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Introduction: Bladder magnetic resonance imaging (MRI) has been recently

integrated in the diagnosis pathway of bladder cancer. However, automatic

recognition of suspicious lesions is still challenging. Thus, development of a

solution for proper delimitation of the tumor and its separation from the healthy

tissue is of primordial importance. As a solution to this unmet medical need, we

aimed to develop an artificial intelligence-based decision support system, which

automatically segments the bladder wall and the tumor as well as any suspect

area from the 3D MRI images.

Materials: We retrospectively assessed all patients diagnosed with bladder

cancer, who underwent MRI at our department (n=33). All examinations were

performed using a 1.5 Tesla MRI scanner. All images were reviewed by two

radiologists, who performed manual segmentation of the bladder wall and all

lesions. First, the performance of our fully automated end-to-end segmentation

model based on a 3DU-Net architecture (by considering various depths of 4, 5 or

6 blocks) trained in two data augmentation scenarios (on 5 and 10 augmentation

datasets per original data, respectively) was tested. Second, two learning setups

were analyzed by training the segmentation algorithm with 7 and 14 MRI original

volumes, respectively.

Results: We obtained a Dice-based performance over 0.878 for automatic

segmentation of bladder wall and tumors, as compared to manual

segmentation. A larger training dataset using 10 augmentations for 7 patients

could further improve the results of the U-Net-5 model (0.902 Dice coefficient

at image level). This model performed best in terms of automated segmentation

of bladder, as compared to U-Net-4 and U-Net-6. However, in this case

increased time for learning was needed as compared to U-Net-4. We
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observed that an extended dataset for training led to significantly improved

segmentation of the bladder wall, but not of the tumor.

Conclusion: We developed an intelligent system for bladder tumors automated

diagnostic, that uses a deep learningmodel to segment both the bladder wall and

the tumor. As a conclusion, low complexity networks, with less than five-layers

U-Net architecture are feasible and show good performance for automatic 3D

MRI image segmentation in patients with bladder tumors.
KEYWORDS

fully automatic 3D image segmentation, bladder cancer, T2 MRI images, convolutional
neuronal network (CNN), light 3D U-Net
1 Introduction

Bladder cancer (BCa) represents the tenth most frequent

malignancy, with over 539.000 new cases being diagnosed

worldwide each year (1). At diagnosis, 75% of tumors are limited

to the mucosa and submucosal layer of the bladder wall (non-muscle

invasive bladder tumor - NMIBC), whereas in 25% of cases the tumor

is muscle-invasive (MIBC) (2). The choice of treatment depends on

the accurate tumor staging, with bladder-preserving treatment being

recommended in NMIBC and radical excision in MIBC. Therefore,

precise assessment of the muscular layer invasion is mandatory.

Staging of BCa requires preoperative imaging and endoscopic

evaluation. Transurethral resection of the bladder tumor (TURBT)

confirms the depth of invasion and provides the histopathological

diagnosis (3). However, due to tumoral heterogeneity and variation

in resection techniques, upstaging from NMIBC to MIBC has been

reported in up to 32% of cases, when compared to the cystectomy

specimen (4). Although considered a minimally-invasive procedure,

TURBT it is not voided of perioperative complications, such as

urinary tract infections (24%), hemorrhagic events requiring blood

transfusion (13%) and bladder wall perforation (5%), with an

overall mortality being estimated at 1.3% (5). Moreover, the delay

from the initial diagnosis to radical treatment in MIBC due to

TURBT and confirmatory reTURBT can have a negative impact

upon the oncologic outcomes of these patients, with potential

tumor progression and metastasis during this time. As such, a

non-invasive imaging method to differentiate between NMIBC and

MIBC might be of significant impact.

Recently, multiparametric magnetic resonance imaging

(mpMRI) of the urinary bladder has been developed, with studies

reporting a sensitivity and specificity of 90% and 78% for bladder

tumor staging, respectively (6). It is, however, operator dependent,

as inter-reader agreement varies throughout studies and MRI

acquisitions: 80.4% for T2 weighed images (T2WI), dropping to

71.4% and 55.4% for diffusion-weighed images (DWI) and dynamic

contrast enhanced (DCE) scans, respectively (7).

