, Eyal Cohen4,5,6,7,8, Ronald D. Cohn1,4,5,9,10,
Robin Z. Hayeems6,7,11, M. Stephen Meyn4,9,10,11,12, Julia Orkin4,5,6, Jaskiran Otal5, Miriam S. Reuter13, Susan Walker13,
Stephen W. Scherer1,10,11,13, Christian R. Marshall11,13,14,15, Iris Cohn2,3 and Gregory Costain1,4,9,10✉

© The Author(s) 2022

BACKGROUND: Children with medical complexity (CMC) are a priority pediatric population, with high resource use and associated
costs. Genome-wide sequencing is increasingly organized for CMC early in life as a diagnostic test. Polypharmacy becomes
common as CMC age. Clinically relevant pharmacogenetic (PGx) information can be extracted from existing genome sequencing
(GS) data via GS-PGx profiling. The role of GS-PGx profiling in the CMC population is unclear.
METHODS: Prescribed medications were extracted from care plans of 802 eligible CMC enrolled in a structured Complex Care
Program over a 10-year period. Drug-gene associations were annotated using curated Clinical Pharmacogenetics Implementation
Consortium data. GS-PGx profiling was then performed for a subset of 50 CMC.
RESULTS: Overall, 546 CMC (68%) were prescribed at least one medication with an established PGx association. In the GS-PGx
subgroup, 24 (48%) carried variants in pharmacogenes with drug-gene guidelines for one or more of their current medications. All
had findings of potential relevance to some medications, including 32 (64%) with variants in CYP2C19 that could affect their
metabolism of proton-pump inhibitors.
CONCLUSION: GS-PGx profiling at the time of diagnostics-focused genetic testing could be an efficient way to incorporate
precision prescribing practices into the lifelong care of CMC.
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IMPACT:

● Polypharmacy and genetic test utilization are both common in children with medical complexity.
● The role of repurposing genome sequencing data for pharmacogenetic profiling in children with medical complexity was

previously unclear.
● We identified a high rate of medication use with clinically relevant drug-gene associations in this priority pediatric population

and demonstrated that relevant pharmacogenetic information can be extracted from their existing genome sequencing data.
● Pharmacogenetic profiling at the time of diagnostics-focused genetic testing could be an efficient way to incorporate precision

prescribing practices into the lifelong care of children with medical complexity.

INTRODUCTION
Children with medical complexity (CMC) are a well-studied,
clinically defined group in pediatrics.1–3 They typically have at
least one severe chronic condition, technology dependence,
multiple subspecialist involvement, and extensive care coordina-
tion needs.1 Polypharmacy is common in CMC4–6 and was recently
identified as a high-priority research area by clinicians and

families.7 Adverse drug reactions (ADRs) and drug therapeutic
failure are both a cause and a consequence of polypharmacy in
children.5,8 For many medications, dose requirements, efficacy,
and risk for ADRs are partially determined by an individual’s
genetic profile.9,10 Genotype-guided prescribing is an innovative
care model in pediatric medicine11 that has not been explored
in CMC.
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Medications prescribed to children often have established,
clinically actionable drug-gene interactions that afford opportu-
nities for genotype-guided prescribing.12 A major barrier to the
wider adoption of pharmacogenetic (PGx) testing in routine
clinical practice is that results are rarely already available at the
point of prescription. To address this in CMC, it may be possible to
utilize the data already generated from the high rate of uptake of
diagnostics-focused genetic testing.13,14 Exome sequencing and
genome sequencing (GS) are increasingly considered first- or
second-tier tests for genetically heterogeneous pediatric
presentations,13,15,16 which includes most CMC. GS data can be
repurposed to identify PGx variation and corresponding pheno-
types, in a process that we term GS-PGx profiling.17 The utility of
GS-PGx profiling in the overall CMC population is unknown.
In this study, we characterized the landscape of polypharmacy

in a large cohort of CMC, including annotating medications for
known drug-gene associations. We then organized GS-PGx
profiling for a subgroup with existing GS data.13 We hypothesized
that a majority of CMC would be prescribed medications with
established PGx associations detectable by GS-PGx profiling.

