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Abstract

Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline 

can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-

wide association studies (GWAS) for eGFR help explain population cross section variability. Since 

the contribution of these or other loci to eGFR-decline remains largely unknown, we derived 

GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed 

twice over time in all 343,339 individuals and in high-risk groups. We also explored different 

covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline 

unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including 

nine variants robustly associated across models were identified. All loci for eGFR-decline were 

known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the 

nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 

individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic 

cross-section associations. Clinically important were two to four-fold greater genetic effects on 

eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease 

progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, 
TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds 

ratios of 1.35 for kidney failure (95% confidence intervals 1.03–1.77) and 1.27 for acute kidney 

injury (95% confidence intervals 1.08–1.50) in over 2000 cases each, with matched controls). 

Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function 

decline, which help inform drug development pipelines revealing important insights into the 

age-dependency of kidney function genetics.
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INTRODUCTION

Glomerular filtration rate (GFR) is accepted as best overall index of kidney function1. 

A GFR<60 mL/min/1.73m2 defines chronic kidney disease (CKD)2, which affects about 

10% of adults3. A decline in GFR over time is characteristic for CKD-progression, which 

can lead to kidney failure4 requiring dialysis or kidney transplantation with a high risk of 

premature mortality5. In population studies on kidney function, estimated GFR (eGFR) is 

usually derived from serum creatinine6 and annual eGFR-decline as the difference between 

two such assessments divided by the years between these assessments. Decline in eGFR 

is age-related, with a physiological loss of ~1 mL/min/1.73m2 per year2 generally and 3 

mL/min/1.73m2 per year in the presence of diabetes mellitus (DM), a major risk factor for 

CKD-progression7,8. Therapeutic options to decelerate kidney function decline are limited. 

In addition to pharmacological inhibitors of the RAAS-system9, the recent introduction 

SGLT2 inhibitors show promising reno-protective effects10,11. An understanding of the 

mechanisms of kidney function decline and the developing of new therapeutic options is 

thus of high clinical and public health relevance7,12.

Genes underneath genome-wide association study (GWAS) loci for diseases and biomarkers 

help identify new therapies13. Open access GWAS summary statistics from large sample 

sizes are a highly queried resource, also for causal inference studies14. Hundreds of loci 

and genes are identified by cross-sectional GWAS for eGFR, i.e. GWAS for eGFR based 

on a single serum creatinine measurement15–18, which help explain population variability. 

However, the mechanisms underlying a genetic variant association with lower but stable 

eGFR over time might not always be disease-relevant. GWAS on parameters more directly 

linked to disease progression are thought to better inform drug development19.

Current evidence from GWAS on annual eGFR-decline is limited, owed to substantial 

logistics in conducting longitudinal studies and thus small sample sizes. Only one variant, in 

the UMOD-PDILT locus, has been identified at genome-wide significance20 (n~60,000). 

With an estimated heritability of 38% for annual eGFR-decline20, comparable to 33%

−39% estimated for cross-sectional eGFR in general populations21,15, much more can be 

expected in larger sample sizes. Further three loci were genome-wide significant in an 

extreme phenotype approach, comparing individuals with large eGFR-decline or steep drop 

into CKD with respective controls22. While these are important binary clinical endpoints, 

methodological literature supports the use of regression methods on undichotomized 

variables23.

The limited availability of longitudinal GWAS is not only an issue for kidney function 

decline, but also generally: e.g. change in lung function (n=27,24924), glucose (n=13,80725), 

or blood pressure (n=33,72026); consequently, locus findings on biomarker change are 

few and often unstable14. A challenge beyond power is limited experience in longitudinal 

GWAS with regard to covariate adjustment: clinical trials for disease-related biomarker 
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change require control for differences in baseline levels between therapy groups27. However, 

covariate adjustment in GWAS requires a careful choice28: it can reveal important 

mediator effects (e.g. DM adjusted for BMI29), alter the phenotype (e.g. waist-to-hip ratio 

“unexpected” by body-mass-index28,30), yield artefacts from heritable covariates (collider 

bias28) or non-sense association (e.g. sex adjusted for height31). The impact of covariate 

adjustment on longitudinal GWAS on eGFR-decline, and biomarker change generally, is not 

well explored.

We thus aimed to identify genetic loci associated with annual eGFR-decline and CKD-

progression (defined as eGFR-decline among individuals with CKD at baseline) and to 

prioritize genes that may inform drug development for slowing down eGFR-decline and 

CKD-progression. We also aimed to fill the gap of large-data genome-wide SNP summary 

statistics for annual eGFR-decline and CKD-progression, to help future meta-analyses 

and Mendelian randomization studies. Finally, we wanted to understand the impact of 

different covariate adjustment and whether a SNP associated with eGFR-decline showed 

an age-dependent association on eGFR cross-sectionally (i.e. SNP-by-age interaction on 

eGFR cross-sectionally). By this, we aimed to contribute to a better understanding of the 

interpretation of genetic findings for eGFR-decline and other progression traits.

To achieve these aims, we (i) increased sample size for GWAS on annual eGFR-decline to 

>340,000 individuals based on the CKDGen consortium32 and UK Biobank33, (ii) applied a 

suite of covariate adjustment models, (iii) analyzed SNP-by-age interaction on eGFR cross-

sectionally in >350,000 individuals independent of the GWAS on decline, and (v) conducted 

genetic risk score (GRS) analyses for acute kidney injury (AKI) and end-stagekidney disease 

(ESKD).

