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Abstract
PaigeProstate is a clinical-grade artificial intelligence tool designed to assist the pathologist in detecting, grading, and quan-
tifying prostate cancer. In this work, a cohort of 105 prostate core needle biopsies (CNBs) was evaluated through digital 
pathology. Then, we compared the diagnostic performance of four pathologists diagnosing prostatic CNB unaided and, in a 
second phase, assisted by Paige Prostate. In phase 1, pathologists had a diagnostic accuracy for prostate cancer of 95.00%, 
maintaining their performance in phase 2 (93.81%), with an intraobserver concordance rate between phases of 98.81%. In 
phase 2, pathologists reported atypical small acinar proliferation (ASAP) less often (about 30% less). Additionally, they 
requested significantly fewer immunohistochemistry (IHC) studies (about 20% less) and second opinions (about 40% less). 
The median time required for reading and reporting each slide was about 20% lower in phase 2, in both negative and cancer 
cases. Lastly, the average total agreement with the software performance was observed in about 70% of the cases, being 
significantly higher in negative cases (about 90%) than in cancer cases (about 30%). Most of the diagnostic discordances 
occurred in distinguishing negative cases with ASAP from small foci of well-differentiated (less than 1.5 mm) acinar adeno-
carcinoma. In conclusion, the synergic usage of Paige Prostate contributes to a significant decrease in IHC studies, second 
opinion requests, and time for reporting while maintaining highly accurate diagnostic standards.
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Introduction

Prostate cancer is a frequent disease with important conse-
quent morbidity and mortality among male patients [1]. The 
diagnosis of prostate cancer rests in performing a core needle 
biopsy (CNB) of the prostate in patients with elevated blood 

prostate-specific antigen (PSA) and/or abnormal digital rec-
tal examination. Depending on the biopsy modality and the 
number of cores obtained, the morphological examination 
of the prostatic tissue by the pathologist may be a time-
consuming task that requires steady concentration to detect 
minimal alterations of the glandular architecture as well as 
cellular atypia [2]. Besides cancer detection and classifica-
tion, a structured report has to include tumor grading and 
quantification to guide patient management [3]. Classical 
quality control measures such as second opinion requests or 
complementary immunohistochemistry (IHC) studies help in 
increasing cancer detection, decreasing error, and lowering 
the levels of interobserver variability [4, 5]. These classical 
measures have a significant impact on the time needed for 
reporting, ultimately leading to a delay in decisions which 
impact patient management.

Technological advances in modern digital pathology 
allow the production of high-quality whole-slide images 
(WSIs) that are progressively being assumed as the new 
standard in diagnosis [6, 7]. High-quality WSIs are also 
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the perfect substrate for computational analysis, namely 
the application of artificial intelligence (AI) tools, that have 
demonstrated their value in a substantial number of cancer 
models [8–10], including prostatic adenocarcinoma [11–14].

Paige Prostate is a clinical-grade AI tool created as 
described by Campanella et al. [14] which is designed to 
assist the pathologist in the diagnosis of prostate cancer. 
Paige Prostate is a deep learning tool trained using a weakly 
supervised approach of convolutional neuronal network 
(CNNs) [14] that runs in the proprietary, Food and Drug 
Administration (FDA)-approved viewer called FullFocus. 
Page Prostate Detect is a binary classificator and produces a 
slide-level score, either benign or suspicious for harboring 
adenocarcinoma, also authorized by the FDA. Paige Prostate 
Grade & Quantify is designed to evaluate the Gleason score, 
primary and secondary Gleason patterns, as well as can-
cer length and percentage in each CNB. In the past 2 years, 
several studies have demonstrated Paige Prostate as a good 
prescreening tool as well as a reliable second reader [11], 
contributing to a significant decrease in diagnostic time and 
increment in diagnostic accuracy [12, 15].

The work herein described intents to challenge Paige 
Prostate software in the setting of a fully digital laboratory, 
comparing the diagnostic performance of 4 pathologists 
diagnosing prostatic CNB specimens unaided and, in a sec-
ond phase, assisted by Paige Prostate.