Taking these limitations into consideration, precise delineation

of the bladder wall as well as of the bladder tumor are important
02
steps toward non-invasive BCa staging. Previous preliminary

studies have anticipated the role of artificial intelligence

(machine-learning and convolutional networks) in increasing the

BCa detection and staging performance of mpMRI, reporting an

accuracy of 87.9% (8).

In medical segmentation, the most used segmentation neural

network is U-Net. Its popularity stems from the fact that it produces

a satisfactory segmentation with very few data samples available. As

a result, it has served as the foundation for numerous medical

segmentation models. The first architecture that we investigate was

proposed in Dolz et al. (9), and it was developed specifically for the

task of bladder segmentation. Throughout this paper we will refer to

this model as the U-Net-5 (a U-Net with 5 blocks) for

comprehension reasons. The U-Net-5 can be considered the

state-of-the-art network for bladder segmentation since it can

segment simultaneously both bladder walls and tumors. Starting

from this model, we developed a novel model that directly processes

the 3D MRI input (Figure 1) and we investigated whether a slim

network (with fewer blocks) or a deeper one (with more blocks)

could perform better in the segmentation of bladder tumors.

In this context, we aimed to develop an advanced model to

automatically detect the bladder wall and the tumor from the MRI

images using a 3D U-Net neural network. A future step will consist

of proposing a metric to quantify muscle invasiveness of the tumor

based on the obtained segmentations.
2 Materials and methods

2.1 Patient population

This observational study was conducted in accordance with the

Declaration of Helsinki (as revised in 2013) and obtained ethical

approval from the local Ethics Committee (Nr. 26/2020). Individual

consent for this retrospective analysis was waived. The authors are

accountable for all aspects of the work in ensuring that questions

related to the accuracy or integrity of any part of the work are

appropriately investigated and resolved.
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2.2 Clinical assessment

2.2.1 MRI
The patients with de novo Bladder Cancer were referred to MRI

evaluation. All MRI examinations were performed before the

endoscopic resection of the bladder tumor. The examinations

were performed in a single institution, using a 1.5 Tesla MRI

scanner (General Electric Optima 360MR Advance System). The

patients were asked to void 1-2 h before the examination and then

drink 500 mL of water 30 min before the examination for optimal

bladder distention. The protocol included: three T2 weighted turbo

spin-echo (TSE) sequences in the sagittal, coronal, and oblique-

axial high-resolution planes, a T1 TSE weighted sequence in the

axial plane. Diffusion-weighted images were obtained in axial planes

using EPI sequences at b values of 50, 400, 800, 1000, 1500 and the

image software automatically calculated apparent diffusion

coefficient maps (ADC). An unenhanced axial T1 VIBE sequence

acquisition was performed and was followed by additional axial T1

VIBE scans after contrast administration. The contrast agent

gadobutrol (Gadovist® 1.0; Bayer Schering Pharma AG, Berlin,

Germany) was administered employing the free-hand technique,

using a dose of 0.1 mmol/kg−1. Dynamic contrast enhanced axial 3D

T1WI were immediately acquired after contrast administration.

All oblique-axial high-resolution T2-WI TSE image were retrieved

from a picture archiving and communication system (Pixeldata PACS,

Romania) for image segmentation. Two radiologists: one radiology

resident and a senior radiologist with 10 years of experience in

urogenital MRI reviewed all images and reached a consensus about

the tumor location. Afterwards, the radiology resident segmented the

whole tumor volume, by manually delineating the lesion on each

consecutive slide. The segmentations were then independently

reviewed by the senior radiologist and adjustments were made when

necessary. Both radiologists were blinded to the pathological results of

biopsy specimens. The segmentation of the tumors was performed

using a designated, open-source software, 3D Slicer, version 4.11.2

(available at https://www.slicer.org/).
Frontiers in Oncology 03
All patients underwent TURBT in the same institution using

bipolar/monopolar complete resection of all bladder tumors.