METHODS

We conducted GWAS meta-analysis based on study-specific summary statistics. Each study 

utilized data on two measurements of serum creatinine over time and genome-wide SNP-

information imputed to 1000 Genomes34 phase 1 or phase 3, the Haplotype Reference 

Consortium35 v1.1 or similar (Table S1&S2). Serum creatinine measured at baseline and 

follow-up were used to estimate eGFR at baseline and follow-up, respectively, according 

to the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation6. Annual 

eGFR-decline was defined as “-(eGFR at follow-up - eGFR at baseline) / number of years 

of follow-up”. GWAS analyses were conducted separately by ancestry (if applicable), where 

ancestry was defined by genetic principal components or participants’ self-report. GWAS 

were based on linear regression with different covariate adjustment conducted overall and 

focused on individuals with DM or CKD at baseline.

Study-specific genome-wide summary statistics and detailed phenotype information were 

transferred to the meta-analysis center. For each SNP, summary statistics were pooled and 

genomic control corrected. Significant genetic variants were identified and respective locus 

regions selected.
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Additionally, we investigated identified SNPs for SNP-by-age interaction on cross-sectional 

eGFR (based on creatinine or cystatin C, eGFRcrea, eGFRcys) using UK Biobank data that 

was independent of the SNP identification step (excluding the individuals in the decline 

GWAS). We computed the GRS and its association on eGFR-decline in the HUNT study via 

linear regression and provided odds ratios (OR) for GRS association in case-control studies 

on AKI and ESKD via logistic regression.

Detailed methods are provided in the Supplementary Methods.

RESULTS

Overview across studies and models for GWAS

This GWAS meta-analysis included 343,339 individuals from 62 studies (Supplementary 

Table S1&S3, Supplementary Figure S1, Methods) and 12,403,901 analyzable SNPs. Most 

studies were population-based (76%) and of European ancestry (74%). Study-specific 

median annual eGFR-decline was independent of sample size and follow-up length 

(Supplementary Figure S2A&S2B) and the median across studies was 1.32 mL/min/1.73m2 

per year; follow-up length was 1–21 years (median [25th, 75th] = 5 years [4,7]); median age 

ranged from 33 to 77 years (Supplementary Figure S2C).

All analyses were adjusted for age-, sex, and study-specific covariates, which is not 

mentioned further from here on (stable across different modes of age-adjustment, 

Supplementary Figure S3). We had five GWAS results for eGFR-decline (Methods): (i) 

“unadjusted”, (ii) “DM-adjusted”, (iii) “adjusted for eGFR-baseline”, (iv) restricted to 

individuals with DM at baseline (unadjusted), and (v) restricted to individuals with CKD 

at baseline (unadjusted).

Similarities and differences across different model adjustments

There is, to date, no standard conduct for GWAS on eGFR-decline with regard to covariate 

adjustment. We explored the impact of two potentially important covariates additional to age 

and sex: (i) DM, as an important risk factors for eGFR-decline and potential mediator, and 

(ii) eGFR at baseline, as adjustment for baseline levels in analyses of change over time has 

noted pros (larger effects, better detectability) and cons (biased effects)36,37.

With regard to DM-adjustment, this model was computed in all studies (n=343,339; 62 

studies) and compared to unadjusted results for a subset of studies of varying scope 

(n=103,970). DM-adjusted SNP-associations on eGFR-decline were precisely the same as 

unadjusted, in terms of beta-estimates and standard errors (Supplementary Figure S4A, 

Supplementary Note S1). We therefore did not distinguish these two models further.

In contrast, adjustment for eGFR-baseline altered SNP-associations on eGFR-decline 

(Supplementary Figure S4B). Therefore, results from both eGFR-decline unadjusted and 

adjusted for eGFR-baseline were evaluated in the following. GWAS summary statistics 

for eGFR-decline adjusted for eGFR-baseline were formula-derived from GWAS summary 

statistics for unadjusted eGFR-decline and for eGFR-baseline together with study-specific 

phenotypic information (Supplementary Note S2). In a subset of studies (n=103,970), we 
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validated that the formula-approach worked very well in our setting (Supplementary Note 

S3, Supplementary Figure S4C&D). Meta-analysis yielded GWAS results for eGFR-decline 

adjusted for eGFR-baseline for 320,737 individuals (50 studies, Supplementary Figure S1).

Twelve variants identified for eGFR-decline unadjusted or adjusted for eGFR-baseline

First, our genome-wide screen for eGFR-decline unadjusted for eGFR-baseline (n=343,339) 

identified two genome-wide significant independent variants near UMOD-PDILT 
(PDECLINE < 5 × 10−8; Figure 1A, Table 1A): rs34882080, highly correlated with rs12917707 

identified previously for this phenotype (r2=1.00)20, and rs77924615, known for altering 

UMOD expression and urine uromodulin15 and genome-wide significant for eGFR-decline 

for the first time.

Second, we evaluated the 263 additional lead variants known for cross-sectional eGFR 

GWAS15 for association with baseline-unadjusted eGFR-decline (candidate approach); we 

had a prior hypothesis that cross-sectionally known variants might also show association 

with eGFR-decline. We identified two additional variants for eGFR-decline near PRKAG2 
and SPATA7, both new loci for this phenotype, at Bonferroni-corrected significance 

(PDECLINE < 0.05/263 = 1.90 × 10−4; Table 1A).