Materials and methods

Cohort selection

A cohort of consecutive prostate CNBs primarily reported 
with the support of immunohistochemistry was retrieved 
from the digital archives of the Pathology Laboratory of 
Ipatimup from March 2021 to September 2021 (7 months). 
The cohort included 105 WSIs from the corresponding 
hematoxylin–eosin (HE) glass slides that were obtained from 
formalin-fixed paraffin-embedded prostate CNBs collected 
from 41 patients. All slides of the cases were included.

At the time of primary diagnosis, an IHC double stain-
ing was performed in 3-µm-thick sections of all 105 paraffin 
blocks, with p63 mouse polyclonal primary antibody (Ven-
tana anti-p63 (4A4); Ventana Medical Systems, Inc., Tucson, 
AZ, USA) and racemase/p504s rabbit monoclonal primary 
antibody (Vitro anti-p504s (13H4); Vitro Master Diagnos-
tica, Seville, Spain). The OptiView DAB IHC Detection Kit 
(Ventana Medical Systems, Inc., Tucson, AZ, USA) was used. 
The entire procedure was carried out on an automated staining 
system (Ventana BenchMark XT Staining System; Ventana 
Medical Systems, Inc., Tucson, AZ, USA) according to the 
manufacturer’s instructions. Appropriate positive and negative 
controls for both primary antibodies were used in every slide.

All slides (H&E and IHC) were scanned with the Pan-
noramic 1000 DX scanner (3DHISTECH, Ltd., Budapest, 
Hungary) at 20 × magnification, with a protocol previously 
validated for primary diagnosis (pixel scale of 0.243 µm/
pixel) [6].

Evaluation of WSIs

This study followed a multi-reader, multi-case design with 
modality crossover, whereby the same pathologists read the 
same cases twice, first unaided (phase 1) and then aided by 
Paige Prostate after a washout period of at least 2 weeks 
(phase 2). In phase 1, four pathologists evaluated all H&E-
stained WSIs (from now on designated as cases) using the 
CaseViewer (3DHISTECH, Ltd., Budapest, Hungary) in a 
32-in. monitor (Sharp PN-K322BH, 3840 × 2160 resolution in 
dots—QFHD) as for routine diagnosis [6]. Although all WSIs 
had a paired IHC slide with double-staining p63 and race-
mase, pathologists were instructed to evaluate the IHC slide 
only if they would have requested it in clinical practice. Addi-
tionally, in cases where the pathologists would have needed a 
second opinion, they were able to consult the original report, 
which represented a constant second opinion for all.

After the washout period, in phase 2, the same four pathol-
ogists re-evaluated the same cases using the FullFocus viewer 
(FDA approved; CE-in vitro diagnostic (IVD)) and assisted 
by Paige Prostate (Paige, New York, NY, USA), maintaining 
the same conditions described above. The software was com-
prised of Paige Prostate Detect (FDA cleared; CE-IVD) and 
Paige Prostate Grade & Quantify (CE-IVD) tools. The first 
tool assists pathologists in the detection of suspicious foci for 
cancer, providing an active focus of interest and suspicious 
tissue heatmap, and the second tool provides a Gleason score 
together with percentages of each Gleason pattern present on 
that WSI, as well as total tumor percentage and total tumor 
length (in millimeters with two decimal places).

All parameters evaluated were recorded in both phases 
manually in a prefilled Excel sheet (Microsoft, Redmond, 
WA, USA), which acted as a simulated reporting tool. The 
reading pathologists had no time constrains during the eval-
uation of the cases, and the time of analysis was measured 
from the opening of the WSI until the case was reported on 
Excel. The following parameters were recorded per each case 
in each phase: diagnosis of cancer (yes or no), cancer type, 
grade group (GrG) (1–5 or not applicable), cribriform pattern 
(present or absent), intraductal carcinoma (present or absent), 
perineural invasion (present or absent), number of fragments 
with cancer, linear tissue size (in mm), linear cancer size (in 
mm), request for IHC (yes or no), request for second opinion 
(yes or no), total agreement with the software (yes or no), and 
time for reporting (in seconds). At the end, there was the pos-
sibility of adding additional findings, such as the presence of 
atypical small acinar proliferation (ASAP).
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The ground truth (GT) was established as total agreement 
between the four pathologists who evaluated the cases (AM, 
JgP, JP, and SC) or, otherwise, the consensus between two 
additional independent pathologists through a common WSI 
session with access to IHC studies and Paige Prostate results 
(CE and AP). The pathologists (P1 to P4) that evaluated all 
the cases are generalist pathologists with 2 years, 4 years, 
4 years, and 9 years of practice, respectively. The independ-
ent pathologists are also generalist pathologists with 9 years 
and 12 years of practice.