ReTURBT was performed according to the indications of the

current European Association of Urology Guidelines. The

retrieved specimens from TURBT were immersed in 4%

formaldehyde fixation solution and kept at 4°C overnight. After

paraffin embedding, hematoxylin - eosin stain was performed,

followed by immunohistochemical stains, as needed. Pathology

results have been assessed by the same two pathologists with

extensive experience in urological disease.
2.3 Software development

2.3.1 Data preparation
The specialist provided segmentation image dataset of each

patient has been divided into 2 files, one designated for the bladder

mask wall, and one for the tumor mask. If multiple tumors were

detected in the same patients, the largest one was considered further

as the index tumor. The division was obtained using the 3DSlicer

application, which converted the segmentation from the

segmentation specific format file (.seg.nrrd) into 2 files in the

NRRD (.nrrd) format. Each file was transformed into a 3D

Numpy array, whose slices are the individual images. From this

point on, when referring to a dataset we use the term 3D Numpy

array. The arrays go through a series of processes to be used as

training data. First, the region of interest is extracted by using both

masks of the bladder together (wall and tumor) as well as an

auxiliary mask formed by combining the two. From the data we

manually extracted a ROI of 300 x 300 x 32. We observed from

looking at the data that the ROI of each one was found in the top-

center, more exactly from 100 to 400 pixels in width and length.

Another possibility for our data could have been to crop the ROI

based on the segmented ground-truth image, but such an approach

was not feasible for the testing stage when new volumes are

provided by the scanner (without being annotated by the specialist).
FIGURE 1

Graphical description of the proposed approach.
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2.3.2 Data augmentation
The size of the entire cohort of original MRI volumes was 33.

Some of them were used for training the segmentation algorithm,

while others for testing it. Before performing the training process,

we chose to use different methods for data multiplication: rotation

of the arrays by a certain degree taken at random, flipping the arrays

and elastic transformations. These augmentation operations are

applied to the data containing the original images as well as to the

data containing the bladder wall masks and the tumor masks,

respectively. For each one of the training patient’s volumes, na
new volumes were added to the training data and 1 to the validation

data. Individual data for the two augmentation scenarios (na = 10

and na = 5) is presented in Table 1.

In the rotation method, 3 values are chosen at random between

5 to 10 for the positive angles and 3 numbers between -10 to -5 for

the negative angles. The arrays are rotated with the randomly

chosen angles and added to the data, considering that 2 out of

the 4 positively rotated arrays, and 3 out of the 6 negatively rotated

arrays are flipped horizontally. Two elastic transformations were

applied to each image dataset and their flipped variant which

resulted in four new datasets. Due to issues such as limited RAM,

we made the choice to reshape the data from 300 x 300 x 32 to 128 x

128 x 32. The last step in the preprocessing part was to normalize

the data by making the mean close to 0 and the standard deviation

close to 1. In the arrays containing the masks the value 1 is replaced
Frontiers in Oncology 04
with the value 255 for the wall, and 125 for the tumor. We

assembled the two masks in a unitary array so that they could be

used for training (Figure 2).

2.3.3 Model creation
In medical segmentation, the most used neural network is the U-

Net, since it produces a satisfactory segmentation with very few data

samples available (Figure 3). The model we created was inspired by

the state-of-the-art architecture proposed in the article by Dolz et al.

(9). The model consists of two main parts: Encoder and Decoder.

Unless explicitly specified, each convolutional layer is followed by

BatchNormalization and activated with the PReLU function. The

encoder is composed as follows:
• 15 convolutional layers in which the dilation rate alternates

from 1 to 2 and 4 respectively for each level as it descends.

• The first layer of each depth level has the strides equal to 2,

in other words the filter will move 2 pixels at a time through

the volume which will halve the volume.

• A “bridge” block consisting of 2 convolutional layers and a

residual block.

• the residual block is in turn composed of 2 convolutional

layers, they have a dilation rate of 1 and are not followed by

normalization, only activated by PReLU.
The decoder is composed as follows:
• An UpSampling3D layer is applied at the beginning of each

depth, to return to the initial shape of the volume input in

the model.

• After applying the UpSampling3D, the current layer is

merged with its respective counterpart (the layer with the

dilation rate equal to 4) from the Encoder portion of the

neural network followed by 2 convolutional layers.
TABLE 1 Data augmentation summary (number of augmented datasets
used for training).