Third, our genome-wide screen for eGFR-decline adjusted for eGFR-baseline (n=320,737) 

identified 12 independent variants across 11 loci (PDECLINE_adj−BL < 5 × 10−8, Figure 1B), 

including the four variants already identified by the baseline-unadjusted analyses (directly 

or via high correlation, r2≥0.9). The 8 variants additionally identified pointed to novel 

loci for this phenotype. Of these, 5 variants also showed directionally consistent, 

significant association for eGFR-decline unadjusted for eGFR-baseline (Bonferroni-

corrected, PDECLINE < 0.05/12 = 4.17 × 10−3; near FGF5, OVOL1, TPPP, C15ORF54, and 

ACVR2B; Table 1B), but 3 variants did not (PDECLINE from 0.156 to 0.710; near GATM, 

CPS1, SHROOM3, Table 1C).

Overall, we found 12 variants across 11 loci with genome-wide significant 

association for eGFR-decline unadjusted and/or adjusted for eGFR-baseline (PDECLINE or 

PDECLINE_adj_BL < 5 × 10−8). All but one variant/locus were novel for this phenotype. All resided 

in loci known for eGFR cross-sectional GWAS15, but none was associated with DM-status 

(Supplementary Table S4).

The 12 variants’ associations showed no between-ancestry heterogeneity, stable statistics 

in various sensitivity analyses, and no impact by DM-adjustment (Supplementary 

Table S5&S6). Meta-analysis restricted to African American (n=9,038) did not identify 

associations for published APOL1 risk variants38, but two other suggestive variants 

(Supplementary Table S7).

The 12 variants included 9 variants with non-zero effects on eGFR-decline unadjusted for 

eGFR-baseline (i.e. Bonferroni-corrected significant, i.e. PDECLINE < 4.17 × 10−3).
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SNP-effects for eGFR-decline were larger when baseline-adjusted than baseline-
unadjusted

Several interesting aspects emerged when comparing genetic effect sizes of the 12 identified 

variants across models. First, we observed consistently larger effects for eGFR-decline 

baseline-adjusted than baseline-unadjusted (Figure 2A), also when restricting to studies 

where the baseline-adjusted model was directly computed (inserted small panel, Figure 2A). 

This, together with the smaller standard errors (Supplementary Figure S4B), explained the 

larger yield of genome-wide significant loci in the baseline-adjusted GWAS.

Second, we contrasted effect sizes for eGFR-decline unadjusted for eGFR-baseline 

with those for cross-sectional eGFR15 (Figure 2B). Three variants showed relatively 

extreme cross-sectional effects and no effect on decline (near GATM, SHROOM3, 

CPS1). For the other 9 variants, the faster-decline allele was always the cross-sectional 

eGFR-lowering allele (Spearman correlation coefficient=−0.32). A similar more schematic 

presentation (Figure 2C) illustrates the mathematical relationship between baseline-adjusted 

and baseline-unadjusted effect sizes (Supplementary Note S4). This yields a corollary 

on the directionality of baseline-adjusted effect sizes: when the faster-decline allele 

(i.e. β DECLINE > 0) coincides with the baseline eGFR-lowering allele (i.e. β BL < 0), then 

the baseline-adjusted eGFR-decline effect size is larger than baseline-unadjusted (i.e. 

β DECLINE_adj_BL > β DECLINE) – in theory. Our data confirmed this empirically (Figure 2A). The 

larger genetic effect sizes for eGFR-decline adjusted for eGFR-baseline are thus a direct 

consequence of the phenotypic and genetic correlation between eGFR-decline and eGFR-

baseline. The genetic effect for eGFR-decline unadjusted for eGFR-baseline provides the 

relevant effect size for further use and to distinguish between a “genuine association with 

eGFR-decline” (9 variants) and a pure “collider bias” effect (3 variants).

Four genes with compelling biological in-silico evidence mapped to novel eGFR-decline 
loci

All 11 identified loci for eGFR-decline coincided with loci detected for cross-sectional 

eGFR: among the 12 identified variants, 11 variants were genome-wide significant for cross-

sectional eGFR15 and the variant near TPPP showed P=7.63×10−6 cross-sectionally with 

genome-wide significant variants nearby (Supplementary Figure S5A-C, Supplementary 

Note S5).

The 8 loci with genuine association for eGFR-decline included the well-known UMOD-
PDILT locus. Biological evidence at the other seven loci was summarized using the 

Gene PrioritiSation tool18 generated from GWAS data on cross-sectional eGFR including 

evidence for SNP-modulated gene expression (eQTL, false-discovery-rate < 0.05): four lead 

variants or highly correlated proxies were eQTLs in tubule-interstitial kidney tissue with 

upregulating effects for SPATA7 and GALNTL5 (in PRKAG2 locus, kidney-tissue specific), 

a downregulating effect for FGF5 (kidney-tissue specific), and an upregulating effect for 

TPPP using NEPTUNE39. This supported these four genes in novel loci for eGFR-decline as 

kidney-tissue relevant and potentially causal genes for the association signals.
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SNPs for eGFR-decline showed SNP-by-age interaction on cross-sectional eGFR

In the absence of birth cohort effects, we hypothesized that a SNP associated with eGFR-

decline might also show an age-dependent association on cross-sectional eGFR, which is 

SNP-by-age interaction on cross-sectional eGFR. Of note, the age-effect on eGFR should 

reflect the age-effect on filtration rate, not on creatinine metabolism, within limits of 

uncertainty of the CKD-EPI formula6. To empirically assess this hypothesis, we tested the 

identified 12 SNPs for SNP-by-age interaction on cross-sectional eGFRcrea or eGFRcys in 

UK Biobank data, which was independent from and similarly-sized as the decline GWAS 

(n=351,462 or 351,601 for eGFRcrea or eGFRcys, respectively; Methods). For 8 of the 

12 SNPs, we found SNP-by-age interaction for eGFRcrea and/or eGFRcys at Bonferroni-

corrected significance (PSNPxage < 0.05/12 = 4.17 × 10−3, Table 2). Interaction effect sizes were 

similar between eGFRcrea and eGFRcys (Figure 3A), except for the SNP near GATM.