Statistical analysis

Statistical analyses were performed using the Statistical 
Package for Social Sciences (SPSS) version 27.0 for Win-
dows (IBM). Pearson’s chi-squared (χ2) test and the McNe-
mar (MN) test were used for comparison of qualitative vari-
ables, and the Mann–Whitney (MW) test, the Wilcoxon test, 
and the Kruskal–Wallis (KW) test were used for comparison 
of quantitative variables. The level of significance was set 
at p < 0.05. Concordance rates were evaluated with simple 
(diagnostic concordance) and quadratic weighted (GrG 
concordance) kappa statistics to penalize discordances with 
higher clinical impact. The Landis and Koch classification 
was used to interpret the values: no agreement to slight 
agreement (< 0.20), fair agreement (0.21–0.40), moderate 
agreement (0.41–0.60), substantial agreement (0.61–0.80), 
and excellent agreement (> 0.81).

The authors used the Altman-Bland analysis to assess 
the agreement between measurements of cancer sizes. The 
x-axis represents the mean of the measurements, and the 
y-axis shows the difference between the measurements for 
each case. Altman-Bland plots display the mean difference 
(solid line) and 95% agreement limits (dashed lines). If there 
is high agreement between measurements, the mean differ-
ence is expected to be centered around zero, with a narrow 
agreement limit.

Results

The cohort characteristics are summarized in Table 1 and 
included prostate CNBs from 41 men with a median age of 
69 years (range: 50–85 years old) at the time of diagnosis. 
Of the 105 slides, 66 (62.86%) were benign and 39 (37.14%) 
had a diagnosis of cancer, all acinar adenocarcinoma, from 
25 men. GrG distribution was as follows: 19 cases for GrG1 
(48.72%), 8 cases for GrG2 (20.51%), 5 cases for GrG3 
(12.82%), 2 cases for GrG4 (5.13%), and 4 cases for GrG5 
(10.26%), and 1 case (2.56%) was not graded due to post-
radiation therapy.

In phase 1, pathologists had a global diagnostic accuracy 
for prostate cancer of 95.00% (range: 93.33–97.14%; kappa 

range: 0.862–0.938) and a mean interobserver diagnostic 
concordance rate of 94.13% (range: 90.48–98.10%; kappa 
range: 0.802–0.961) (Table 2 and S1). In phase 2, with the 
assistance of the software, pathologists had similar global 
diagnostic accuracy (93.81%; range: 91.43–95.24%; kappa 
range: 0.823–0.896; MN test: p > 0.999) as well as similar 
mean interobserver diagnostic concordance rate (93.02%; 
range: 90.48–97.14%; kappa range: 0.802–0.942) (Table 2 
and S1). The global diagnostic intraobserver concordance 
rate between phases was 98.81% (range: 98.10–100%; kappa 
range: 0.958–1.000).

In phase 1, the average performance of pathologists for 
diagnosis of prostate cancer was as follows: sensitivity of 
0.968 (range: 0.923–1.000), specificity of 0.939 (range: 
0.894–1.000), positive predictive value of 0.909 (range: 
0.848–1.000), and negative predictive value of 0.982 (range: 
0.957–1.000) (Table S2). In phase 2, we observed similar 
average values: sensitivity of 0.955 (range: 0.897–1.000), 
specificity of 0.928 (range: 0.879–0.985), positive predictive 
value of 0.892 (range: 0.826–0.972), and negative predictive 
value of 0.974 (range: 0.942–1.000) (Table S2).