Augmentation param-
eter

Training setup with x original
volumes

na = 10 x + x * 10

na = 5 x + x * 5
FIGURE 2

The main steps of data preparation.
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Fron
• Finally apply a convolutional layer with 3 filters in which

the kernel size is (1,1,1) (there are 3 filters because the

number of classes in which we want to divide the image is 3)

with BatchNormalization and PReLU followed by a

Softmax activation layer.
As done by Dolz et al. (9), Adam was used as an optimizer with

a learning rate of 5e-4 and, when compiling, the categorically cross-

entropy function was used to measure loss.

2.3.4 Model evaluation
For evaluating the performance of the segmentation models, we

used the Dice similarity metric or Dice similarity coefficient, which

is one of the most common metrics for the purpose of calculating

the overlap between two predictions for medical segmentation:

Dice  =  
2  � A ∩ Bj j
A  ∪  Bj j

where A represents the ground-truth image, B represents the

predicted image, jA ∩ Bj counts the common segmented elements

of A and B, jA ∪ Bj and counts all the elements of A and B.

The original testing data and its masks went through a similar

process to the training data. Two post-processing stages were

applied to the model’s output, which contained the probability

maps for each altered version of the original MRI data. First, a

bilateral filter was used to exclude all but the most intense regions,

and then a threshold was set so that the values were only 1 or 0.
3 Results

A total of 33 patients with 33 index tumors were analyzed.

Demographic data are synthetized in Table 2.

First, we tested the standard U-Net architecture (U-Net-5), as

well as two alternate versions of it, one which contained an

additional level (U-Net-6), and the other one with a subtracted

level in comparison to the original architecture (U-Net-4).

The training time differed between architectures. Each U-Net-

based model was trained until the Dice coefficient for the validation

dataset stopped improving, thus the best model was saved for each

improved validation value. After testing, U-Net-5 reached a good

overall value around 50 epochs, in around 30 minutes of training
tiers in Oncology 05
from which point on the model stopped improving. When we

trained the modified versions of the U-Net, neither model reached

the performance of the original one. In terms of training epochs, the

model with the additional level (U-Net-6) stopped after 17 epochs,

whereas the model with the decreased level (U-Net-4) finished after
FIGURE 3

The architecture of the U-Net-5 model.
TABLE 2 Characteristics of the study population (Quantitative data are
given as mean [range].

Variable Number

Age, years [range] 65.93 [39-82]

Gender

Male 28

Female 5

Smoker

Yes 9

No 24

Tumor site

Right lateral wall 11

Left lateral wall 11

Anterior wall 2

Right ureteral orifice 4

Left ureteral orifice 4

Bladder trigone 1

Invasion of muscularis

NMIBC
MIBC

27
6

pT

pTa 15

pT1 12

pT2 6

Grade

Low grade 15

High grade 18
Qualitative data are given as numbers, NMIBC – non-muscular invasive bladder cancer,
MIBC – muscular invasive bladder cancer).
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33 epochs. In this convergence experiment, the training dataset was

composed from datasets of 7 patients, derived by augmentation

operations for na = 5 and na = 10 (e.g., Figure 4 using U-Net-5 with

5 augmentations and Supplementary Figures 1–5). The average

results obtained by all the trained models applied on the 5 test MRI

volumes are presented in Table 3.

Overall, no significant difference was observed between models.

From the performance and complexity point of view, the U-Net-5

model with a larger augmented training set (na = 10) performed

better in terms of automated segmentation, needing however an

increased learning time.

As a supplementary measure, we addressed the loss. Figure 5

illustrates the convergence of the learning for the U-Net-5

architecture (with 7 MRI images used as training data and 5

augmentations for every original image). We can observe the

improvement of the loss and its rapid convergence to 0. As the loss

function measures the model’s error, it returns a value between 0 and

1, with 0 indicating that the prediction is the same as the ground truth

and 1 indicating that they are radically different. In our case the loss

was computed by using categorically cross-entropy function:

Loss = − o
OutputSize

i=1
yi log ŷi
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where yi represents the true value, or the ground truth, of the

voxel and ŷi the output of the model for the voxel in respect to the i

label. In this formula a voxel has the value of 1 if it belongs to the i

class and 0 otherwise. The number of classes was 3 (bladder wall,

bladder tumor, inner region of the bladder).