The age-dependency of all SNP-effects and main age-effects were approximately linear 

(Supplementary Figure S6, Supplementary Note S6). The SNP-by-age interaction effect size 

can also be interpreted as the genetically modified age-effect on eGFR. This effect was 

large: e.g., 5 unfavorable alleles decreased eGFRcys by −0.136 mL/min/1.73m2 per year, 

which was ~10% of the overall age-effect on eGFRcys (−1.024 mL/min/1.73m2per year, 

Supplementary Note S6). SNP-by-age interaction effects on eGFRcys were highly correlated 

with SNP-effects on eGFR-decline (both in units of mL/min/1.73m2 per allele and year: “per 

year of age-difference between individuals” and “per year of person’s aging”, respectively; 

Figure 3B).

There was a noteworthy pattern with regard to presence and direction of SNP-by-age 

interaction: (i) among the 9 variants with genuine association for eGFR-decline, 7 variants 

showed significant SNP-by-age interaction on cross-sectional eGFRcys (Table 2A&B). All 

interaction effects were negative, i.e. the cross-sectional SNP-effect became larger (in 

absolute value) with older age. (ii) Among the three SNPs without genuine association 

for eGFR-decline, two showed no SNP-by-age interaction; the third (near GATM) showed 

SNPby-age interaction, but only for eGFRcrea and with positive direction (β SNPxage = + 0.138, 

PSNPxage = 9.71 × 10−5). Thus, the GATM SNP-effect on cross-sectional eGFRcrea gets smaller 

(in absolute value) by higher age. This might be explained by GATM being the rate-limiting 

enzyme in creatine synthesis in muscle, age-related loss of muscle mass, and thus decreased 

creatinine production with increasing age - in line with the lack of interaction with eGFRcys, 

which is unrelated to muscle mass.

A concept of three classes of SNPs for cross-sectional eGFR distinguished by their eGFR-
decline association

Our results suggested that SNPs for eGFR-decline were found among SNPs associated 

with eGFR cross-sectionally. This motivated the idea of, in theory, three classes of 

SNP-associations on cross-sectional eGFR (intercept) distinguished their eGFR-decline 

association unadjusted for eGFR-baseline (slope; Figure 4): no association with slope 

(class I), association of the eGFR-baseline lowering allele with flatter slope (class II), or 

association of the eGFR-baseline lowering allele with steeper slope (class III).
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In our data, we found (i) three of the 12 SNPs as class I, in line with the lack of SNP-by-age 

interaction on eGFR cross-sectionally (judged for eGFRcys). (ii) No variant was class II, 
consistent with the lack of positive SNP-by-age interaction on eGFRcys. (iii) The 9 variants 

with genuine eGFR-decline association were class III, and 7 of these showed negative 

SNP-by-age interaction on eGFR. Thus, our data supported two classes of genetic effects on 

eGFR: no association with slope or steeper slope for the eGFR-lowering allele.

Larger SNP-effects for eGFR-decline were observed in high-risk subgroups

Individuals with DM and/or CKD (defined as eGFR<60 mL/min/1.73m2) are at higher 

risk for CKD-progression and kidney failure, prompting us to quantify SNP-effects on 

eGFR-decline in these high-risk subgroups (meta-analysis for eGFR-decline unadjusted for 

eGFR-baseline restricted to DM or CKD at baseline, n= 37,375 or 26,653 respectively, 

Methods). For the 9 variants with genuine eGFR-decline association, we found almost all 

effects to be two- to four-fold larger in DM or in CKD compared to the overall analysis 

(Table 3, average effect size [mL/min/1.73m2/year and allele]: 0.061 in DM, 0.079 in CKD, 

compared to 0.030 overall).

To get an idea of the magnitude, we scaled the effects to “per 5 unfavorable average alleles” 

resulting in a decline of 0.305 in DM, 0.395 in CKD, compared to 0.150 mL/min/1.73m2/

year overall. This compared well to the 9-variant weighted GRS effect on eGFR-decline 

per 5 unfavorable average alleles in the HUNT study (n=2,235 with DM, n=502 with CKD, 

n=46,328 overall; Methods): 0.219 in DM, 0.262 in CKD, and 0.102 mL/min/1.73m2/year 

overall (one-sided P=1.57×10−5, P=0.0193, and P=1.06×10−34, respectively).

The genetic effect sizes were also larger in the two subgroups when viewed relative to 

the phenotype variance (on the example of HUNT, Methods): rs77924615 variant (UMOD-
PDILT locus) explained 0.38% of the eGFR-decline variance in DM, 0.47% in CKD, and 

0.22% overall; the 9-variants jointly explained 1.14%, 1.48%, and 0.51%, respectively. 

Of note, the explained variance of eGFR-decline overall was comparable to the explained 

variance of cross-sectional eGFR (rs77924615: 0.21%; 9 variants: 0.62%), but narrow-sense 

heritability was smaller (Supplementary Note S7).