In phase 1, the mean GrG concordance rate with the 
ground truth was 80.58% (range: 64.86–94.29%; kappa 
range: 0.814–0.963) and the mean interobserver GrG con-
cordance rate was 73.39% (range: 57.50–86.11%; kappa 
range: 0.823–0.942) (Table  S3). In phase 2, the mean 
GrG concordance rate with the ground truth was similar 
(78.91%; range: 67.57–88.24%; kappa range: 0.791–0.960) 
as well as the mean interobserver GrG concordance rate 
(72.03%; range: 64.71–80.00%; kappa range: 0.760–0.938) 
(Table S3). The global GrG intraobserver concordance rate 
between phases was 73.94% (range: 63.42–84.09%; kappa 
range: 0.830–0.954) (Table 2).

Table 1   Cohort characteristics

P25 25th percentile, P75 75th percentile

Total patients, n 41
Patient age, years (median [P25–P75]) 69 [61–74]
Total cases (core needle biopsies) 105

  Negative, including atypia, n (%) 66 (62.86)
  Prostate cancer, n (%) 39 (37.14)

Histological type (for prostate cancer only), n (%)
  Acinar adenocarcinoma 39 (100)

Grade group, n (%)
  1 19 (48.72)
  2 8 (20.51)
  3 5 (12.82)
  4 2 (5.13)
  5 4 (10.26)

Not applicable 1 (2.56)
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There were no significant differences in the detec-
tion of cribriform pattern (15.15% vs 13.94%; MN test: 
p = 0.867), intraductal carcinoma (5.99% vs 5.36%; MN 
test: p = 0.842), or perineural invasion (10.18% vs 4.76%; 
MN test: p = 0.061) when comparing phase 1 to phase 2, 
respectively. Interestingly, in phase 2, pathologists showed 
a significant reduction (32.35%) in the report of ASAP (34 
cases [8.10% in phase 1] and 23 cases [5.48% in phase 2]) 
(Fisher’s exact test: p < 0.001).

Pathologists requested significantly fewer IHC (36.43% 
vs 45.95%; MN test: p < 0.001) and second opinions (7.38% 
vs 12.14%; MN test: p = 0.006) in phase 2 compared with 
phase 1, respectively (Table 3). This significant reduction 
in IHC and second opinion requests in phase 2 occurred 
for both cancer (IHC: 24.72% reduction; second opinion: 
37.93% reduction) and negative (IHC: 17.31% reduction; 
second opinion: 40.91% reduction) cases (Table 3).

Importantly, the median time required for reading and 
reporting each slide was 139.00 s (P25–P75: 91.00–243.25) 
in phase 1 and 108.50 s (P25–P75: 73.25–191.75) in phase 2, 
corresponding to a decrease in 21.94% of the time required 
(Wilcoxon test: p < 0.001). For negative cases, pathologists 
required 18.41% longer for reporting during phase 1 (median 

100.50 s; P25–P75: 75.00–143.50) compared with phase 2 
(median 82.00 s; P25–P75: 61.25–118.50) (Wilcoxon test: 
p < 0.001). For cancer cases, the time required for report-
ing was 18.74% longer during phase 1 (median 253.5 s; 
P25–P75: 185.50–346.50) than phase 2 (median 206.00 s; 
P25–P75: 138.25–322.00) (Wilcoxon test: p < 0.001). The 
median time to report cancer cases was longer than the time 
for reporting negative cases (2.5 times longer in both phases; 
MN test: p < 0.001).

Lastly, the average total agreement with the software 
performance was observed in 68.10% of the cases (range: 
56.19–79.05%), being significantly higher in negative 
cases (89.39%; range: 84.85–92.42%) than in cancer cases 
(32.05%; range: 7.69–56.41%) (chi-squared test: p < 0.001, 
for global evaluation and for each pathologists) (Fig. 1).

