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Abstract
After recovering from the acute phase of coronavirus disease 2019 (COVID-19), many patients struggle with additional 
symptoms of long COVID during the chronic phase. Among them, the neuropsychiatric manifestations characterized by a 
short-term memory loss and inability to concentrate are called “brain fog”. Recent studies have revealed the involvement of 
“chronic neuro-inflammation” in the pathogenesis of brain fog following COVID-19 infection. In the COVID-related brain 
fog, similarly to neurodegenerative disorders caused by neuro-inflammation, brain leukocytes, such as microglia and lym-
phocytes, are hyperactivated, suggesting the overexpression of delayed rectifier  K+-channels (Kv1.3) within the cells. In our 
previous patch-clamp studies, drugs, such as antihistamines, statins, nonsteroidal anti-inflammatory drugs, antibiotics and 
anti-hypertensive drugs, suppressed the Kv1.3-channel activity and reduced the production of pro-inflammatory cytokines. 
Additionally, newer generation antihistamines, antibiotics and corticosteroids strongly stabilize mast cells that directly 
activate microglia in the brain. Taking such pharmacological properties of these commonly used drugs into account, they 
may be useful in the treatment of COVID-related brain fog, in which the enhanced innate and adaptive immune responses 
are responsible for the pathogenesis.
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Regardless of the severity of Coronavirus disease 2019 
(COVID-19), a high proportion of patients struggle with 
“post-COVID-19 syndrome” or “long COVID”, a condi-
tion characterized by long-term health problems that persist 
after recovering from COVID-19 [1]. Long COVID poten-
tially affects nearly every organ system, causing respira-
tory, cardiovascular, neurological symptoms and systemic 
manifestations including generalized fatigue, muscular 
weakness and sleep disorders [1]. Table 1 summarizes the 
symptoms, known mechanisms and rationalized treatment 
targets of acute and chronic phases of COVID-19 infection 
[1–4]. In long COVID, in addition to common neurologi-
cal symptoms, such as headache, dizziness and numbness, 
some patients experience neuropsychiatric manifestations 
characterized by a short-term memory loss, inability to 
concentrate, depression and anxiety [5, 6]. These symptoms 

are called “brain fog”, indicating a cognitive impairment 
caused by neural circuit dysfunctions [5, 6]. Concerning the 
pathogenesis of the COVID-related brain fog, recent stud-
ies suggested the involvement of autoimmunity, viral neuro-
invasion, oxidative stress, hypoxic neuronal injury or micro-
vascular coagulopathies [7]. However, despite such findings, 
supportive management, such as cognitive behavioral ther-
apy and the use of anti-depressants or herbal medications, 
is currently the mainstay of treatment for brain fog [6, 8, 9].

Recently, several studies have additionally revealed the 
involvement of “chronic neuro-inflammation” in the patho-
genesis of COVID-related brain fog [5, 6, 10]. In patients 
with neuropsychiatric symptoms following COVID-19 
infection, in addition to the elevation of serum C-reactive 
protein (CRP) levels [11], pro-inflammatory cytokines, 
such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-
α) and interferon-α (IFN-α), were actually increased in 
both the peripheral blood and cerebrospinal fluid [12, 13]. 
Additionally, in the brain of these patients, microglia, the 
brain-resident macrophages that are stimulated by these 
cytokines [5, 6], were highly activated with the formation 
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of microglial nodules [14, 15]. These nodules are the prod-
uct of microglial phagocytosis of degenerating neurons 
that were attacked and killed by cytotoxic T-lymphocytes 
[16]. In patients with COVID-related brain fog, in addition 
to microglia, lymphocytes were also activated and actually 
increased in the brain [14, 15]. Therefore, the enhanced 
immune responses by these leukocytes were likely to be 
responsible for the pathogenesis of neuro-inflammation in 
COVID-related brain fog.