GALNTL5, SPATA7, and TPPP were identified as candidates for CKD-progression

Variants associated with CKD-progression and mapped genes might help identify drug 

targets against disease progression19. We queried the 9 SNPs with genuine association 

for eGFR-decline for significant association with CKD-progression, i.e. whether they still 

showed significant association with eGFR-decline when focusing on individuals with CKD 

at baseline (judged at P<0.05/9=5.56×10−3, n up to 26,547). We found five such SNPs: (i) 

two in the UMOD-PDILT locus, which confirmed UMOD for a role in CKD-progression, 

(ii) three SNPs in novel loci for eGFR-decline, which mapped to three genes with eQTL in 

kidney tissue (GALNTL5 in PRKAG2 locus, kidney-tissue specific; SPATA7, and TPPP), 

making these compelling candidates as CKD-progression genes.
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Unfavorable GRS increased the risk for ESKD and AKI

Finally, we wanted to understand the cumulative impact of the 9 genuine eGFR-decline 

variants for severe clinical endpoints. We thus evaluated the 9-variant weighted GRS in 

cases-control studies for ESKD and AKI via logistic regression (ncases=2,068 and 3,878, 

ncontrols=4,640 and 11,634, respectively; Methods). The GRS effect per 5 unfavorable 

average alleles showed a significant OR=1.12 for ESKD (95%CI=0.99–1.23; one-sided 

P=0.033) and OR=1.18 for AKI (95% CI=1.09–1.27; one-sided P<0.0001 Table 4). 

When comparing the individuals with GRS ≥90th versus ≤10th percentile (i.e. ≥14.6 

unfavorable alleles versus ≤8.3 in UK Biobank), we found a significant OR=1.35 for 

ESKD (95%CI=1.03–1.77, one-sided P=0.0157) and OR=1.27 (95%CI=1.08–1.50, one-

sided P=0.002, Table 4).

DISCUSSION

Here, we provide data and results on a large longitudinal GWAS on annual eGFR-decline 

with >340.000 individuals from mostly population-based studies – to our knowledge the 

largest GWAS on annual eGFR-decline so far and probably one of the largest longitudinal 

GWAS of any trait. We identified 12 variants across 11 loci as genome-wide significant 

for annual eGFR-decline unadjusted and/or adjusted for eGFR-baseline (Figure 5). These 

included 9 variants across 8 loci with non-zero association unadjusted for eGFR-baseline, 

which we termed “genuinely” associated with eGFR-decline. Seven of these 9 variants also 

showed SNP-by-age interaction on cross-sectional eGFR in independent data of >350,000 

individuals, while the three variants without genuine association did not. We generated and 

provide genome-wide summary statistics for eGFR-decline, CKD-progression, and eGFR-

decline in DM. This data resource is informative for future meta-analyses, causal inference 

studies via Mendelian Randomization40, and drug development pipelines.

Clinically very important is our finding of the two-to four-fold larger genetic effects of 

almost all identified variants when focusing on individuals with DM or CKD at baseline, 

since these individuals are already at higher risk of kidney failure. This observation is in line 

with a “horse-racing effect”41 (“a faster horse is more likely observed up front”): individuals 

with an accumulation of faster eGFR-decline alleles are more likely observed with low 

eGFR at a given point in time, implying that these genetic effects might partly explain 

lower eGFR at baseline. A part of the larger eGFR-decline effect among CKD individuals 

might reflect collider bias. However, DM-status does not fulfill the characteristics of a 

collider for the SNP-associations with eGFR-decline (no impact by adjusting for DM-status, 

no SNP-association with DM-status), rendering the higher eGFR-decline effects in DM 

genuine.

The clinical relevance is further underscored by the 9-variant GRS being associated with 

increased risk of AKI and ESKD. This observation requires further analyses in future 

larger data. If substantiated, this may indicate a genetic risk of incomplete kidney function 

recovery after AKI and a genetic predisposition for ESKD.

The 9 identified variants across 8 loci included the UMOD-PDILT locus associated with 

eGFR-decline and CKD-progression, which is largely confirmatory but serves as proof-of-
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concept. A variant near MIR378C previously identified for CKD-progression42 (n~3000) 

was not confirmed here. Our other 7 loci are novel for eGFR-decline (near/in PRKAG2-
GALNTL5, SPATA7, FGF5, OVOL1, TPPP, C15ORF54, and ACVR2B). These included at 

least three loci associated with CKD-progression (defined as eGFR-decline in individuals 

with CKD at baseline), mapping to the genes GALNTL5, SPATA7 and TPPP by SNP-

modulated expression in tubolo-interstitium15,18. These associations and genes for CKD-

progression are in strong demand as genetic information on a disease progression phenotype, 

in order to help identify treatment19. Our data particularly flags TPPP by its locus’ large 

effect on eGFR-decline and CKD-progression, making it second only after UMOD. This 

also documents the value of longitudinal GWAS in revealing relevance of genes like TPPP: 

the TPPP locus was one of hundreds of small effect loci cross-sectionally, but among the few 

loci longitudinally.

Our results highlight some overlap of quantitative eGFR-decline genetics with binary 

extreme decline genetics22, but also distinction. All loci identified here were directionally 

consistent, nominally significant with “rapid3” and/or “CKDi25” (one-sided P<0.05) 

and two were genome-wide significant for rapid3 or CKDi25 (UMOD-PDILT, PRKAG2-

GALNTL5). Particularly the loci identified here for CKD-progression, which is among 

individuals with CKD at baseline, complement the previously reported associations with 

CKDi25, which is among individuals without CKD at baseline. Methodologically, regression 

applied to a quantitative rather than dichotomized outcome has larger power and statistical 

advantages.