From the 105 CNB, 92 (87.62%) had perfect intraobserver 
and interobserver diagnostic concordance. Only 13 cases 
(12.38%) showed at least one diagnostic discordance in any 
phase. Most of the diagnostic discordances (10/13; 76.92%) 
occurred in distinguishing negative cases with ASAP from 
small foci of well-differentiated (less than 1.5 mm) acinar 
adenocarcinoma GrG1. The remaining 3 cases corresponded 
to acinar adenocarcinoma GrG2 with 3.8 mm in which the 

Table 2   Diagnostic accuracy in phases 1 and 2 and diagnostic and grade group intraobserver concordances

a McNemar test

Diagnostic accuracy p Diagnostic intraobserver concord-
ance, proportion in % (kappa)

Grade group intraobserver concord-
ance, proportion in % (kappa quadratic 
weighted)Phase 1 (%) Phase 2 (%)

P1 93.33 91.43  > 0.999a 98.10 (0.961) 68.89 (0.844)
P2 94.29 94.29  > 0.999a 100 (1.000) 63.42 (0.840)
P3 95.24 94.29  > 0.999a 99.05 (0.981) 84.09 (0.954)
P4 97.14 95.24  > 0.999a 98.10 (0.958) 80.00 (0.830)
Global 95.00 93.81  > 0.999a 98.81 (0.975) 73.94 (0.868)

Table 3   Differences in 
immunohistochemistry and 
second opinion requests in both 
phases

IHC immunohistochemistry, 2nd Op second opinion
a Chi-squared test
b Fisher’s exact test

Phase 1, n (%) Phase 2, n (%) p Reduction from 
phase 1 to phase 
2 (%)

IHC requests
  All cases 193 (45.95) 153 (36.43)  < 0.001a 20.72
  Cancer cases 89 (57.05) 67 (42.95)  < 0.001a 24.72
  Negative cases 104 (39.39) 86 (32.58)  < 0.001a 17.31

2nd Op requests
  All cases 51 (12.14) 31 (7.38)  < 0.001b 39.21
  Cancer cases 29 (18.59) 18 (11.54) 0.001b 37.93
  Negative cases 22 (8.33) 13 (4.92)  < 0.001b 40.91
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fragment with cancer was lost in the IHC slide (case 33), 
acinar adenocarcinoma GrG2 with 0.5 mm (case 61), and an 
acinar adenocarcinoma post-radiation therapy with 2.3 mm 
(case 96) (for details, see Table 4 and Fig. 2).

The median size of the biopsy tissue fragments meas-
ured by the pathologists was similar in both phase 1 (median 
71.0  mm; P25–P75: 50.0–88.7) and phase 2 (median 
71.0 mm; P25–P75: 50.0–90.0) (MW test: p = 0.776). There 
was no significant differences in tissue fragment measure-
ments between pathologists in each phase (phase 1 [KW test: 
p = 0.938] and phase 2 [KW test: p = 0.798]).

The median size of cancer measured by the pathologists 
was also similar in phase 1 (median 4.0 mm; P25–P75: 
1.9–11.4) in comparison to phase 2 (median 4.0  mm; 
P25–P75: 2.0–10.1) (MW test: p = 0.810). There was 
no significant differences in cancer size measurements 
between pathologists in each phase (phase 1 [KW test: 
p = 0.298] and phase 2 [KW test: p = 0.217]).

The Altman-Bland analysis showed that the mean 
difference in cancer size measurements between 

pathologists was 0.07 mm (± 6.76 mm) in phase 1, increas-
ing to 1.02 mm (± 8.93 mm) in phase 2 (Wilcoxon test: 
p = 0.100). However, the variability of the difference in 
cancer size measurements between pathologists was nar-
row in cases with cancer smaller than 15 mm (mean dif-
ference of 0.12 mm [± 1.11 mm] in phase 1 and 0.25 mm 
[± 1.47 mm] in phase 2) and wider in cases with can-
cer greater than 15 mm (mean difference of − 0.08 mm 
[± 13.97 mm] in phase 1 and 3.16 mm [± 17.07 mm] in 
phase 2) (Fig. 3A, B).