Brain leukocytes, such as microglia and T-lymphocytes, 
mainly express delayed rectifier  K+-channels (Kv1.3) on 
their cell membranes [17, 18]. The channels play a pivotal 
role in the activation and the proliferation of the leukocytes 
themselves, which thus trigger the innate and adaptive 
immune responses [17, 18]. Previously, in our rat models 
with advanced-stage chronic kidney disease (CKD), we 
demonstrated that both macrophages and T-lymphocytes 
had distinctly proliferated, and pro-inflammatory cytokines, 
such as IL-2 and TNF-α, were significantly increased within 
the inflamed kidneys [17, 19]. In these macrophages and 
T-lymphocytes, the expression of Kv1.3-channels was up-
regulated and the pharmacological inhibition of the channels 
significantly slowed the progression of renal fibrosis. From 
these results, the Kv1.3-channels were considered primarily 
to over-activate the immune responses, which subsequently 
facilitated the progression of CKD [17, 19]. Recently, 
besides CKD and other chronic diseases, such as chronic 
obstructive pulmonary disease and inflammatory bowel dis-
ease [17, 20], neurodegenerative disorders, such as Alzhei-
mer’s disease, Parkinson’ s disease, multiple sclerosis and 
schizophrenia, are now also regarded as chronic inflamma-
tory diseases [21, 22]. In these neuro-inflammatory diseases, 
macrophages and lymphocytes were actually over-activated 

or had proliferated within the brain, and the expression of 
Kv1.3-channels was up-regulated within the cells [21, 22].

In the management of COVID-related brain fog, first 
of all, it is important to rule out other causes of brain fog, 
such as strokes and seizures, which may warrant additional 
evaluation and medications. Additionally, in the treatment 
of COVID-related brain fog, a multi-disciplinary and indi-
vidual approach should be required for each patient [8]. This 
includes the evaluation of (1) cognition, (2) neuroinflam-
mation markers, (3) psychological factors and (4) sleep dis-
orders. Recent clinical studies have revealed the therapeu-
tic efficacies of antihistamines and anti-cholesterol drugs 
(statins) [6, 23, 24]. Despite the lack of pharmacological 
evidence, these agents actually ameliorated the neuropsy-
chiatric symptoms together with a reduction in peripheral 
inflammatory markers [6, 24]. On the other hand, an in vitro 
study additionally demonstrated the efficacy of nonsteroidal 
anti-inflammatory drugs (NSAIDs) for neuro-inflammation, 
since these drugs directly reduced the activity of microglia 
[25]. In our patch-clamp studies using murine thymocytes, 
antihistamines (cetirizine, fexofenadine, azelastine, ter-
fenadine), statins (pravastatin, lovastatin, simvastatin) and 
NSAIDs (indomethacin, diclofenac, salicylate) suppressed 
the activity of lymphocyte Kv1.3-channels and thus reduced 
the pro-inflammatory cytokine production [26–28]. These 
findings would further clarify the additional pharmaco-
logical mechanisms by which antihistamines, statins and 
NSAIDs are effective for COVID-related brain fog, where 
the enhanced immune responses are responsible for the 
pathogenesis (Fig. 1). In our following patch-clamp studies, 
we additionally demonstrated the inhibitory properties of 
antibiotics (clarithromycin, chloroquine) and anti-hyperten-
sive drugs (nifedipine, benidipine, diltiazem, verapamil) on 

Table 1  Summary of symptoms, mechanisms and treatment targets of acute and chronic phases of COVID-19

Acute phase (first 4 weeks from infection) Chronic phase (after 4 weeks)

Symptoms • Nasopharyngeal (sore throat, runny nose)
• Respiratory (cough, dyspnea)
• Systemic (fever, headache, fatigue)

• Respiratory (persistent cough, dyspnea, 
hypoxia)

• Cardiovascular (palpitation, chest pain)
• Neurological (headache, dizziness, numb-

ness)
• Neuropsychiatric (short-term memory 

loss, inability to concentrate, depression, 
anxiety)

• Systemic (fatigue, muscular weakness, 
insomnia)

Known mechanisms • Viral attack
• Inflammatory response
• Cytokine storm

• Immune response
• Chronic inflammation
• Pulmonary fibrosis
• Coagulopathy

Treatment targets • Anti-viral medications
• Immunomodulatory agents (cytokine inhibitors, immune 

globulin)

• Supportive management
• Rehabilitation
• Vaccination
• Anti-coagulation
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lymphocytes Kv1.3-channels [17, 29–31]. Taking such phar-
macological properties of these commonly used drugs into 
account, they would also be beneficial in the treatment of 
COVID-related brain fog, since the channel blockade could 
suppress the activity of brain macrophages (microglia) and 
lymphocytes (Fig. 1).