While all variants identified for eGFR-decline captured loci known from cross-sectional 

eGFR15, these associations are important on various accounts. First, the mere fact that 

eGFR-decline genetics is a subgroup of cross-sectional eGFR genetics is informative for 

future searches. Second, the finding that the full genetic signals were the same enabled 

the use of fine-mapping results from cross-sectional GWAS in >1 million individuals18 to 

prioritize genes also for longitudinal eGFR-decline. Third, all faster-decline alleles were 

the cross-sectional eGFR-lowering alleles. Together, this supported two classes of genetic 

variants for cross-sectional eGFR, distinguished by lack or presence of a slope effect, with 

steeper slope for the cross-sectional eGFR-lowering allele. The data rendered the third 

theoretical option, i.e. presence of a slope effect with flatter slope for the cross-sectional 

eGFR-lowering allele, void.

Some limitations warrant mentioning. Although this GWAS is currently the largest GWAS 

on eGFR-decline so far, more loci for eGFR-decline and CKD-progression might be 

detectable upon further increased sample size. The yield of eGFR-decline loci in >340,000 

individuals was comparably low considering older GWAS for cross-sectional eGFR having 

already detected >50 loci in 170,000 individuals43. We used the CKD-EPI formula 

containing an ancestry term (Levey et al., Ann Intern Med), accounted for by ancestry-

specific GWAS; future work should utilize the new ancestry-term-free CKD-EPI formula 

2021 (Inker et al., NEJM). Evaluating the potential existence of sex-specific genetic effects 

on eGFR-decline is of interest, but was not addressed in this project. The target population is 

primarily population-based, including kidney diseases proportional to respective prevalence, 

and primarily European ancestry. Larger all-ancestry meta-analyses on eGFR-decline will 

Gorski et al. Page 10

Kidney Int. Author manuscript; available in PMC 2023 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



open up opportunities to also utilize differential linkage disequilibrium between ancestries 

to help narrow down causal variants and genes. The interpretability of the SNP-by-age 

interaction on cross-sectional eGFR is limited to the age spectrum in the data (40–70 years) 

and by the power given the sample size; still, the sample size used was large and the age 

range typical also for most eGFR-decline GWAS studies. Two aspects need mentioning 

regarding the phenotype definition: uncertainty in eGFR-decline may be larger for studies 

with shorter follow-up, which decreases power, but measurement error in the outcome 

does not induce bias in linear regression44. By defining annual eGFR-decline from two 

eGFR assessments over time, our SNP associations capture only the linear component of 

decline. Serial eGFR assessments are better to characterize eGFR-trajectories, but at the 

cost of limiting sample size, since such studies are few and typically small. Furthermore, 

generalized additive mixed models for nonlinear eGFR-trajectories are complex and require 

particularly large sample sizes. The linear modelling of eGFR-decline is a reasonable 

approximation of monotonous decline, maintaining large sample sizes and limiting model 

complexity to be applicable for GWAS. Overall, the choice of the adjustment, target 

population, and phenotype definition are important to consider when interpreting results. 

While some modelling aspects are addressed here, other covariate adjustment or relative 

decline as phenotype might reveal further or other genetic loci. Future work is warranted to 

quantify effects in different target populations and the genetically determined shape of the 

decline, which requires more – and larger – longitudinal studies, ideally with more than two 

eGFR assessments over time.

Methodologically unique is our contrasting of GWAS SNP-associations on eGFR-decline 

for different covariate adjustment, which fills an important gap and helps design future 

studies. This is highly relevant, since covariate adjustment can alter GWAS findings and 

interpretation28–31,45. Adjusting for baseline DM-status had no impact, but genetic effects 

for eGFR-decline were larger when restricting to DM-individuals; this suggests DM-status 

as modulator for the SNP-association with eGFR-decline rather than mediator (i.e. in the 

causal pathway from SNP to eGFR-decline) or collider (i.e. generating biased association). 

Adjustment for eGFR-baseline yielded larger eGFR-decline effects and more genome-wide 

significant variants. Glymour et al. highlight that adjustment for baseline levels in analyses 

of change may help detect effects, but can induce spurious associations when the rate of 

change observed after baseline reflects a rate of change experienced in the past36. This might 

reflect the situation here rendering the larger genetic effects adjusted for eGFR-baseline 

- and the larger genetic effects when restricting to individuals with CKD at baseline – 

reflective of collider bias. Glymour et al. recommend the documentation of change effects 

without baseline adjustment36. In line with this, we considered a variant’s association 

with eGFR-decline genuine, when the variant reached genome-wide significance baseline-

unadjusted or baseline-adjusted and Bonferroni-corrected significance baseline-unadjusted. 

The baseline-unadjusted model provides the relevant genetic effect sizes for eGFR-decline.

Interestingly, two of the three associations without genuine eGFR-decline association 

may relate to biomarker generation rather than kidney function: GATM and CPS1, 

known for a role in creatine biosynthesis41 and urea cycle42, respectively, reside in loci 

without supporting association with cross-sectional cystatin-based eGFR18. Conversely, the 

SHROOM3 locus was associated with cystatin-based eGFR18,15 and experimental studies 

Gorski et al. Page 11

Kidney Int. Author manuscript; available in PMC 2023 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



support a role of SHROOM3 in kidney pathology46–48; thus, SHROOM3 appears to have 

an effect on cross-sectional kidney function, but not on kidney function decline within the 

limits of detectability by sample size.

A further unique aspect of our work is the empirical evidence for a link between SNP-effects 

on eGFR-decline with SNP-by-age interaction effects on cross-sectional eGFR. By this, we 

provide important insights into the age-dependency of kidney function genetics as well as 

into the genetic dependency of aging eGFR in adult general populations, where “aging” 

includes onset of age-related diseases as they develop in populations. Considering the much 

broader availability of cross-sectional than longitudinal data, the further parallel exploitation 

of SNP-by-age interaction might be a promising route to help improve our understanding of 

the mechanisms of kidney function decline over time.