Discussion

Previous evidence of the performance of Paige Prostate soft-
ware has been demonstrated by other independent groups 
[11, 12]. The study by Perincheri et al. [11] described Paige 
Prostate software as a good prescreening tool and as a sec-
ond read tool, contributing to the increase in cancer detec-
tion (sensitivity of 97.7%, specificity of 99.3%, positive 

Fig. 1   Graphic illustrating the percentage of cases, per pathologist (P1, P2, P3, and P4) and per diagnosis (all cases, only negative cases, and 
only cancer cases), where the pathologists totally agreed with the software
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predictive value of 97.9%, and negative predictive value of 
99.2%) and saving time after testing a large series of 1876 
prostate CNBs, in a study designed to compare the perfor-
mance of the software versus the pathologist. The group of 
da Silva et al. [12] confirms the incremental improvements 

in diagnostic performance (sensitivity of 0.99, specificity of 
0.93, and negative predictive value of 1.00) and describes a 
possible 65.5% reduction in the diagnostic time after testing 
a series of 600 CNBs, in a study designed to compare the 
performance of the software versus the pathologist.

Table 4   Cases with discordant diagnosis performed by at least one pathologist in any phase

En dash means not applicable/not reported
ASAP atypical small acinar proliferation, GrG grade group, N negative
* Status post radiotherapy

Case number Evaluation Ground truth P1 P2 P3 P4

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

8 Diagnosis ASAP Cancer Cancer Cancer Cancer ASAP ASAP ASAP ASAP
GrG – GrG1 GrG1 GrG1 GrG1 – – – –
Lesion size (mm) 0.2 0.2 0.4 1.0 1.0 – – – –

12 Diagnosis Cancer Cancer N Cancer Cancer Cancer Cancer Cancer ASAP
GrG GrG1 GrG1 – GrG1 GrG1 GrG1 GrG1 GrG1 –
Lesion size (mm) 1.5 1.4 – 1.0 1.5 1.5 1.0 1.0 –

29 Diagnosis ASAP N Cancer N ASAP ASAP ASAP ASAP ASAP
GrG – GrG1 – – – – –
Lesion size (mm) 0.8 0.9 – – – – –

33 Diagnosis Cancer Cancer Cancer Cancer Cancer Cancer Cancer ASAP ASAP
GrG GrG2 GrG2 GrG2 GrG2 GrG2 GrG2 GrG2 – –
Lesion size (mm) 3.8 4.7 5.8 5.5 4.0 4.9 3.3 – –

38 Diagnosis ASAP Cancer Cancer Cancer Cancer Cancer Cancer ASAP ASAP
GrG – GrG1 GrG1 GrG1 GrG1 GrG1 GrG1 – –
Lesion size (mm) 0.5 0.3 1.0 1.0 1.0 0.8 1.1 – –

57 Diagnosis ASAP Cancer Cancer ASAP ASAP Cancer Cancer ASAP ASAP
GrG – GrG1 GrG1 – – GrG1 GrG1 – –
Lesion size (mm) 0.3 0.9 0.4 – – 1.1 0.4 – –

61 Diagnosis Cancer Cancer Cancer ASAP N Cancer Cancer ASAP ASAP
GrG GrG2 GrG1 GrG3 – GrG1 GrG2 – –
Lesion size (mm) 0.5 0.3 0.5 – 0.7 1.8 – –

70 Diagnosis ASAP Cancer Cancer Cancer Cancer Cancer Cancer ASAP ASAP
GrG – GrG1 GrG2 GrG3 GrG1 GrG1 GrG1 – –
Lesion size (mm) 1.5 1.6 1.5 2.0 3.0 1.6 3.3 – –

77 Diagnosis ASAP Cancer Cancer N ASAP ASAP Cancer ASAP Cancer
GrG – GrG1 GrG1 – – GrG1 – GrG1
Lesion size (mm) 0.7 2.2 1.8 – – 2.5 – 3.0

96 Diagnosis Cancer* Cancer Cancer ASAP ASAP Cancer Cancer Cancer Cancer
GrG – GrG4 GrG5 – – GrG5 GrG5 GrG3 GrG4
Lesion size (mm) 2.3 6.8 8.4 – – 7.5 7.4 8.0 8.0

103 Diagnosis Cancer Cancer Cancer Cancer Cancer Cancer Cancer ASAP ASAP
GrG GrG1 GrG1 GrG2 GrG1 GrG2 GrG1 GrG2 – –
Lesion size (mm) 0.6 0.6 0.7 0.6 0.5 0.6 0.7 – –