The second experiment focused on investigating the effect of the

original training data size on the segmentation performance. To this

aim, we considered the U-Net-5 model and we trained it in two

different settings: one that was using 7 original volumes as the base

of training data (Figure 4) and one that was using 14 original

datasets (Figure 6). In both cases an augmentation process with na
= 5 was performed. For U-Net-5 with 7 MRI original volumes used

for learning, the training duration was roughly 30 minutes, whereas

using 14 MRI original volumes for learning the duration was

around 60 minutes.

In Table 4 the segmentation performance obtained by the

above-described trained models for 5 test MRI volumes

are presented.

We observed that an extended training dataset improves the

segmentation performance for both target volumes (bladder wall

and bladder tumor), as well as for the whole organ. The overall

enhancement is 2% if the Dice of the entire image is considered

(The enhancement is computed as the relative difference of the Dice
FIGURE 4

Representative results on 5 test datasets by using a model based on U-Net-5 trained on 7 original MRIs with 5 augmentations. Original slice, prostate
(ground-truth and prediction), tumor (ground-truth and prediction), background (ground-truth and prediction). Each row corresponds to a patient
and the columns to the original image, ground truth of the wall, predicted wall, ground-truth of the tumor, predicted tumor, ground-truth of the
background and predicted background, respectively. For each patient the slice corresponding to the best tumor segmentation was plotted.
TABLE 3 Comparison of the 3 U-Net architectures, with different augmented data sample sizes.

Model Augmentation parameter (na) Overall Dice Bladder Wall Dice Tumor Dice

U-Net-4
10 0.884 0.783 0.878

5 0.865 0.742 0.861

U-Net-5
10 0.902 0.836 0.879

5 0.885 0.787 0.876

U-Net-6
10 0.902 0.835 0.880

5 0.876 0.761 0.877
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coefficient obtained by using 14 training volumes and that obtained

by using 7 training volumes). However, we can notice that the Dice

coefficient for the bladder tumor increased by 1% when the training

dataset was enhanced, while the same metric boosts by 6% for the

bladder wall.

As a next step, the previously trained segmentation models were

applied to 9 new MRI volumes obtained from independent patient

datasets (Figure 7). The average results obtained over all 14 test

volumes are summarized in Table 5. The relative difference of the

segmentation quality was increased by 4% at the entire MRI image

level. Whereas, for the bladder wall we obtained an increase by 17%,

but with only 1% increase at the level of the tumor.

For most of the cases both, the wall and the tumor were

properly localized by the algorithm, thus the precondition for

quantitative analysis of the tumor localization as compared to the

bladder wall is satisfied. The above presented promising results
FIGURE 5

The convergence of the U-Net-5 model.
FIGURE 6

Representative results on 10 test datasets by using a model based on U-Net-5 trained on 7 original MRIs (U-Net-5-trained-7) and by using a model
based on U-Net-5 trained on 14 original MRIs (U-Net-5-trained-14). Original slice, prostate (ground-truth and two predictions), tumor (ground-truth
and two predictions), background (ground-truth and two predictions). Each row corresponds to a patient and the columns to the original image,
ground truth of the wall, predicted wall by U-Net-5-trained-7, predicted wall by U-Net-5-trained-14, ground-truth of the tumor, predicted tumor by
U-Net-5-trained-7, predicted tumor by U-Net-5-trained-14, ground-truth of the background, predicted background by U-Net-5-trained-7 and
predicted background by U-Net-5-trained-14, respectively. For each patient the slice corresponding to the best tumor segmentation by U-Net-5-
trained-7 was plotted. (The first column corresponds to the original slice, the second column to the ground truth of the wall mask, tumor mask and
background). For each patient the slice corresponding to the best tumor segmentation obtained by the UNet-5 model trained on 7 original MRIs was
plotted. Values are the dice coefficients for the plotted slice).
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could be transformed as prerequisites for the next step of proposing