In summary, we provide GWAS summary statistics, identified genetic loci, and prioritized 

genes for kidney function decline and CKD-progression. While UMOD has drawn attention 

already, GALNTL5, SPATA7, and TPPP may now receive more focus as therapeutic 

targets for disease progression. Our exploration of different covariate adjustment and the 

comparison to age-dependency of SNP-effect on eGFR cross-sectional provides important 

insights into the interpretation of these effects. With the emerging large biobank data 

linking medical records, longitudinal GWAS will become very important in the future. 

Our methodological framework is informative and applicable also generally for longitudinal 

phenotypes.

Availability of data and materials

To support future work, we provide genome-wide summary statistics on eGFR-decline 

unadjusted for eGFR-baseline (adjusted for age, sex and DM-status) overall and 

restricted to individuals with DM or CKD at baseline (all adjusted for age and 

sex) (https://www.uniregensburg.de/decline and http://ckdgen.imbi.uni-freiburg.de). The 

summary statistics on eGFR-decline in individuals with CKD at baseline can be considered 

genetic effects on CKD-progression. We also provide genome-wide summary statistics on 

eGFR-decline adjusted for eGFR-baseline (additionally to adjustment for age and sex), 

but these summary statistics should be used with great care and an understanding that 

beta-estimates are subject to collider bias. For quantification of the genetic effect on eGFR-

decline, the results unadjusted for eGFR-baseline should be utilized.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Eleven loci identified by GWAS for eGFR-decline unadjusted and/or adjusted for 
eGFR-baseline.
We conducted GWAS for eGFR-decline baseline-unadjusted and baseline-adjusted (n up 

to 343,339 or 320,737, respectively). Shown are association P-values versus genomic 

position, identified loci annotated by nearest gene: (A) association for eGFR-decline 

baseline-unadjusted identified one genome-wide significant locus for decline (P<5×108) and 

two Bonferroni-corrected significant loci among the 263 lead variants for cross-sectional 

eGFR15 outside of UMOD-PDILT (red dots, P<0.05/263=1.90×10−4; known locus for 

decline marked in blue; novel loci for this phenotype in orange); (B) association for eGFR-

decline baseline-adjusted identified 8 additional loci (novel loci marked in green; known loci 

or loci already identified in (A) marked in blue). Altogether, 11 loci were identified with 

genome-wide significance for eGFR-decline unadjusted and/or adjusted for eGFR-baseline.
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Figure 2: Relationship of SNP-effects on eGFR-decline baseline-unadjusted with baseline-
adjusted effects for the 12 identified variants.
Shown are: (A) SNP-effects per year and allele for eGFR-decline baseline-unadjusted 

(“decline”) versus eGFR-decline baseline-adjusted in all studies (ndecline=343,339; 

ndecline-adj=320,737) and restricted to studies where baseline-adjusted results were computed 

rather than formula-derived (inserted panel, n=103,970); red line indicates identify line); 

(B) standardized SNP-effects per year and allele for eGFR-decline baseline-unadjusted 

(β DECLINE/sdDECLINE, n=343,339) and per allele for cross-sectional eGFR on ln-scale (β BL/sdBL, 

n=765,348 15); grey line indicates phenotype correlation line y=0.34*x (0.34=mean 

phenotype correlation across studies). For A&B: coding allele is the faster-decline allele 

(=cross-sectional eGFR-lowering allele). Color codes whether SNP was identified for 

decline baseline-unadjusted and/or baseline-adjusted. (C) Illustration of the SNP-effect 

for eGFR-decline baseline-adjusted (standardized to Y-scale) as a sum of the SNP-effect 

baseline-unadjusted (standardized) and the correlation-weighted SNP-effect on eGFR at 

baseline (standardized).
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Figure 3: Relationship of SNP-by-age interaction effects for eGFRcys with those of eGFRcrea 
and with SNP-effects for eGFR-decline for the 12 identified variants.
Shown are SNP-by-age interaction effect sizes per year and allele for cross-sectional 

eGFRcys (UK Biobank individuals independent from GWAS, nSNPxage=351,601; main 

age effect modelled non-linearly, main SNP-effect linearly, age effect and SNP effect in 

interaction term linearly, age centered at 50 years) versus: (A) SNP-by-age interaction 

effects on cross-sectional eGFRcrea (nSNPxage=351,462), (B) SNP-effects on eGFR-decline 

baseline-unadjusted per year and allele (ndecline=343,339). Coding allele is the faster-decline 

allele (=cross-sectional eGFR-lowering allele); color code as in Figure 2; red line indicates 

identity line; symbol types code significance of interaction term (P< 0.05/12). Among the 9 

SNPs with genuine eGFR-decline association, 7 SNPs showed interaction for eGFRcrea or 

eGFRcys (all negative), and all 3 SNPs without genuine eGFR-decline association showed 

no interaction for eGFRcys (one with positive significant interaction for eGFRcrea).
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Figure 4: A concept for three classes of SNP-associations on cross-sectional eGFR distinguished 
by the presence and direction of the SNP-association with eGFR-decline.
Let A/a be the genotype group of individuals with, on average, lower cross-sectional eGFR 

compared to a/a (A=effect allele). Let’s further assume that eGFR-declines monotonously 

by age (approximated as linear decline) and that there is no “cross-over” between genotype 

groups. Shown are (left) a graphical scheme, (middle) the theoretical association, (right) 

the observed SNPs in line with the respective class. In the three graphical schemes, black 
lines illustrate mean eGFR-decline by genotype group; SNP-effects on eGFR for these 

individuals captured cross-sectionally at different ages are magenta. When a cross-sectional 

study captures individuals of relevant ages, the SNP-effects on eGFR should show an 

interaction by age for class II and class III SNPs (positive and negative, respectively). The 

9 variants with genuine eGFR-decline association were class III, while the other 3 variants 

were class I.
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Figure 5: Data, analyses, and results in a nutshell.
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Table 2:
SNP-by-age interaction for cross-sectional eGFR for the 12 identified variants.