104 Diagnosis ASAP Cancer Cancer ASAP ASAP Cancer Cancer ASAP ASAP
GrG – GrG1 GrG1 – – GrG1 GrG1 – –
Lesion size (mm) 0.5 0.7 0.7 – – 1.0 0.7 – –

105 Diagnosis ASAP Cancer Cancer Cancer Cancer Cancer Cancer ASAP ASAP
GrG – GrG1 GrG1 GrG1 GrG1 GrG1 GrG1 – –
Lesion size (mm) 0.6 1.0 1.0 1.6 1.0 1.0 1.0 – –
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The current study was designed to assess how Paige 
Prostate, an AI tool trained to detect, grade, and quantify 

acinar adenocarcinoma, but no other types of cancer, impacts 
pathologist’s performance. This tool, as per the FDA 

Fig. 2   The different sources for observation in 3 cases of the cohort 
showing for each one of them the HE (A, D, G), IHC with double 
staining for p63 (brown) and racemase/p504s (red), and the software 
annotation of cancer (C heatmap, F shadow, I heatmap). Case 33 
(A–C) from an 82-year-old man with acinar adenocarcinoma that lost 
its representation in IHC slide, contributing to generating discordance 

among pathologists. Case 57 (D–F) from a 71-year-old man with a 
lesion measuring 0.3 mm diagnosed by P1 and P3 as acinar adeno-
carcinoma GrG1 and by P2 and P4 as ASAP, not changing with the 
use of the software. Case 77 (G–I) from a 66-year-old man with a 
lesion measuring 0.7 mm diagnosed by P3 and P4 as ASAP, changing 
to acinar adenocarcinoma GrG1 after the use of the software

Fig. 3   Altman-Bland analysis of the mean difference in cancer size measurements by pathologists in phase 1 (A) and phase 2 (B), highlighting 
the very low variability of measurements in low-sized cancers and increased variability in cancer size measurements above 15 mm
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authorization, is not intended to be used for autonomous 
diagnosis, but used in synergy with the pathologist. After 
comparing the stand-alone diagnosis performance with the 
diagnosis of prostate cancer assisted by Paige Prostate, we 
report similar high levels of performance, such as those men-
tioned above. Eventual differences in these values between 
studies may reflect the influence of the pathologist’s experi-
ence and opinion over the software diagnosis that, according 
to the different degrees of confidence, may interfere with the 
final diagnosis. The individual motivation of the pathologist 
to trust the software or not is clearly expressed in Fig. 1, 
where P4 clearly has a lack of confidence in the software 
performance and P3 is the pathologists that most frequently 
agrees with the software, regardless the presence or absence 
of cancer in the WSI. Reasons for this individual motivation 
are diverse but include previous habits of the pathologist. The 
four pathologists participating in this study have worked digi-
tally and routinely for 2 years on the CaseViewer platform 
from 3DHISTECH and are highly confident in digital pathol-
ogy for primary diagnosis which was appropriately validated 
for clinical usage in our laboratory [6]. This is demonstrated 
by the high mean interobserver diagnostic concordance and 
diagnostic accuracy in phase 1 (about 95%) [6, 16].

In comparison with the studies by da Silva et al. [12] and 
Perincheri et al. [11], our series is much smaller, compris-
ing only 105 WSIs that needed IHC studies during primary 
reporting. This fact may have contributed to concentrate dif-
ficult cases in the series, with a higher number of discord-
ant cases (about 12%) and ASAP diagnosis (about 8%) than 
that described in the literature (1.6–5.8%) [17, 18]. With 
the help of Paige Prostate, the number of ASAPs signifi-
cantly decreased (about 30%), indicating that the synergic 
use of Paige Prostate may contribute to decreasing the level 
of uncertainty among pathologists. There was no signifi-
cant impact during the AI-assisted phase in the evaluation of 
other relevant features such as cribriform pattern, intraductal 
carcinoma, or perineural invasion, indicating that AI tools 
directed at supporting pathologists in the detection of these 
features may further enhance pathologists’ performance in 
these aspects. The trend to detect less frequently perineural 
invasion with the use of FullFocus viewer could reflect the 
use of the new viewer tool instead of the CaseViewer by 
3DHISTECH that is used daily in routine diagnosis.