a metric to quantify muscle invasiveness of the tumor based on the

obtained segmentations to differentiate between non-muscle

invasive and muscle-invasive bladder tumor (NMIBC vs MIBC).
4 Discussions

The U-Net-5 model with a large training set (na = 10)

performed best in terms of automated segmentation of bladder

MRI images (only T2-WI TSE sequences), as compared to U-Net-4

and 6. However, increased time for learning was needed as

compared to U-Net-4. An extended dataset for training leads to

significantly improved segmentation of the bladder wall, but not of

the tumor. Probably the improvement for tumor segmentation will

be seen after an even more extensive dataset, due to high

heterogeneity of its appearance.

Preoperative detection of bladder tumors and their extension

into the muscle layer has the potential of guiding future therapeutic

strategies in a non-invasive way. Before mpMRI, contrast-enhanced

computer tomography was used for bladder tumors segmentation.
Frontiers in Oncology 08
Although this imaging modality reaches a good accuracy in terms of

automatic tumor detection (84.2% on a study database of 182), in

terms of preoperative grade assessment, the accuracy drops to

77.9% (10), this being mainly attributed to the limited contrast

between adjacent soft tissue structures (11).

Previous articles based on MRI studies have obtained good,

reproductible results. Xu et al. (8) developed a model comprised of

62 cancerous regions and 62 macroscopically ‘normal’ bladder wall,

meant to assess the heterogeneity of the tumoral tissue, compared to

the adjacent structures. The algorithm was modeled using 3D

reconstructions of manually segmented regions of interest, with

29 optimal high-order features being extracted and further

augmented using Synthetic Minority Over-sampling Technique

(SMOTE). The reported sensitivity, specificity and accuracy were

89.67%, 87.8% and 88.74%, respectively. Similarly, Shi et al. (12)

analyzed the bladder carcinoma, the bladder wall of patients

diagnosed with urothelial malignancies, as well as the bladder

wall of healthy patients. Apart from reaching an accuracy of

86.97% in terms of tumoral detection using a computer-assisted

diagnosis tool based on machine learning, they have also concluded

that the features extracted from macroscopically intact bladder
FIGURE 7

Representative results on 10 test datasets by using a model based on U-Net-5 trained on 7 original MRIs (U-Net-5-trained-7) and by using a model
based on U-Net-5 trained on 14 original MRIs (U-Net-5-trained-14). Original slice, prostate (ground-truth and two predictions), tumor (ground-truth
and two predictions), background (ground-truth and two predictions). Each row corresponds to a patient and the columns to the original image,
ground truth of the wall, predicted wall by U-Net-5-trained-7, predicted wall by U-Net-5-trained-14, ground-truth of the tumor, predicted tumor by
U-Net-5-trained-7, predicted tumor by U-Net-5-trained-14, ground-truth of the background, predicted background by U-Net-5-trained-7 and
predicted background by U-Net-5-trained-14, respectively. For each patient the slice corresponding to the best tumor segmentation by U-Net-5-
trained-7 was plotted.
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walls of oncological patients vary substantially compared to the

healthy subjects, being interpretated as because of vascular invasion

and fibrosis.

While bladder segmentation is in the spotlight of current

research, there are only a few solutions in current literature to this

challange (13). The appearance of the bladder on the MRI images, its

indistinct borders, and the distinct forms of tumors make the

automatic segmentation of the bladder wall and tumor a

challenging task. The design proposed by Dolz et al. (9) is one of

the most widely used architecture with T2 weighted images as input.