For the 12 identified variants, we conducted SNP-by-age interaction analysis for cross-sectional eGFRcrea and 

eGFRcys in UK Biobank (excluding individuals from decline GWAS; n=351,462 for eGFRcrea, n=351,601 

for eGFRcys; main age effect modelled non-linearly, main SNP effect linearly, age centered at 50 years). The 

interaction term (age effect and SNP effect modelled linearly) was judged at Bonferroni-corrected significance 

level (P<0.05/12=4.17×10−3). Beta-estimates are in mL/min/1.732 per year and per cross-sectional eGFR-

lowering allele (which was equivalent to faster-decline allele for each SNP); significant P-values are stated in 

bold.

SNPID Locus Name EA/OA

SNP x age interaction eGFRcrea SNP x age interaction eGFRcys

Beta P Beta P

A from GWAS/candidate search for decline (baseline-unadjusted)

rs34882080 UMOD-PDILT a/g −0.043 5.53×10 −22 −0.045 2.37×10 −17 

rs77924615 UMOD-PDILT g/a −0.050 2.55×10 −29 −0.054 6.59×10 −25 

rs10254101 PRKAG2 t/c −0.009 0.0263 −0.015 9.84×10 −04 

rs1028455 SPATA7 t/a −0.014 2.19×10 −04 −0.014 1.06×10 −03 

B from GWAS for declineadj, with association for decline (baseline-unadjusted)

rs1458038 FGF5 c/t −0.013 7.11×10 −04 −0.013 3.12×10 −03 

rs4930319 OVOL1 c/g −0.015 2.55×10−05 −0.016 1.84×10−04

rs434215 TPPP a/g −0.028 1.02×10 −10 −0.033 5.02×10−11

rs28857283 C15ORF54 g/a −0.010 5.09×10−03 −0.006 0.148

rs13095391 ACVR2B a/c 0.004 0.227 0.002 0.695

C from GWAS for declineadj, without association for decline (baseline-unadjusted)

rs9998485 SHROOM3 a/g −0.004 0.206 −0.009 0.022

rs1047891 CPS1 a/c 0.004 0.228 0.005 0.244

rs2453533 GATM a/c 0.014 9.71×10 −05 0.002 0.722

SNPID=Variant identifier on GRCh37, Locus name=Nearest Gene, EA/OA=Effect allele / other allele, Beta and P=genetic effect and association 
P-value. The TPPP variant rs434215 is well-imputed in the UK Biobank (imputation quality=0.82).
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Table 3:
The 9 variants’ effects on eGFR-decline unadjusted for eGFR-baseline in high-risk 
subgroups.

Shown are the 9 variants with genuine association for eGFR-decline for their association with eGFR-decline 

restricted to individuals with baseline diabetes mellitus (DM, n up to 38,206) or baseline CKD (i.e. eGFR<60 

mL/min/1.73m2, n up to 26,653). Beta-estimates and 95% confidence intervals (CI) are in mL/min/1.73m2 per 

year and per faster-decline allele.

SNPID Locus Name

Decline among DM at baseline Decline among CKD at baseline Decline among all

Beta 95% CI Beta 95% CI Beta 95% CI

A from GWAS/candidate search for decline (baseline-unadjusted)

rs34882080 UMOD-PDILT 0.159* 0.108, 0.211 0.138* 0.074, 0.203 0.065 0.054, 0.076

rs77924615 UMOD-PDILT 0.136* 0.084, 0.189 0.167* 0.099, 0.235 0.074 0.063, 0.085

rs10254101 PRKAG2 0.065 0.020, 0.110 0.095* 0.042, 0.148 0.020 0.010, 0.030

rs1028455 SPATA7 0.030 −0.011, 0.071 0.085* 0.034, 0.135 0.021 0.012, 0.029

B from GWAS for declineadj, with association for decline (baseline-unadjusted)

rs1458038 FGF5 0.030 −0.013, 0.072 0.040 −0.013, 0.092 0.019 0.010, 0.028

rs4930319 OVOL1 0.021 −0.021, 0.062 0.031 −0.019, 0.080 0.015 0.006, 0.024

rs434215 TPPP § 0.031 −0.024, 0.086 0.112* 0.043, 0.180 0.020 0.006, 0.035

rs28857283 C15ORF54 0.046 0.005, 0.086 0.042 −0.007, 0.091 0.021 0.013, 0.030

rs13095391 ACVR2B 0.029 −0.021, 0.080 0.006 −0.054, 0.066 0.017 0.008, 0.026

Average 0.061 0.079 0.030

SNPID=Variant identifier on GRCh37, Locus name=Nearest Gene, Beta=genetic effect of genetic association where the effect alleles is the same 
as in Table 1 and Table 2, 95% CI = 95% confidence interval of Beta (Beta±1.96*standard error of the association).

*
Statistically significant different from zero (P< 0.05/9=5.56×10−3).

§
Since the lead variant had imputation quality <0.6 in 45% of the studies (median 0.64), we analyzed this variant omitting the imputation quality 

filter (with filter: decline among DM at baseline beta=−0.093, P=0.338, n=927; decline among eGFR <60 mL/min/1.73m2 beta=0.022, P=0.618, 
n=2924; median imputation quality=0.74).
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