METHODS
Defining the study population
CMC were considered for this study if they were followed by the Complex
Care Program18 at The Hospital for Sick Children (Toronto, Canada) at any
point between January 1, 2010, and November 1, 2020. Polypharmacy is not
a formal criterion for acceptance into this Complex Care Program. Of the 837
potentially eligible CMC, 35 were excluded because the family: (i) declined
Complex Care services after referral or were not followed long enough to
have a comprehensive care plan,14 and/or (ii) requested a closed chart and
declined data sharing. For each of the remaining 802 CMC, phenotype,
medication, and genetic testing data were extracted from their electronic
medical records and stored in a REDCap database. This retrospective chart
review with an accompanying patient consent waiver was approved by the
Research Ethics Board at The Hospital for Sick Children. A subgroup of CMC
and their family members had existing GS data and subsequently underwent
GS-PGx profiling (see below). Additional recruitment details and phenotype
data for this subgroup were published previously;13 one additional proband
and his two parents were sequenced after this publication, for a total of
n= 50 CMC probands and n= 89 parents.

Annotating medications with PGx associations
Current medications were those listed in each child’s most recent
comprehensive care plan.14 Medications were categorized by target
system(s) and pharmacologic indication(s) using pharmacology indexing
databases including Micromedex® (micromedexsolutions.com), and then
annotated for PGx associations with “pharmacogenes”.10 These drug-gene
interactions may prompt clinical action to alter medication plans according to
Clinical Pharmacogenetics Implementation Consortium (CPIC®) Dosing
Guidelines.19 We consulted either guidelines specific to pediatric populations,
or guidelines applicable to both adult and pediatric populations. We included
drug-gene associations with confirmed CPIC® levels of significance A or B,
and/or those with an “Actionable PGx” label as denoted by the Food and
Drug Administration.19 Natural health products, topical agents, as-needed or
PRN medications, and select other compounds were a priori excluded from
medication counts (Supplementary Table S1) for the following reasons: (i)
precedent set by prior PGx studies,2,11,12,20 and (ii) suspected high rate of use
and inconsistent reporting in comprehensive care plans.

GS-PGx profiling
We performed GS using our established methods20,21 at The Centre for
Applied Genomics (Toronto, Canada). Briefly, we completed short-read GS
with the HiSeq X Platform (Illumina Inc) using blood-derived DNA from 50
CMC and their family members. Stargazer (version 1.0.8) was used to call
genetic polymorphisms with known PGx associations.22 Stargazer detects
single nucleotide, indel, and structural variants to output PGx diplotypes of
51 possible pharmacogenes. We selected and obtained results for 16
pharmacogenes with clinically significant associations: CACNA1S, CFTR,
CYP2B6, CYP2C19, CYP2C9, CYP2D6, CYP3A5, DPYD, G6PD, NAT2, NUDT15,
RYR1, SLCO1B1, TPMT, UGT1A1, and VKORC1.23 Quality control measures

included using the family data to ensure Mendelian segregation of specific
alleles. We called known CYP2D6 structural variants (e.g., CYP2D6*5) but
not novel structural variants, because of the complexity of the region and
consequent technical limitations of Stargazer. Variants that do not follow
conventional PGx nomenclature were named with an “S” prefix, as per the
naming convention within Stargazer.22 PGx diplotypes were then analyzed
to determine their corresponding phenotypes (where known). Phenotype
categories included a metabolizer status of normal, intermediate, poor,
rapid, or ultrarapid, as well as a gene function status of normal, increased,
or decreased function. We use the term “PGx variant(s)” in this study to
refer to all non-normal metabolizer and gene function statuses.

Statistical methods
Standard descriptive statistics and graphs were generated using R
statistical software, version 4.1.0 (R Foundation for Statistical Computing).
Statistical significance was defined as a two-tailed p value of <0.05.