The authors started with the U-Net architecture and enhanced it by

employing progressive dilated convolutions, which were introduced

contextually for each module. The network handles multi-region

bladder segmentation in which the regions are the InteriorWall (IW),

Outer Wall (OW), and the tumor. Hammouda et al. (14) took a

different strategy by employing DeepMedic (15) and presented two

architectures, one which uses 2D images (16) and the other using 3D

volumes as input (14). Using affine transformation followed by

bsplines (17) on MRIs and Ground Truth, a manually generated

adaptable form was created, which was then used to create the shape

prior probability. The shape prior probability approximating the

shape of the bladder. Both the MRIs and the shapes prior probability

were used as input. These two proposed models focused on multi-

region segmentation of bladder cancer structures. In another

approach Hammouda et al. (16) used a 3D Convolutional Neural

Network with ten cascade layers, eight of which used normalization

and a 3x3x3 kernel size. For post-processing they employed a fully

connected conditional random field (CRF) layer. In comparison to

the other two models, it only segments the bladder’s IW and OW,

leaving the tumor out. Whilst these works gave the best results, they

are missing key features that would allow them to be replicated, such

as the type of affine transformation, initial learning rate, type of

optimizer used, batch size, image size and loss. Each model had a

different number of patients for training, i.e. their models used 20, 10

and, 17 patients, respectively. Liu et al. (18) proposed a modified U-

Net architecture which has dilated convolutions, lateral connections,

and multi-scale predictions.

A direct comparison of the segmentation performances

obtained on our datasets to other results from literature (obtained

by other algorithms or by using other datasets) is difficult since the

image characteristics (signal-noise ratio, noise type, the repetition

and echo time, fine tuning of imaging parameters, etc.) vary

substantially. Furthermore, the investigated models (U-Net-4, U-

Net-5, U-Net-6) were validated on other medical images (e.g.

prostate cancer). Future perspectives of radiomics in terms of

bladder cancer management reside in their integration into risk

assessment nomograms, aiming to predict more accurately the

tumoral staging and chemotherapy response. Zheng et al. (19)
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DCE acquisitions with clinical parameters such as age, sex,

number of tumors and their maximum size, as well as the

attributed VI-RADS score. The nomogram was tested on 129

patients and validated on 56. The combined model reached an

accuracy of 93% in terms of differentiating muscle invasion

preoperatively. Finally, radiomic features have the potential of

predicting neoadjuvant chemotherapy response, defined as ≤ pT1

on the pathological report from radical cystectomy (20). Based on

aggressiveness patterns derived from T2WI, ADC and DWI,

combined with clinical staging, the proposed nomogram reached

sensitivity, specificity, and accuracy of 94.4%, 94.1% and 94.3%,

respectively. However, both studies underline the need for

prospective validation on larger cohorts of patients.

Recently, artificial intelligence and computer-aided diagnosis

programs have emerged as new methods to provide more

confidence in the imaging diagnosis. The use of machine learning

algorithms in bladder medical image analysis can save time for the

practitioners, can lead to improved performance for the radiologists

and higher reporting accuracy. Such algorithms could be

prerequisites for the next step of quantifying muscle invasiveness

of the tumor with the aim of differentiating between e.g., non-

muscle invasive and muscle-invasive bladder tumor (NMIBC vs

MIBC). These algorithms can be integrated into an intelligent

decision support system using methods that point beyond the

existing state-of-the-art methods.
5 Limitations

Our study is based on a limited, but carefully selected number of

clinical data from a single center, which were obtained on a single

MRI scanner. Although the electronic database was prospective, the

data analysis was performed retrospectively. Prospective and

multicenter validation of our results is warranted.

In terms of weaknesses, the system requires pre-processed data

to be trained, thus cannot be used as a prediction tool for raw MRIs,

which hinders the overall process by this separated data processing

step using the ground truth before introducing it into the system. A

broader dataset would improve the model’s performance, which

would improve the segmentation results.
6 Conclusions

We developed an intelligent system for automated identification

of bladder tumors, that uses a deep learning model to segment both

the bladder wall and the tumor only using 3D T2 MRI images. The
TABLE 4 Results of 5 test MRI volumes obtained by the U-Net-5 model trained in two different setups.

Training setup Overall Dice Bladder Wall Dice Tumor Dice

7 original MRI volumes 0.885 0.787 0.876

14 original MRI volumes 0.903 0.838 0.881
The presented Dice values are averages over all slices of a test volume and all volumes.
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U-Net based models showed promising results and are well-suited

for the task of bladder segmentation. Even though all the tested

models produce satisfactory outcomes, there are certain aspects that

could be further optimized, as the future of decision support

systems is to precisely determine the location of the tumor in

relation to the organ wall and its layers.
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