Additionally, recent studies also revealed the contribution 
of mast cells to the pathogenesis of neuro-inflammation in 
COVID-related brain fog [32]. According to these studies, 
brain mast cells that produce pro-inflammatory cytokines 
directly increased the activity of microglia (Fig. 1). These 
findings strongly indicated the additional pharmacologi-
cal efficacy of suppressing mast cells in the treatment of 
COVID-related brain fog. In our separate patch-clamp stud-
ies, by monitoring the changes in the whole-cell membrane 
capacitance in rat peritoneal mast cells, we provided in vitro 
evidence that newer generation antihistamines (olopatadine, 
ketotifen, cetirizine, levocetirizine), antibiotics (clarithro-
mycin) and corticosteroids (hydrocortisone, dexamethasone) 

strongly inhibit the process of exocytosis [33–37]. In mor-
phological analyses as well, these drugs actually suppressed 
the degranulation from mast cells, suggesting their phar-
macological efficacy as potent mast cell stabilizers. By 
stabilizing brain mast cells and thus repressing the activity 
of microglia, they could also be used in the treatment of 
COVID-related brain fog (Fig. 1). However, in when anti-
biotics and corticosteroids, we have to be very careful since 
the overuse of antibiotics has caused a worldwide problem 
with antibiotic resistance [38], while the use of corticoster-
oids has been associated with a worse clinical outcome of 
COVID-19 [39].

Multisystem Inflammatory Syndrome in Adults (MIS-
A) is a condition recently recognized by the US Center for 
Disease Control (CDC) [40]. It is characterized by diffuse 
multiorgan symptoms, including malaise, myalgia, chest 
tightness, brain fog and other neuropsychiatric symptoms, 
which persisted for months after COVID-19 infection. 
Since these symptoms are very similar to those associated 
with Mast Cell Activation Syndrome (MCAS), its pos-
sibility should also be evaluated in any patients who pre-
sent symptoms of COVID-related brain fog [41]. MCAS 
could be treated with a liposomal formulation of flavone 
luteolin together with rupatadine, an antihistamine [41]. 
They inhibit the release of pro-inflammatory mediators 
from mast cells, such as platelet activating factor (PAF) 
and other chemokines, that are responsible for the patho-
genesis of cytokine storms in COVID-19.

Conclusion

Drugs, such as antihistamines, statins, NSAIDs, antibiotics 
and anti-hypertensive drugs, suppressed the Kv1.3-chan-
nel activity and pro-inflammatory cytokine production 
from leukocytes. Additionally, newer generation antihis-
tamines, antibiotics and corticosteroids strongly stabilized 
mast cells, which directly activate microglia in the brain. 
Given the pharmacological properties of these commonly 
used drugs, they may be useful in the treatment of COVID-
related brain fog since the enhanced innate and adaptive 
immune responses are responsible for the pathogenesis. 
Nevertheless, we must be very careful in implementing 
these medications in humans.
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Fig. 1  Roles of mast cells and Kv1.3-channels in the activation path-
way of brain leukocytes (microglia or lymphocytes) and as the targets 
of commonly used drugs for COVID-related brain fog. Kv1.3-chan-
nels promote calcium influx and trigger the proliferation and activa-
tion of brain macrophages (microglia) or lymphocytes. The increased 
cytosolic calcium concentration stimulates the phosphatase calcineu-
rin, which de-phosphorylates the nuclear factor of activated T cells 
(NFAT), causing its accumulation in the nucleus and binding to the 
promoter region of cytokine-encoding genes. Antihistamines, statins, 
nonsteroidal anti-inflammatory drugs (NSAIDs), antibiotics and 
anti-hypertensives, which inhibit Kv1.3-channels, or antihistamines, 
antibiotics and corticosteroids, which stabilize mast cells, directly or 
indirectly suppress the activity of brain leukocytes and the subsequent 
immunological response
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