RESULTS
Genetic test utilization and polypharmacy were both common
in CMC
In the cohort of 802 CMC, 447 were males (56%), the median year
of birth was 2013 (range, 1999–2020), and the diversity in reported
ancestry was reflective of the general population in our region
(Supplementary Table S2). Over 88% (n= 706) had undergone at
least one clinical genetic test. This included 314 CMC (39%) who
had genome-wide testing (chromosomal microarray analysis,
exome sequencing, and/or GS) before 1 year of age.
The median number of current medications per child was 3

(range, 0–13) after relevant exclusions (Supplementary Table S3),
and 558 CMC (70%) were prescribed at least two medications. The
most common classes of drugs were gastrointestinal (GI) agents
(n= 493, 61%) and central nervous system (CNS) agents (n= 405,
50%) (Supplementary Table S4). The most common medication
sub-categories were gastric acid reducers (n= 467, 58%), antic-
onvulsants (n= 346, 43%), antiemetics (n= 224, 28%), and asthma
(n= 205, 26%) (Supplementary Table S5).

CMC were often prescribed medications with PGx associations
Overall, 546 (68%) of 802 CMC were currently prescribed at least
one medication with an established PGx association (Fig. 1a). This
included 450 CMC (56%) for one or more GI agents (e.g., 347 CMC
were prescribed omeprazole, which interacts with CYP2C19) and
217 (27%) for one or more CNS agents (e.g., 117 CMC were
prescribed clobazam, which interacts with CYP2C19) (Fig. 1b). The
proportions of CMC prescribed medications with PGx associations,
by drug category and sub-category, are listed in Supplementary
Tables S4 and S5, respectively.
Results were similar in the subgroup that underwent GS-PGx

profiling (Fig. 1a), with 39 of 50 (78%) currently prescribed at least
one medication with an established PGx association. GI, CNS, and
respiratory agents with PGx associations were all in use by ten or
more of these CMC (Supplementary Table S4). The two medication
sub-categories with the highest PGx relevance were gastric acid
reducers (specifically, the proton-pump inhibitors (PPIs) omepra-
zole, lansoprazole, and pantoprazole; currently prescribed to a
total of 31 CMC) and anticonvulsants (specifically, carbamazepine,
clobazam, lamotrigine, oxcarbazepine, and valproic acid; currently
prescribed to a total of 16 CMC). Half (8 of 16 CMC) were
prescribed two or more of these anticonvulsants.

GS-PGx profiling identified findings in CMC relevant to their
current medications
The median number of PGx variants per CMC was 5 (range, 2–8).
GS-PGx findings by pharmacogene are summarized in Fig. 1c. For
example, 32 (64%) of the 50 CMC had CYP2C19 diplotypes that
could impact dosing for some of the most prescribed medications
in CMC (i.e., PPIs): 13 were intermediate metabolizers, 13 were
rapid metabolizers, 3 were ultrarapid metabolizers, and 3 were
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poor metabolizers (Fig. 1d). The burden of PGx variants amongst
the parents of CMC was similar, with a median of 5 (range, 1–8)
per parent (Supplementary Table S6).
Cross-referencing GS-PGx profiling results with current medica-

tion lists identified 48% of CMC (24 of 50) with at least one
applicable drug-gene association (Fig. 1a and Supplementary
Table S7). This included 5 CMC (10%) who were prescribed two or
more different medications with each impacted by that child’s
variation in a different pharmacogene. A major contributor to
these findings was the association between CYP2C19 diplotypes
and metabolism of PPIs (Fig. 1d and Supplementary Table S7).
There were 18 CMC with metabolizer statuses currently affecting a
prescribed medication: 9 intermediate, 7 rapid, 1 ultrarapid, and 1
poor. Eight additional CMC were not currently prescribed a PPI but
had CYP2C19 diplotypes indicating a rapid or ultrarapid meta-
bolizer status. Review of lifetime medication histories revealed
that at least five of eight had trialed a PPI in the past, suggesting a
missed opportunity for genotype-guided prescribing. Figure 2
depicts a representative case vignette.

DISCUSSION
These results indicate that CMC are often prescribed medications
with established PGx associations and dosing guidelines. PGx

diplotypes can be reliably extracted from GS data. Genetic test
utilization is already high in CMC, and exome sequencing and
chromosomal microarray analysis are expected to be replaced by
GS in the coming years.13,15,16,24 Genotype-guided prescribing can
have the greatest impact when initiated at a child’s first point of
contact with the healthcare system,25 with the caveat that some
findings may not be applicable until after the neonatal period or
infancy.25,26 GS-PGx profiling at the time of initial etiologic-based
testing therefore warrants strong consideration in CMC (Fig. 2).