The paradigmatic example of case 33 illustrated in Fig. 2, 
where the tissue fragment that contained cancer was lost in 
deeper cuts for IHC staining, shows the value of using the 
original H&E WSI, overcoming the problems related with 
loss of tissue. Since tissue loss in deeper cuts is a frequent 
event in clinical practice, mainly when we are operating with 
small and linear tissue fragments, the use of AI tools may 
bring about significant advantages, including efficiencies 
around tissue logistics as well as being a source of informa-
tion for diagnosis.

Our series included only acinar adenocarcinomas, the 
type of cancer that this AI tool was trained to detect. Regard-
ing the grading of these cancers, there was no significant 
impact in the concordance among pathologists for GrG eval-
uation, nor in the concordance with the ground truth, with 
the introduction of the software. Nevertheless, the important 
intraobserver variability between phases in the evaluation of 
GrG demonstrates the difficulties in maintaining the repro-
ducibility of GrG evaluation even with the usage of an AI 
tool. The difficulties in maintaining the reproducibility may 
mirror the difficulty of the task, the fragility of the ground 
truth, and most importantly, the influence of the human fac-
tor in an evaluation that results from the synergic usage of 
AI (and not from AI alone), assumed to be certainly more 
consistent. These obstacles to reproducibility may eventu-
ally be overcome by the design of an explainable software 
program that predicts clinical evolution based on tumor 
morphology alone and obtained from H&E-stained WSIs, 
coupled with clinical outcome information that may eventu-
ally also challenge the diagnostic criteria of malignancy, at 
least in very small lesions.

Of note were the significant time savings obtained during 
the AI-assisted phase, with a reduction of reading times of 
about 20% with the help of Paige Prostate, in both benign 
and malignant cases. An additional factor that may contrib-
ute to enhance laboratory efficiency and shorter turnaround 
times is the significant decrease in IHC and second opin-
ion requests during phase 2. In general, IHC requests were 
reduced by about 20% (about 25% in cancer cases) while 
second opinion requests were reduced by about 40%. These 
data points support the previous assumption that, owing to 
its high sensitivity and negative predictive value, Paige Pros-
tate works well both as a screening element and as a second-
read tool by decreasing the need for second opinion requests.

Finally, a comment on the consistence of tissue meas-
urements and cancer size estimations was similar in both 
phases. This suggests that the use of different viewers during 
the different phases had no impact on tumor size evalua-
tion. As in other sorts of measures in pathology, it is evident 
that the larger the measurement, the larger the variability 
in its evaluation and this is well illustrated in cancer sizes 
above 15 mm [19]. The variability of measurements was not 
reduced during phase 2 for cancer size above 15 mm prob-
ably because the software does not allow the interference of 
the pathologist in the estimated measures. This is to say that, 
after Paige Prostate produces its linear tumor measurement, 
the pathologist either accepts it entirely or needs to measure 
it manually. Paige Prostate would benefit from displaying 
how it has calculated tumor length measurements, and this 
lack of flexibility to edit automatic measurements was the 
main justification for the low agreement with the software 
in cancer cases for some pathologists, as illustrated in Fig. 1. 
The average total agreement with the software was observed 
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in about 70% of the cases and only in about 30% of the 
cancer cases. Although these values seem low for an FDA-
approved AI tool, especially in cancer cases, the tool could 
still be used to increase the efficiency of the pathologist’s 
workflow, without decreasing their accuracy.

Taking in consideration the results of this study and con-
sidering the limitations pointed out in this discussion, we 
may conclude that the synergic usage of Paige Prostate sig-
nificantly decreases the time for reporting and the consump-
tion of resources (IHC studies and second opinion requests) 
and preserving tissue/cancer representation in very small 
biopsies, while maintaining highly accurate diagnostic 
standards in prostate cancer. In the setting of cancer diag-
nosis, time is an important variable, not often controlled in 
pathology laboratories. Turnaround time has an important 
impact on health-care costs and on-time/life-saving treat-
ments that are here addressed as a great advantage of the use 
of artificial intelligence.
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