CMC are a priority population for trialing genotype-guided
prescribing in pediatrics
Unique characteristics of CMC provide the rationale for positioning
them at the leading-edge of broad PGx testing amongst children
and adolescents. Neurological impairment, multi-organ system
disease, and multiple subspecialist prescribers are all common,
and these factors can complicate clinical assessment of treatment
response/failure and side effects. Medication use patterns are shared
across CMC because of the development of similar comorbidities
over time, particularly in those with severe neurological impair-
ment.27 Medication dosing that is unsuited to the individual’s
genetic profile may place additional stress on patients and their
families.5,28 PGx data can also provide insight into drug-drug
interactions, a common concern in polypharmacy.29 The prevalence
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of polypharmacy in this study cohort was comparable to adults with
psychiatric illness and the elderly, populations where PGx profiling is
most common and best established.30 As expected, PGx variants
were as common in CMC as they are in the general population.19,31

These observations suggest a strong potential for GS-PGx profiling
to alter medication choices and dosages for CMC, particularly with
PPI selection and dosing for rapid and ultrarapid metabolizers in
accordance with published CPIC® guidelines.32

We propose to integrate GS-PGx as a secondary use of GS data
being generated for diagnostic purposes. Efforts to clinically
validate this approach are in progress at our center and others.33

Automated reporting will facilitate its application.34 With GS-PGx
being a low-cost adjunct analysis to an already planned GS
experiment, there is the potential for cost-effectiveness. Important
barriers and knowledge gaps remain, however. There is a relative
paucity of data in the pediatric age range.26 Certain “established”
PGx associations cannot be extrapolated to neonates because of
key physiological differences (e.g., immature enzyme expres-
sion).25 Clinical implementation of GS-PGx will need to be
accompanied by continuing professional education and other
initiatives to ensure appropriate interpretation of findings at the
bedside.9

Advantages and limitations
We used a cross-sectional design that captured current medica-
tion use at a single point of time. As illustrated by our post hoc
review of lifetime medical records for those with CYP2C19 rapid
and ultrarapid metabolizer statuses, we have likely underesti-
mated both the scope of polypharmacy and the potential role of

PGx. Our a priori exclusion criteria with respect to medication
counts were also conservative; many as-needed or PRN medica-
tions have well-established drug-gene associations (e.g., ibuprofen
and CYP2C9). We were unable to determine conclusively whether
current or past medication use was influenced by ADRs.
We were conservative in considering only drug-gene associations

at CPIC® levels of significance A and B only. Many drugs remain
under review for clinical significance and have not yet been
assigned a CPIC® significance level (resulting in “Provisional” status).
Provisional drug-gene pairs like valproic acid and POLG, or
fluticasone propionate and CRHR1, could become particularly
relevant to CMC given the high rate of associated medication use.
Compared with targeted genotyping approaches, GS-PGx profiling
was able to identify uncommon PGx alleles in this ethnically diverse
cohort (e.g., CYP2C9*3, CYP2D6*20; Supplementary Table S8).
However, interpretation of ultra-rare and novel genetic variants in
pharmacogenes, which can be detected by GS, remains challen-
ging.35 HLA genotyping remains beyond the analytical scope of GS-
PGx for now because of the complexity of that genomic region.17

Last, we acknowledge the ongoing technical limitations of
Stargazer. There continue to be challenges in predicting rare
alleles and resolving star alleles in instances of heavy sequence
noise and complex structural variation.36 For example, UGT1A1*28
is a short tandem repeat in a non-coding region that cannot be
reliably detected because of the complexity of regional structural
variation. At present, Stargazer is the bioinformatics tool that is
most readily available and widely used to perform GS-PGx
profiling.33 Improvements in both GS and PGx profiling are
expected over time.
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CONCLUSION
GS-PGx profiling at the time of diagnostics-focused genetic testing
could be an efficient way to incorporate precision prescribing
practices into the lifelong care of CMC. These data provide the
impetus for further study of GS-PGx, to determine therapeutic,
patient outcome, and societal efficacies in clinical practice.37
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